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Introduction to superradiant instabllity

e Mass and angular momentum can be extracted from a black hole with ergoregion.

E.g., Penrose process t* time translation Killing field
E = —t%p, particle energy

ergoregion
t* spacelike

By =FE1 - E2
' > E1
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[ >0
e Area law not violated since A = 87 M [M + (M?* — a2)1/2} and particles extract angular
momentum as well.



Introduction to superradiant instabllity

e Similar process amplifies waves: superradiance

e Can be understood from the area theorem:

e Wave ~ e'™?e~"! changes BH area by

N SA=6M— Qs
&7

= o (1- ;)

5M
— M (1 _ QH%)

e Thus, if |0 < w < m{2g|, area increase requires

oM < 0



Introduction to superradiant instabllity

Reflecting boundary

e Superradiant instability caused
when combined with
reflecting boundary.

e Examples:
mass term for field
mirror
anti-de Sitter boundary

e Black hole must be sufficiently
small, or else no ergoregion

e \What is the end state?




Outline

1. Linear superradiant instability of AdS black holes with ergoregions to
gravitational perturbations

e Canonical energy method of Hollands and Wald

e Construction of unstable initial data; all such black holes unstable

2. Nonlinear evolution of superradiant instability of Reissner-Nordstrom-AdS
black holes

e Spherically symmetric numerical relativity simulations

e Backreaction on black hole, evolution of individual modes, final state



Part 1: Linear superradiant instability
CQG 33 125022 (2016) (arXiv:1512.02644) with S. Hollands, A. Ishibashi and R. Wald

e Background metric Gab

e asymptotically AdS black hole solution to Einstein equationin d > 4
e horizon Killing vector field K

e Metric perturbation "Vab

e solution to linearized Einstein equation with reflecting AdS boundary
condition

e Main result: Black hole is unstable if K “ becomes spacelike somewhere
outside the black hole (i.e., there is an ergoregion).



Canonical energy method

e Standard method to prove instability: Search for mode solutions that grow in
time.

e This is difficult, in particular for complicated backgrounds, higher dimensions,
or gravitational perturbations. Requires decoupling and separation of
equations, which may not even be possible.

e Alternative is “canonical energy method”, which only requires construction of
initial data solving the constraint equations---not a solution to the evolution
eqguations.



Canonical energy method

e Canonical energy & is an integral over a Cauchy hypersurface ., quadratic in the
perturbation 7ab, satisfying

e Gauge invariance %4—
22 j
e Degeneracy precisely on perturbations to
other stationary black holes
201

e Conservation

e Positive flux at horizon and
Infinity

e Then &x, < &x,, and if a solution to the constraints Yab exists such that
Es, (v) < 0, instability follows.



Canonical energy

e Starting with Einstein-Hilbert action, one can derive a symplectic current,
which depends on two metric perturbations,

L abcdef(

cv ef cv e y
= Yove VaYier — YiveVayzef)

w*(y1,72) =

1 1 1 1
Where gabcdef _ gaegfbgcd o 5gadgbegfc o §gabgcdgef o §gbcgaegfd + 5gbcgadgef
depends on the background metric.

e Symplectic form: Wx(g;v1,72) = / n“wg
Y

spacelike
hypersurface

e For solutions to the linearized Einstein equation, V,w" =0



Canonical energy

e Integrate over a volume V. On solutions, Stokes’ theorem gives

0:/ vawa:/ nawa
%4 oV

e Now take 72 = £x71, SO w* = w*(y, £x7)

and consider contributions from each boundary ar

/ naw® =0 <
L¢12
1
/ now® = yp (Kcvcu)(Saab&f"’b + By, — B,
T2 T J Ay
f
nonnegative

(imposed reflecting AdS boundary, and certain gauge conditions)




Canonical energy

e So define the canonical energy

Ex(7,2) = Wx(g;7, £x7) — Bz(g;7)

e Above implies Ex(7,22) < Ex (v, 21) (decreases in time)

e Under restriction to certain gauge conditions at .s#" and .#, together with
0A = 0 and 0Hx = 0 for all asymptotic symmetries X, it can be shown that
Ex(v,%) is gauge-invariant and degenerate precisely on perturbations to other
stationary black holes.

Stability criterion

SN

Canonical energy non-negative Canonical energy negative for
for all such perturbations some perturbation
STABLE UNSTABLE




Construction of initial data

e Energy (with respect to k%) of a particle with 4-momentum p“is
gK,particle — _Kapa

If there is an ergoregion where KK, > 0 is spacelike, then a timelike or null p“
may be chosen to make &k particle < 0 in the ergoregion.

e Similarly, for a wave, we ought to be able to find a gravitational perturbation
such that the canonical energy Ex(v) <0

e Step 1: WKB method to obtain approximate compact support solution to
the constraint equations of the form va» = Aap exp(iwy) with w > 1
and Ex(y) ~ w?K%, <0

e Step 2: Obtain exact solution with Corvino-Schoen method, such that
canonical energy remains negative.



Construction of initial data

e Convenient to trade spacetime quantities gu» and 7ab for initial data

quantities defined on Z‘/ l
Gab — Yab + Mg My 5Qab — qaCdefycd
1

pab _ \/a(k,ab o qabkcc) 5pab _ \/a(qacqbd B qabQCd)§£n'ch
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Construction of initial data

e Assume there is a region where K“ is spacelike. Construct approximate initial
data of compact support in this region.

Ergoregion
e Trick: In this region, choose >. such that it y K

is tangent to K“ (possible since spacelike). M

This leads to the expression

1
167 N

—2p°*3GaaDpdq,* + p**6qaaD*Sqcp)

Er (8qap, 6p™°) = K (—20p" Dodgpe + 40p° Dpdgac + 26¢acDydp®™

N[ =

* Constraints [ q (D*Dadq,® — D*D*0qap + Ric(q)*dqa) +
q 3 (=8¢, D™ Pab + 20ap0p™ + 2p°p°, Sqpe+
C(5qab’5pab) = 2p cP d5q a —2p 5]? b —5Qa pabpcc) =0

\ _QQ%Db(q_%apab) + Da5CchPCb _ 2D05QCprbC )



Construction of initial data

e WKB expansion of initial data ¢q,, = (Z Q' (iw ”) exp(iw),

n>0

5P = (Z Pi?(z‘w)”“) exp(iwy)

n>0 T

WKB parameter phase function

e Constraints become

—D*Xx(Dax)QV° + DX (D*X)QN | _ ™
Py D'x i
Depends on lower order (m<n)

WKB approximations
¢ Oth order, choose

P =-Q%, QP =0,  QYD'x=0

ab

e Higher orders algebraic



Construction of initial data

e To leading order in WKB, the canonical energy is

w2

£(dq,0p) = “T6r /., K’ Dyx Q" Q 4+ O(w)

® So choosing K*D,x >0 gives £ <0 as w — o0

e Of course, any given WKB order is only an approximate solution. Using the
Corvino-Shoen method (see paper), we can correct our WKB initial data such
that

¢ | inearized constraints hold exactly
e Data remain smooth and compactly supported in slightly larger region

e The correction to the canonical energy is sufficiently small as w — o©



Conclusions from part 1

e Any black hole in AdS with a horizon Killing field that becomes spacelike is
linearly unstable to superradiant gravitational perturbations. Results follow from
a Lagrangian formulation of the theory, so should carry over to other fields.

e As perturbation grows, nonlinear effects become important:

e Backreaction of the perturbation on the black hole changes the background

e Changing background alters the dynamics of the perturbation. Unstable
modes may become stable.

e \What is the end point of the instability? Speculation includes violation of
cosmic censorship, as there is no plausible stable final state. Numerical
simulations are important, but challenging.



Part 2: RN-AdS superradiant instability

PRL 116 141102 (2016) (arXiv:1601.0138) with P. Bosch and L. Lehner

e Reissner-Nordstrom-AdS black holes are also subject to the superradiant
instability, with charge playing the role of angular momentum.

e Charged scalar field mode % ~ e "t superradiantly amplified if

wrpg < qQ
Black hole” ™~

adius Black hole charge

gauge coupling

compare rotating case: w < m{ly

¢ |nstability occurs even in spherical symmetry, which makes numerical
simulations feasible.



Model

e Fields: YJap — metric
A, — Maxwell
) — complex scalar
: 6 1 ab 2
e | agrangian: 16rGNL = R+ 72 ZFabF — |Dg)

D,=V,—1qA,

This gives rise to the Einstein, Maxwell, and scalar field equations, which we
solve numerically.

¢ [t can be checked that RN-AdS is a solution



Numerical method

e \We work in Eddington-Finkelstein coordinates and spherical symmetry. Metric
and Maxwell fields can be put in the form

ds® = —A(v,r)dv® + 2dvdr + X(v,r)%dQ5 o+
A, dxt = W(v,r)dv ‘
Y = ¢(Ua T)

. v = constant
e Reflecting at ¢ slices

that fix ADM mass M, charge Q.

r = constant
slices

¢ ¢(U — U(),?“)



Numerical method

e Equations of motion are highly coupled

Einstein:
3 1 1

0=3(d. . 2) + (d D)X — —%? - — + =2’W'
(+)+(+) 97 2 2+8 )

4 y *
0=A" = G (d: D)% + o5 + () "dyy
+ (dyp) Y — (W')? +igW [ — (") Y],
1 1 1
0=dydyd— §A/d+2 + §E|d+¢|2 + §QQW2EW2

b igWE [ d b — 9(ds )],

1
O — Z// _|_ 52‘¢/|2

where f'=0,f
1
d—l—f = auf + §Aarf

Maxwell:

1 d.y
0= (dW) = AW + Q%W’ —2¢°W ||

+ iq (P dpp — P(dyy)7],

o:wm+%ywtwﬂWW—ww0ﬂ

Scalar: /
> d.y
— 2(d. ) +2=d 9 1+~
0=2(dyv) + S + + 5
E/

— 2iq§W¢ — 25qWo)’

Y —igyp W’



Numerical method

e Asymptotically near r = infinity, obtain a power series solution

12 M Q?

A= — +1-— | -O(r™),
-t et o)

S =7r+0(""),

w=%100)
r where M = ADM mass

Q = ADM charge

@3(v) = unknown function, determined from solution

e This imposes reflecting boundary conditions at infinity, and also fixes a
residual gauge freedom.

e M and Q are chosen and set as boundary conditions.



Numerical method

* Integration procedure

initial data: (v = vg, 1)

Repeat Integrate equations, radially inward in r
v Impose M and Q as boundary conditions

d.>, A Y, W,and d. vy at v = vg

1
Ot = dyt) — 5 AD, )

4

avw(v — o, T)

Integrate one step in v

TP(U = Vo + AU? T)




Sample evolution

* We consider small black holes in IR, (6.0e+00 , 1.7-01)
AdS, so "m < L

0.00000000e+00

phir

e Compactly supported initial
data for ¥, small amplitude.

rH=0.2

L =1

Q/Qmax = 0.8
g=12 (0.0e+00 , -1.5e-01)

r = 00




Apparent horizon area vs time

e Area always increases

area/area_initial
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Charge vs time

e Most of the charge is extracted by the scalar field
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Boundary field ¢3(v)

d¢/dp(p=0)

1.0}

time




Boundary field ¢3(v)

e Zoomed In at early times, growth clearly isn’t in a single mode
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Scalar field modes

e Since the black hole is small compared to AdS scale, we can approximate the
scalar field modes by the empty AdS modes

2n + 3
n ~ : =0,1,2,...
W 7 n
L
e Instability criterion wrg <q@Q — 2n-+3< 19
I"H

¢ Thus there can be several modes, and n=0 is most unstable.



Scalar field modes

e Spectrogram reveals individual modes

¢ As BH loses charge and mass,
modes switch from superradiant to
nonsuperradiant, and are reabsorbed.

¢ Final state is BH + lowest mode, with zero growth rate.



What happens when g iIs increased?

e Larger q excites more modes -> faster process.
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What happens when g iIs increased?

e End state
3 00—
0098 : 0.004}- ;
I — g=15 -
0.096 - —— gq=150 | -
) i - q:]500 ] - 0.003+ -
§0.094— g =2500 > _
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Charge is located further away from BH Scalar field settles down further away



What happens when g iIs increased?

e Fnd state

| Irreducible mass (area) approaches that of a
| Schwarzschild-AdS BH of mass M

0.75r

'Z).l 1 10 q 100 1000 10000

e For larger q, the scalar field charge/mass ratio is increased. As the scalar field
extracts nearly the full ADM charge Q, it extracts very little mass. Final state
approaches Schwarzschild-AdS, surrounded by a distant low-mass/high-charge
condensate.




Conclusions

e Rotating case?
RN-AdS

Instability criterion W < qQ
(for a given w) T

g = fixed parameter

Most unstable mode n=~0
(final state) I —0
2n+ 1+ 3
L

W =

BH instability criterion

hlw

Kerr-AdS

w < mSly

m = any integer

n=~0

[ =m — o0

1
— < (2
7 H

(Hawking-Reall bound)



Conclusions

e At the linear level, all AdS black holes with ergoregions are unstable.

e RN-AdS case: Numerical simulations show that charge and mass is extracted
from the black hole by several superradiant scalar field modes. As this
unfolds, higher-frequency modes cease to be superradiant, and fall back into
the black hole, resulting in nontrivial dynamics. Final state is a stable hairy
black hole, with the scalar condensate distributed far away for large q.

e Kerr-AdS case: The same arguments suggest an m — oo condensate in the
final state, since this is the most superradiant mode.

e Astrophysics: Finite-sized barrier arises from a mass term (no longer infinite)
provides a cutoff in mode energy that can be confined.
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