Polarized Black Holes in AdS

Lauren Greenspan

Work in Progress with M. Costa, J. Penedones, and J. Santos

June 30, 2016 Santiago De Compostela

Motivation

Find interesting new geometries in AdS. What can we learn about the dual field theories?

Motivation

Find interesting new geometries in AdS. What can we learn about the dual field theories?

Idea

Study the thermodynamics of deformed 4-dimensional black holes in dual to 3-dimensional ABJM theory.

Background - Polarized Black Holes in AdS_4 [hep-th/1511.08505 Costa, LG, Oliveira, Penedones, Santos]

Studied numerical solutions Einstein-Maxwell gravity with a dipolar potential source. $A_{\tau} = i \mathcal{E} \cos \theta$

- STRONG COUPLING: phase Diagram from BH thermo- can increase electric field without bound.
- WEAK COUPLING: Partition function of free Bosons on a sphere- maximum electric field.

ABJM [Aharony, Berenstein, Jafferis, Maldacena 2008]

A precise dual of BH polarization is deformed 3 d ABJM theory

* $\mathcal{N} = 6$ Superconformal CS matter theory * 12 Real Supercharges *gauge group $U(N)_k \times U(N)_{-k}$ *Conformal fixed points of CM systems

Concrete Realization of the gauge/gravity duality!

[Itzhaki, Maldacena, Sonnenschein, Yankielowicz '98]

Gravity Dual

[Cvetic, Duff, Hoxha et. al. 1999]

 $AdS_4 \times S^7 \quad \bullet \quad \stackrel{\text{4 d gauged SUGRA that can}}{\text{be truncated to include}} \cdot \begin{array}{c} \text{gauge field } \tilde{A}_{\mu} \\ \text{scalar field } \Phi \\ \text{with gravitational action} \end{array}$

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left(R - \frac{1}{2} \nabla_\mu \Phi \nabla^\mu \Phi + \frac{2}{l^2} (\cosh \Phi + 2) - \frac{1}{2} e^{\Phi} F^2 \right) + S_{bdy}$$
$$S_{bdy} = \frac{1}{8\pi G_N} \int d^3x \sqrt{h} \left(K - \frac{1}{2} n_\mu \Phi \nabla^\mu \Phi \right)$$

Some boundary observables:

$$T_{\mu\nu} = \frac{2}{\sqrt{h}} \frac{\delta S}{\delta h^{\mu\nu}} = \frac{1}{8\pi G_N} \left(K_{\mu\nu} - K h_{\mu\nu} + G_{\mu\nu} - 2h_{\mu\nu} + \frac{1}{8} \Phi n^{\alpha} \nabla_{\alpha} \Phi h_{\mu\nu} \right)$$
$$Q = \frac{1}{4\pi G_N} \int d\Omega_2 \left(e^{\Phi(r,\theta)} \star F \right) \Big|_{r=1}$$

Ansatze

$$ds_{sol}^{2} = \frac{1}{(1-r^{2})^{2}} \left(f(r)A(r,\theta) d\tau^{2} + \frac{(1+r^{2})^{2}G(r,\theta)dr^{2}}{f(r)} + r^{2}C(r,\theta)(d\theta + \frac{1}{r}H(r,\theta)dr)^{2} + r^{2}d\phi^{2}B(r,\theta)\sin^{2}\theta \right)$$

$$f(r) = 1 - r^{2} + r^{4}$$

$$\tilde{A}_{r}^{sol} = irD(r,\theta)$$

$$\Phi(r,\theta) = (1 - r^{2})\varphi(r,\theta)$$

$$ds_{BH}^{2} = \frac{1}{(1-r^{2})^{2}} \left(d\tau^{2}r^{2}A(r,\theta)f_{BH}(r) + R^{2} \left(\frac{4dr^{2}G(r,\theta)}{f_{BH}(r)} + C(r,\theta)(d\theta + 2rdrH(r,\theta))^{2} + d\phi^{2}B(r,\theta)\sin^{2}\theta \right) \right)$$

$$f_{BH}(r) = (1 - r^{2})^{2} - Q^{2}(1 - r^{2})^{3} + R^{2}(3 - 3r^{2} + r^{4})$$

$$\tilde{A}_{\tau}^{BH} = ir^{2}D(r,\theta)$$
Boundary Conditions:
*Regularity at Axes of Symmetry
$$\int e^{quator} e^{quator} \int e^{quator} \int$$

Einstein-deTurck Equations

[Headrick, Kitchen, Wiseman '09]

θ

$$d\left(e^{\Phi} \star F\right) = 0$$
$$\nabla^2 \Phi + \frac{2}{l^2} \sinh \Phi - \frac{1}{2} e^{\Phi} F^2 = 0$$
$$R_{\mu\nu} = T_{\mu\nu}$$

- diffeomorphism invariance (underdetermined)
 - numerics: pure gauge fluctuations cause convergence problems

Einstein-deTurck Equations

/ 五

D

ec

[Headrick, Kitchen, Wiseman '09]

 θ

$$d(e^{\Psi} \star F) = 0$$

$$\nabla^{2} \Phi + \frac{2}{l^{2}} \sinh \Phi - \frac{1}{2} e^{\Phi} F^{2} = 0$$

$$R_{\mu\nu} - \nabla_{(\mu} \xi_{\nu)} + \frac{1}{l^{2}} (\cosh \Phi + 2) g_{\mu\nu} - \frac{1}{2} \nabla_{\mu} \Phi \nabla_{\nu} \Phi + e^{\Phi} \left(\frac{1}{4} F^{2} g_{\mu\nu} - F_{\mu\alpha} F_{\nu}^{\alpha} \right) = 0$$
Provide the second second

vanishes on numerical solution

Einstein-deTurck Equations

 \cap

 $1(\Phi, T)$

D

e

[Headrick, Kitchen, Wiseman '09]

$$a (e^{-} \star F) = 0$$

$$\nabla^{2} \Phi + \frac{2}{l^{2}} \sinh \Phi - \frac{1}{2} e^{\Phi} F^{2} = 0$$

$$R_{\mu\nu} - \nabla_{(\mu} \xi_{\nu)} + \frac{1}{l^{2}} (\cosh \Phi + 2) g_{\mu\nu} - \frac{1}{2} \nabla_{\mu} \Phi \nabla_{\nu} \Phi + e^{\Phi} \left(\frac{1}{4} F^{2} g_{\mu\nu} - F_{\mu\alpha} F_{\nu}^{\alpha} \right) = 0$$
Performing the term that makes Einstein quations elliptic
$$\xi^{\lambda} \equiv g^{\mu\nu} \left(\Gamma^{\lambda}_{\mu\nu} - \overline{\Gamma}^{\lambda}_{\mu\nu} \right) \text{ (AdS)}$$
Defunct vector:
vanishes on numerical solution
* Descretize PDEs with a chebyshev grid in r and fourier in θ
* Solve with Spectral Methods (exponential convergence)

derivatives estimated using a polynomial approximation that includes all points on the grid.

Observables- Soliton

$$T_t^t = \frac{3}{256\pi G_N} \left(2\alpha_3 + \phi_0^2 \right)$$

$$T_\theta^\theta = \frac{3}{256\pi G_N} \left(2\chi_3 - \phi_0^2 \right)$$

$$T_\phi^\phi = \frac{-3}{128\pi G_N} \left(\chi_3 + \alpha_3 + \phi_0^2 \right)$$

$$A(r, \theta) = \sum_{i=1}^n \alpha_i(\theta)(1-r)^i$$

Observables- Soliton

charge in one hemisphere

 $\theta = 0$

Observables- BH energy

Observables- BH charge density

$$S = \frac{\mathcal{A}}{4G_N} = \frac{\pi R^2}{G_N} \int_0^{\frac{\pi}{2}} d\theta \, \sin \theta \sqrt{C(0,\theta)B(0,\theta)}$$

Free Energy $G = E - TS - 4\pi \int_0^{\pi/2} d\theta \sin \theta \rho(\theta) \mathcal{E} \cos \theta$

Phase diagram at strong Coupling

Future Work

*study dynamical stability of BH.

Can deformation of ABJM be simulated on a computer?Condensed Matter...

Future Work

*study dynamical stability of BH.

Can deformation of ABJM be simulated on a computer?Condensed Matter...

Thank You

Numerical Solutions

- 2 branches of soliton solutions varying electric field up to a maximum value
- 4 branches of black hole solutions varying electric field and temperature with maximum electric field and minimum temperature

