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• Mass and angular momentum can be extracted from a black hole with ergoregion.

E.g., Penrose process

• Area law not violated since                                           and particles extract angular 
momentum as well.

Introduction to superradiant instability
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• Similar process amplifies waves: superradiance

Introduction to superradiant instability
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• Can be understood from the area theorem:

• Wave                          changes BH area by

• Thus, if                           , area increase requires
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Introduction to superradiant instability

• Superradiant instability caused 
when ergoregion combined with 
reflecting boundary.

• Examples:
    mass term for field
    mirror
    anti-de Sitter boundary

• Black hole must be sufficiently 
small, or else no ergoregion

• What is the end state?
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Outline

1. Linear superradiant instability of AdS black holes with ergoregions to 
gravitational perturbations

• Canonical energy method of Hollands and Wald

• Construction of unstable initial data; all such black holes unstable

2. Nonlinear evolution of superradiant instability of Reissner-Nordstrom-AdS 
black holes

• Spherically symmetric numerical relativity simulations

• Backreaction on black hole, evolution of individual modes, final state



Part 1: Linear superradiant instability
   CQG 33 125022 (2016) (arXiv:1512.02644) with S. Hollands, A. Ishibashi and R. Wald

• Background metric        

• asymptotically AdS black hole solution to Einstein equation in

• horizon Killing vector field

• Metric perturbation       

• solution to linearized Einstein equation with reflecting AdS boundary 
condition

• Main result: Black hole is unstable if        becomes spacelike somewhere 
outside the black hole (i.e., there is an ergoregion).
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Canonical energy method

• Standard method to prove instability: Search for mode solutions that grow in 
time.

• This is difficult, in particular for complicated backgrounds, higher dimensions, 
or gravitational perturbations. Requires decoupling and separation of 
equations, which may not even be possible.

• Alternative is “canonical energy method”, which only requires construction of 
initial data solving the constraint equations---not a solution to the evolution 
equations.



Canonical energy method

• Canonical energy     is an integral over a Cauchy hypersurface     , quadratic in the 
perturbation       , satisfying

• Gauge invariance

• Degeneracy precisely on perturbations to
other stationary black holes

• Conservation

• Positive flux at horizon and
infinity

• Then                    , and if a solution to the constraints        exists such that        
                   , instability follows.   
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Canonical energy

• Starting with Einstein-Hilbert action, one can derive a symplectic current, 
which depends on two metric perturbations,

where
depends on the background metric.

• Symplectic form: 

• For solutions to the linearized Einstein equation,
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Canonical energy

• Integrate over a volume V. On solutions, Stokes’ theorem gives

• Now take                   , so    
and consider contributions from each boundary

(imposed reflecting AdS boundary, and certain gauge conditions)
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Canonical energy

• So define the canonical energy

• Above implies                                             (decreases in time)

• Under restriction to certain gauge conditions at         and     , together with
              and                 for all asymptotic symmetries      , it can be shown that              
              is gauge-invariant and degenerate precisely on perturbations to other 
stationary black holes.
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Construction of initial data

• Energy (with respect to      ) of a particle with 4-momentum      is

If there is an ergoregion where                   is spacelike, then a timelike or null 
may be chosen to make                        in the ergoregion.

• Similarly, for a wave, we ought to be able to find a gravitational perturbation 
such that the canonical energy 

• Step 1: WKB method to obtain approximate compact support solution to 
the constraint equations of the form                               with 
and

• Step 2: Obtain exact solution with Corvino-Schoen method, such that 
canonical energy remains negative.
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Construction of initial data

• Convenient to trade spacetime quantities        and        for initial data 
quantities defined on 
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Construction of initial data

• Assume there is a region where       is spacelike. Construct approximate initial 
data of compact support in this region.

• Trick: In this region, choose      such that it
is tangent to       (possible since spacelike).
This leads to the expression

• Constraints
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Construction of initial data

• WKB expansion of initial data

• Constraints become

• 0th order, choose

• Higher orders algebraic
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Construction of initial data

• To leading order in WKB, the canonical energy is

• So choosing                    gives            as  

• Of course, any given WKB order is only an approximate solution. Using the 
Corvino-Shoen method (see paper), we can correct our WKB initial data such 
that

• Linearized constraints hold exactly

• Data remain smooth and compactly supported in slightly larger region

• The correction to the canonical energy is sufficiently small as 
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Conclusions from part 1

• Any black hole in AdS with a horizon Killing field that becomes spacelike is 
linearly unstable to superradiant gravitational perturbations. Results follow from 
a Lagrangian formulation of the theory, so should carry over to other fields.

• As perturbation grows, nonlinear effects become important:

• Backreaction of the perturbation on the black hole changes the background

• Changing background alters the dynamics of the perturbation. Unstable 
modes may become stable.

• What is the end point of the instability? Speculation includes violation of 
cosmic censorship, as there is no plausible stable final state. Numerical 
simulations are important, but challenging.



Part 2: RN-AdS superradiant instability
    PRL 116 141102 (2016) (arXiv:1601.0138) with P. Bosch and L. Lehner

• Reissner-Nordstrom-AdS black holes are also subject to the superradiant 
instability, with charge playing the role of angular momentum.

• Charged scalar field mode                    superradiantly amplified if

compare rotating case:

• Instability occurs even in spherical symmetry, which makes numerical 
simulations feasible.
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Model

• Fields:

• Lagrangian:

This gives rise to the Einstein, Maxwell, and scalar field equations, which we 
solve numerically.

• It can be checked that RN-AdS is a solution

gab – metric

Aa – Maxwell

 – complex scalar
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Numerical method

• We work in Eddington-Finkelstein coordinates and spherical symmetry. Metric 
and Maxwell fields can be put in the form

• Reflecting boundary conditions at 
that fix ADM mass M, charge Q.

• Initial data                     
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Numerical method

• Equations of motion are highly coupled

0 = ⌃(d+⌃)
0 + (d+⌃)⌃

0 � 3

2L2
⌃2 � 1

2
+

1

8
⌃2W 0,

0 = A00 � 4

⌃2
(d+⌃)⌃

0 +
2

⌃2
+ ( 0)⇤d+ 

+ (d+ )
⇤ 0 � (W 0)2 + iqW [ ⇤ 0 � ( 0)⇤ ] ,

0 = d+d+⌃� 1

2
A0d+⌃+

1

2
⌃|d+ |2 +

1

2
q2W 2⌃| |2

+
1

2
iqW⌃ [ ⇤d+ �  (d+ )

⇤] ,

0 = ⌃00 +
1

2
⌃| 0|2

0 = (d+W )0 � 1

2
A0W 0 + 2

d+⌃

⌃
W 0 � 2q2W | |2

+ iq ( ⇤d+ �  (d+ )
⇤] ,

0 = W 00 +
2

⌃
⌃0W 0 + iq [ ⇤ 0 �  ( 0)⇤]

0 = 2(d+ )
0 + 2

⌃0

⌃
d+ + 2

d+⌃

⌃
 0 � iq W 0

� 2iq
⌃0

⌃
W � 2iqW 0

Einstein: Maxwell:

Scalar:

where f 0 ⌘ @rf

d+f ⌘ @vf +
1

2
A@rf



Numerical method

• Asymptotically near r = infinity, obtain a power series solution

• This imposes reflecting boundary conditions at infinity, and also fixes a 
residual gauge freedom.

• M and Q are chosen and set as boundary conditions.
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Numerical method

• Integration procedure
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Sample evolution

• We consider small black holes in 
AdS, so              

• Compactly supported initial
data for     , small amplitude.  
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Apparent horizon area vs time

• Area always increases



Charge vs time

• Most of the charge is extracted by the scalar field

Note the fluctuations



Boundary field '3(v)



Boundary field

• Zoomed in at early times, growth clearly isn’t in a single mode
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Scalar field modes

• Since the black hole is small compared to AdS scale, we can approximate the 
scalar field modes by the empty AdS modes

• Instability criterion

• Thus there can be several modes, and n=0 is most unstable.
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• Spectrogram reveals individual modes

• As BH loses charge and mass,
modes switch from superradiant to
nonsuperradiant, and are reabsorbed.

• Final state is BH + lowest mode, with zero growth rate.

Scalar field modes



What happens when q is increased?

• Larger q excites more modes -> faster process.           Recall

• Larger q extracts more charge
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What happens when q is increased?

• End state
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What happens when q is increased?

• End state

• For larger q, the scalar field charge/mass ratio is increased. As the scalar field 
extracts nearly the full ADM charge Q, it extracts very little mass. Final state 
approaches Schwarzschild-AdS, surrounded by a distant low-mass/high-charge 
condensate.
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Conclusions

• Rotating case?
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Conclusions

• At the linear level, all AdS black holes with ergoregions are unstable.

• RN-AdS case: Numerical simulations show that charge and mass is extracted 
from the black hole by several superradiant scalar field modes. As this 
unfolds, higher-frequency modes cease to be superradiant, and fall back into 
the black hole, resulting in nontrivial dynamics. Final state is a stable hairy 
black hole, with the scalar condensate distributed far away for large q.

• Kerr-AdS case: The same arguments suggest an                condensate in the 
final state, since this is the most superradiant mode.

• Astrophysics: Finite-sized barrier arises from a mass term (no longer infinite) 
provides a cutoff in mode energy that can be confined. 
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