The influence of the Gauss-Bonnet interaction on the properties of boson stars and hairy black holes

Betti Hartmann

INSTITUTO DE FÍSICA DE SÃO CARLOS (IFSC) UNIVERSIDADE DE SÃO PAULO (USP), BRAZIL

"Numerical Relativity and Holography" Santiago de Compostela - 28 June 2016

Outline

The model and (some) analytical solutions

Numerical solutions

- Asymptotically flat space-time
 Non-rotating boson stars
- Asymptotically Anti-de Sitter (aAdS) space-time
 - Black holes with hyperbolic horizon (k = -1)
 - Black holes with planar horizon (k = 0)
 - Black holes with spherical horizon (k = 1)
 - Boson stars in AdS

ヘロト ヘ戸ト ヘヨト ヘヨト

The model

The model in d = 4 + 1: Einstein-Gauss-Bonnet + scalar field Ψ + U(1) gauge field A_M

$$S = \int d^{5}x \sqrt{-g} \left[\frac{R - 2\Lambda}{16\pi G_{5}} - (D_{M}\Psi)^{*} D^{M}\Psi - \frac{1}{4} F_{MN}F^{MN} - V(|\Psi|) \right. \\ \left. + \frac{\alpha}{64\pi G_{5}} \left(R^{MNKL} R_{MNKL} - 4R^{MN} R_{MN} + R^{2} \right) \right]$$

with

$$D_M = \partial_M - ieA_M$$
, $F_{MN} = \partial_M A_N - \partial_N A_M$

 $\begin{array}{ll} \Lambda = -6/L^2: \mbox{ cosmological constant} \\ G_5: \mbox{ Newton's constant} \\ e: \mbox{ gauge coupling} \\ \end{array} \qquad \begin{array}{ll} \alpha: \mbox{ Gauss-Bonnet coupling} \\ V(|\Psi|): \mbox{ scalar field potential} \end{array}$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

Ansatz for non-rotating solutions

$$ds^{2} = -f(r)a^{2}(r)dt^{2} + \frac{1}{f(r)}dr^{2} + \frac{r^{2}}{L^{2}}d\Sigma_{k,3}^{2}$$

with

$$d\Sigma_{k,3}^2 = \begin{cases} d\Xi_3^2 & \text{for } k = -1 \text{ hyperbolic} \\ dx^2 + dy^2 + dz^2 & \text{for } k = 0 & \text{flat} \\ d\Omega_3^2 & \text{for } k = 1 & \text{spherical} \end{cases}$$

Matter fields

$$A_M dx^M = \phi(r) dt$$
, $\Psi = \exp(i\omega t)\psi(r)$

イロト 不得 とくほ とくほ とう

2

Solutions without scalar fields

(Boulware & Deser, 1982; Cai, 2003)

$$\psi(r) \equiv 0 \ , \ \phi(r) = \frac{Q}{r_h^2} - \frac{Q}{r^2}$$
$$f(r) = k + \frac{r^2}{2\alpha} \left(1 - \sqrt{1 - \frac{4\alpha}{L^2} + \frac{4\alpha M}{r^4} - \frac{\alpha \tilde{Q}^2}{r^6}} \right) \ , \ a(r) \equiv 1$$

M: mass parameter , *Q*: charge (density) , $\tilde{Q} \propto Q$

ヘロン 人間 とくほ とくほ とう

3

Uncharged solutions without backreaction

 $G_5 = 0, Q = 0, V(|\Psi|) = m^2 |\Psi|^2, k = 1$

$$\partial_x \left(x^3 f \partial_x \psi\right) + L^2 x^3 \psi \left(\frac{\omega^2}{f} - m^2\right) = 0$$
, $f(x) = 1 + x^2$, $x = \frac{r}{L}$

has general solution

$$\Psi = \sum_{k=0}^{\infty} \exp(i\omega_k t)\psi_k(x)$$

with oscillon basis

$$\psi_{k}(x) = c_{k}(1+x^{2})^{-2-\kappa} {}_{2}F_{1}\left(\frac{4-L\omega}{2}+\kappa,\frac{4+L\omega}{2}+\kappa;3+2\kappa,\frac{1}{1+x^{2}}\right)$$

$$\kappa = -1 + \sqrt{1 + L^2 m^2}$$
, $\omega_k = \frac{4 + 2\kappa + 2\kappa}{L}$, $k = 0, 1, 2,$

イロン 不良 とくほう 不良 とうほ

Uncharged solutions without backreaction

 $G_5 = 0, Q = 0, V(|\Psi|) = m^2 |\Psi|^2, k = 1$ (Y.Brihaye, B.H. & J. Riedel, Phys. Rev. D 92, 044049 (2015))

Betti Hartmann GB boson stars and hairy black holes

.⊒...>

Asymptotically flat space-time Asymptotically AdS space-time

1 The model and (some) analytical solutions

Numerical solutions

Asymptotically flat space-time

- Non-rotating boson stars
- Asymptotically Anti-de Sitter (aAdS) space-time
 - Black holes with hyperbolic horizon (k = -1)
 - Black holes with planar horizon (k = 0)
 - Black holes with spherical horizon (k = 1)
 - Boson stars in AdS

イロト 不得 とくほ とくほう

Asymptotically flat space-time Asymptotically AdS space-time

Outline

The model and (some) analytical solutions

Numerical solutions

- Asymptotically flat space-time
 Non-rotating boson stars
- Asymptotically Anti-de Sitter (aAdS) space-time
 - Black holes with hyperbolic horizon (k = -1)
 - Black holes with planar horizon (k = 0)
 - Black holes with spherical horizon (k = 1)
 - Boson stars in AdS

くロト (過) (目) (日)

Asymptotically flat space-time Asymptotically AdS space-time

Gauss-Bonnet boson stars

(B.H., J.Riedel, R. Suciu, Phys.Lett. B726 (2013) 906)

• exist for
$$\omega \in [\omega_{\min} : \omega_{\max}]$$

• for α small: spiraling behaviour ending at $\omega_{cr} > \omega_{min}$

Asymptotically flat space-time Asymptotically AdS space-time

Gauss-Bonnet boson stars

(B.H., J.Riedel, R. Suciu, Phys.Lett. B726 (2013) 906)

- practically no change for thick wall limit
- strong influence for thin wall limit

ヘロア 人間 アメヨア 人口 ア

ъ

Asymptotically flat space-time Asymptotically AdS space-time

Gauss-Bonnet boson stars

(B.H., J.Riedel, R. Suciu, Phys.Lett. B726 (2013) 906)

- for sufficiently large α : unique mass-radius relation
- density increases with increasing α

э

Asymptotically flat space-time Asymptotically AdS space-time

1 The model and (some) analytical solutions

Numerical solutions

Asymptotically flat space-time
 Non-rotating boson stars

Asymptotically Anti-de Sitter (aAdS) space-time

- Black holes with hyperbolic horizon (k = -1)
- Black holes with planar horizon (k = 0)
- Black holes with spherical horizon (k = 1)
- Boson stars in AdS

イロト 不得 とくほ とくほう

Black holes with scalar hair in Anti-de Sitter

• (Gubser, 2008) scalar field charged under U(1), charge e

$$m_{\rm eff}^2 = m^2 - e^2 |g^{tt}| A_t^2$$

if $m^2 \ge m_{\rm BF,d}^2$: asymptotic AdS_d stable $e^2 |g^{tt}|$ large close to horizon of black hole $\Rightarrow m_{eff}^2 < m_{\rm BF,d}^2$ close to horizon \Rightarrow black hole forms scalar hair

• **uncharged** scalar field near-horizon geometry of **extremal** black holes given by $AdS_2 \times M_{d-2}$ (Robinson, 1959; Bertotti, 1959; Bardeen & Horowitz, 1999) if $m_{BF,2}^2 > m^2 > m_{BF,d}^2 \Rightarrow$ asymptotic AdS_d stable, but black hole forms scalar hair

イロン 不良 とくほう 不良 とうほ

Asymptotically flat space-time Asymptotically AdS space-time

Outline

The model and (some) analytical solutions

Numerical solutions

Asymptotically flat space-time
 Non-rotating boson stars

Asymptotically Anti-de Sitter (aAdS) space-time

- Black holes with hyperbolic horizon (k = -1)
- Black holes with planar horizon (k = 0)
- Black holes with spherical horizon (k = 1)
- Boson stars in AdS

ヘロト 人間 ト ヘヨト ヘヨト

Asymptotically flat space-time Asymptotically AdS space-time

Uncharged black holes for k = -1

- Uncharged black holes Q = 0; uncharged scalar field e = 0
- for k = -1 extremal solution with $T_{\rm H} = 0$, $r_h^{\rm (ex)} = L/\sqrt{2}$ exists
- close to extremality horizon topology is AdS₂ × H³ (Astefanesei, Banerjee & Dutta, 2008)
- hyperbolic Gauss-Bonnet black holes in d = 5 have AdS_2 radius

$$R = \sqrt{L^2/4 - \alpha}$$

(Y. Brihaye & B.H., Phys.Rev. D84 (2011) 084008)

asymptotic AdS₅ stable, near-horizon AdS₂ unstable for

$$m_{\mathrm{BF},5}^2 \leq m^2 \leq m_{\mathrm{BF},2}^2$$

イロン 不得 とくほ とくほ とうほ

Asymptotically flat space-time Asymptotically AdS space-time

Black holes with scalar hair, $G_5 \neq 0$, $\alpha \neq 0$

(Y. Brihaye & B.H., Phys.Rev. D84 (2011) 084008)

black holes with scalar hair thermodynamically preferred

ヘロト ヘ戸ト ヘヨト ヘヨト

Asymptotically flat space-time Asymptotically AdS space-time

Black holes with scalar hair, $G_5 \neq 0$, $\alpha \neq 0$

(Y. Brihaye & B.H., Phys.Rev. D84 (2011) 084008)

• the larger α the lower $T_{\rm H}$ at which instability appears

ヘロト ヘ戸ト ヘヨト ヘヨト

Asymptotically flat space-time Asymptotically AdS space-time

Outline

The model and (some) analytical solutions

Numerical solutions

Asymptotically flat space-time
 Non-rotating boson stars

Asymptotically Anti-de Sitter (aAdS) space-time

- Black holes with hyperbolic horizon (k = -1)
- Black holes with planar horizon (k = 0)
- Black holes with spherical horizon (k = 1)
- Boson stars in AdS

ヘロト ヘアト ヘビト ヘビト

Asymptotically flat space-time Asymptotically AdS space-time

Black holes with planar horizon in AdS

- k = 0: planar horizon
- charged scalar field $e \neq 0$
- $r \to \infty$: planar AdS boundary

イロン 不得 とくほ とくほとう

Asymptotically flat space-time Asymptotically AdS space-time

Including Gauss-Bonnet corrections

(Brihaye & B.H., Phys. Rev. D81 (2010) 126008)

• Gauss-Bonnet coupling $0 \le \alpha \le L^2/4$

 \Longrightarrow condensation gets harder for lpha > 0, but not suppressed

Asymptotically flat space-time Asymptotically AdS space-time

Outline

The model and (some) analytical solutions

Numerical solutions

- Asymptotically flat space-time
 Non-rotating boson stars
- Asymptotically Anti-de Sitter (aAdS) space-time
 - Black holes with hyperbolic horizon (k = -1)
 - Black holes with planar horizon (k = 0)
 - Black holes with spherical horizon (k = 1)
 - Boson stars in AdS

ヘロト 人間 ト ヘヨト ヘヨト

Asymptotically flat space-time Asymptotically AdS space-time

Charged black hole with scalar hair, k = 1

(Y. Brihaye & B.H., Phys.Rev. D85 (2012) 124024)

$$ds^{2} = -f(r)a^{2}(r)dt^{2} + \frac{1}{f(r)}dr^{2} + \frac{r^{2}}{L^{2}}d\Omega_{3}^{2}$$

- For small α: solution exists down to r_h = 0 → soliton?
- For large α: solution has a(r_h) → 0 for r_h → r_h^(cr) > 0 → extremal black hole?

イロト イポト イヨト イヨト

Asymptotically flat space-time Asymptotically AdS space-time

Charged black hole with scalar hair, k = 1

(Y. Brihaye & B.H., Phys.Rev. D85 (2012) 124024)

$$ds^{2} = -f(r)a^{2}(r)dt^{2} + \frac{1}{f(r)}dr^{2} + \frac{r^{2}}{L^{2}}d\Omega_{3}^{2}$$

For $\alpha = 0$:

Black hole tends to soliton solution in the limit r_h → 0

ヘロト ヘ戸ト ヘヨト ヘヨト

Asymptotically flat space-time Asymptotically AdS space-time

Charged black hole with scalar hair, k = 1

(Y. Brihaye & B.H., Phys.Rev. D85 (2012) 124024)

$$ds^{2} = -f(r)a^{2}(r)dt^{2} + \frac{1}{f(r)}dr^{2} + \frac{r^{2}}{L^{2}}d\Omega_{3}^{2}$$

 $\alpha \neq 0$:

- Gauss-Bonnet solitons with scalar hair exist
- black holes with scalar hair do **not** tend to corresponding solitons for $r_h \rightarrow 0$

イロト イポト イヨト イヨト

Asymptotically flat space-time Asymptotically AdS space-time

Charged black hole with scalar hair, k = 1

(Y. Brihaye & B.H., Phys.Rev. D85 (2012) 124024)

There exist no extremal Gauss-Bonnet black holes with scalar hair.

ヘロン 人間 とくほ とくほ とう

э.

Charged black hole with scalar hair, k = 1

Proof:

• assume near-horizon geometry to be $AdS_2 \times S^3$:

$$ds^{2} = v_{1} \left(-\rho^{2} d\tau^{2} + \frac{1}{\rho^{2}} d\rho^{2} \right) + v_{2} \left(d\psi^{2} + \sin^{2} \psi \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right) \right)$$

v1, v2: positive constants

• Combination of equations of motion yields

$$0 = 16\pi G \left(\frac{\rho^2}{v_1} \psi'^2 + \frac{e^2 \phi^2 \psi^2}{\rho^2 v_1} \right)$$

This leads to: $\psi' = 0$ and $\phi^2 \psi^2 = 0$ in near horizon geometry

• $\phi^2 = 0$ ruled out $\rightarrow \psi \equiv 0$ in hear horizon geometry q.e.d.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Asymptotically flat space-time Asymptotically AdS space-time

Outline

The model and (some) analytical solutions

Numerical solutions

Asymptotically flat space-time
 Non-rotating boson stars

Asymptotically Anti-de Sitter (aAdS) space-time

- Black holes with hyperbolic horizon (k = -1)
- Black holes with planar horizon (k = 0)
- Black holes with spherical horizon (k = 1)
- Boson stars in AdS

ヘロト 人間 ト ヘヨト ヘヨト

Asymptotically flat space-time Asymptotically AdS space-time

From massive oscillons to minimal boson stars

(Y.Brihaye, B.H. & J. Riedel, Phys. Rev. D 92, 044049 (2015)) $G_5 \neq 0, Q = 0, V(|\Psi|) = m^2 |\Psi|^2$

Betti Hartmann GB boson stars and hairy black holes

æ

Asymptotically flat space-time Asymptotically AdS space-time

Self-interacting boson stars

(B.H.& J. Riedel, PRD87 (2013), 044003; PRD86 (2012) 104008) $Q = 0, V(|\Psi|) = m^2 |\Psi|^2 - \lambda |\Psi|^4 + |\Psi|^6$ $\phi(0) = 0 \Rightarrow \phi(r) \equiv 0 \Rightarrow M = N = 0 \Rightarrow AdS$ vacuum

ヘロト 人間 ト ヘヨト ヘヨト

Conclusions

- Gauss-Bonnet (GB) interaction influences (mainly) the spacetime close to r = 0 (for solitons)
 see also *rotating* GB boson stars
 (Y. Brihaye & B.H., Class. Quant. Grav. (2016))
- With increasing α, GB black holes become unstable to form scalar hair at decreasing temperatures
- GB black holes with scalar hair thermodynamically preferred
- extremal GB black holes do not support scalar hair
- Very compact rotating boson stars possess ergoregion: Gauss-Bonnet interaction has only small influence on the ergoregion

(Y. Brihaye & B.H., Class. Quant. Grav. (2016))

ヘロト 人間 ト ヘヨト ヘヨト

Jürgen Riedel

Universität Oldenburg, Germany Yves Brihaye Université de Mons, Belgium

Thanks to my collaborators on this topic

Thanks for funding

Deutsche Forschungsgemeinschaft

Thanks for your attention

Betti Hartmann GB boson stars and hairy black holes