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Overview

1. Stability Problems in aAdS (mostly on black hole backgrounds)

(a) linear Klein-Gordon equation �gψ + αψ = 0

(b) spherically symmetric Einstein-Klein-Gordon system

2. Unique Continuation Properties of aAdS

(a) the Klein-Gordon equation �gψ + αψ = 0

(b) the Einstein equations (work in progress)
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Anti-de Sitter space

Maximally symmetric solution of the vacuum Einstein equations,

Ric [g] = Λg

with Λ < 0. We work in 3 + 1 dimensions; choose Λ = − 3
l2 = −3.

The AdS-metric can be written in global polar coordinates on R4 as

gAdS = −
(
1 + r2

)
dt2 +

(
1 + r2

)−1
dr2 + r2dΩ2

S2 .

Metric is conformal to part of the ESU (r = tanψ, ψ ∈ (0, π/2)),

gAdS =
1

cos2 ψ

(
−dt2 + dψ2 + sin2 ψdΩ2

S2

)
.

In the conformal picture think of cylinder with spatial slices being
a hemisphere of S3, the equator being the boundary at infinity.
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Draw Penrose diagram and compare with Minkowski.

• AdS is not globally hyperbolic

• AdS is geodesically complete. Null geodesics refocus!

We also recall, the famous Schwarzschild-AdS and Kerr-AdS
spacetimes which will play an important role.

From a PDE point of view, we would like to understand the
dynamics near these solutions.

Einstein equations are non-linear wave equations. A prerequisite is
understanding linear equations on fixed asymptotically AdS
backgrounds.
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Local dynamics (well-posedness) in AdS

Start with linear hyperbolic equations on fixed (asymp.) AdS.

1. (W)ave equation: �gAdS
u+ αu = 0 α < 9/4

2. (M)axwell’s equations dF = 0 and d ?gAdS
F = 0

3. (B)ianchi equations ∇aWabcd = 0 for a Weyl field W .

(W) with α = 2 is the conformally coupled case:

�gAdS
u+ 2u = 0 ⇔ �gESU

v − v = 0 for v =

(
u

cosψ

)
Not globally hyperbolic → boundary conditions required

For the "finite" problem:
v → 0 (Dirichlet) and ∂ψv → 0 (Neumann)
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Local dynamics (well-posedness) in AdS

For general mass, it is already non-trivial to state the boundary
conditions correctly. Set κ =

√
9/4− α

r3/2−κu→ 0 (Dir) and r1+2κ∂r

(
r3/2−κu

)
→ 0 (Neu)

Reformulate the problem in terms of twisted derivatives (Warnick).

Theorem 1. The equations (W), (M) and (B) are well-posed on
asymptotically AdS spacetimes for either Dirichlet-, Neumann- or
dissipative boundary conditions.

→ Breitenlohner-Freedman, Bachelot, Vasy, G.H., Warnick, ...
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Local dynamics (well-posedness) in AdS

I haven’t told you yet about dissipative conditions. Boundary
conditions deal with the term on I in the "usual" energy estimate.∫ t2

t1

dt

∫
S2

sin θdθdφ ∂ψv∂tv with v =
u

cosψ

(Dir) and (Neu) make this term vanish, dissipative conditions give
it a sign:

∂ψv = −∂tv on I

→ energy leaving the spacetime through the boundary.

• needs care if α 6= 2

• For (M) and (B): null-decomposition to isolate radiation fields.
For (B) need to introduce reduced system (Friedrich, 1986).
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Non-linear Einstein-Klein Gordon system

Once the linear problem is understood, one may study a non-linear
toy-model.

Rµν −
1

2
Rgµν + Λgµν = 8πTµν

Tµν = ∂µφ∂νφ−
1

2
gµν

(
∂βφ∂

βφ− α

l2
φ2
)

�gφ+
α

l2
φ = 0

In spherical symmetry local double-null coordinates

g = −Ω2 (u, v) dudv + r2 (u, v) dωS2 (1)

We obtain a non-linear system of 1 + 1 dimensional PDEs for
Ω, r, φ. The dynamics is "governed" by φ due to Birkhoff’s theorem
(φ = 0→ solution has to be a member of the Schwarzschild-AdS
family)
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Within this model one may want to understand issues like weak
cosmic censorship and black hole formation just as in the
asymptotically-flat case (cf. Christodoulou). The following has
been carried out:

Theorem 2. (G.H., J. Smulevici) The EKG system is well-posed
in appropriate function spaces for Dirichlet conditions on φ.
Theorem 3. (G.H., C. Warnick) The EKG system is well-posed in
appropriate function spaces for Neumann conditions on φ.
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The system of equations

∂u

( ru
Ω2

)
= −4πr

(∂uφ)2

Ω2
, (2)

∂v

( rv
Ω2

)
= −4πr

(∂vφ)2

Ω2
, (3)

ruv = −Ω2

4r
− rurv

r
+ 4πr(

aΩ2φ2

2l2
)− 3

4

r

l2
Ω2, (4)

(log Ω)uv =
Ω2

4r2
+
rurv
r2
− 4π∂uφ∂vφ, (5)

� r,Ωφ+
α

l2
φ = 0 (6)
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For the WP-theorems one actually introduces a renormalized
system. Then use a fixed point argument, combining energy
estimates for the wave equation for φ with pointwise estimates for
the renormalized variables r and Ω.

The theorem also provides an explicit construction of the initial
data from a free function φ on a null-hypersurface v = const.
Moreover, there is a notion of a maximum development.

For the second theorem (Neumann conditions), the Hawking mass
needs to be renormalised (by φ) as it diverges at the boundary.
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Once one has a local theory, one can ask global questions.

Indeed, the above model was used by Bizon-Rostworowski to study
the instability of pure AdS (Dirichlet conditions).

Moreover, one has

Theorem 4. (G.H., J. Smulevici) The Schwarzschild-AdS
spacetime is asymptotically stable within the spherically symmetric
EKG system for Dirichlet conditions on φ.
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Global problems

1. Is AdS stable? → Do linear fields on AdS decay?

2. Is Kerr-AdS stable? → Do linear fields on Kerr-AdS decay?

The answers depend on the boundary conditions.

For (Dir) and (Neu) in (W) → periodic solutions; no decay
Non-linear problem is wide open. (Numerics and heuristics:
Bizon-Rostworowski, Horowitz, Santos, Lehner, Liebling, Maliborski,
Buchel, Craps et al)

Remainder of this talk

1. (W), (M) and (B) for dissipative conditions

2. linear wave equation on Kerr-AdS with Dirichlet (Neumann)
conditions
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Let us start with the second problem:

Theorem 5 (G.H.-Smulevici). Solutions to �gM,a
ψ + αψ = 0 with

(Dir) decay logarithmically in time (and generally not faster) on
Kerr-AdS gM,a satisfying the Hawking-Reall bound.

Theorem 5 should be compared with the AF-case, where
Dafermos–Rodnianski–Shlapentokh-Rothman proved polynomial
decay in time. Here we expect non-linear instability.
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To give you a better idea of what is actually proven, here are the
estimates. They arise through energy identities/ inequalities
generated by suitable vectorfields.

1. The solutions arising from data prescribed on Σ0 remain
uniformly bounded, provided r2

hoz > |a|l holds:

k∑
i=1

∫
Σt?

|Diψ|2 ≤
k∑
i=1

∫
Σ0

|Diψ|2 for any k ≥ 1 .

2. The solutions actually satisfy for t? ≥ 2∫
Σt?

|Dψ|2 ≤ C

(log t?)
2

∫
Σ0

|D2ψ|2 + |Dψ|2
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Comments on the proof

The Hawking-Reall bound r2
+ ≥ |a|` ensures the existence of a

globally causal Killing field on the black hole exterior
K = ∂t + a

r2
++a2 ∂φ. This gives rise to an energy estimate. Coupled

with the redshift → boundedness statement.

The reason for the slow decay is a coupling of the trapping effect
with the reflecting boundary conditions [G.H.-Smulevici].
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The result is sharp in the sense that in particular, you can disprove
any estimate of the form∫

Σt∩{r≥rmax}
|Dψ|2 ≤ C (t)

(log t)
2

∫
Σ0

|D2ψ|2 + |Dψ|2

for a C (t) with C (t)→ 0 as t→∞.
Note that the left hand side is the energy to the right of the
potential.

Proof proceeds by construction of quasimodes (time-periodic
approximate solutions to the wave equation with exponentially
small errors in `).
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The idea of the proof (explained for Schwarzschild): Decompose

ψ = ψ`≤L + ψ`≥L =
∑
`≤L,m

ψm`Ym` +
∑
`≥L,m

ψm`Ym`

For ψ`≤L prove (key: vectorfield estimate)∫
Σt?

|Dψ`≤L|2 ≤ C exp
(
−e−L · t?

) ∫
Σ0

|Dψ|2

For ψ`≥L we use the boundedness statement∫
Σt?

|Dψ`≥L|2 =
1

L (L+ 1)

∫
Σt?

| /∇Dψ`≥L|2 ≤
1

L2

∫
Σ0

|D2ψ|2

The two estimates hold for any L. We interpolate using

L =
1

2
log t?

which proves the result.
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Final Remarks

See work of Warnick and Gannot on QNM in this context.

Toroidal Schwarzschild-AdS: Log-decay disappears (J. Dunn).

Hawking-Reall bound violated → superradiant instabilities appear

rigorous construction of an exponentially growing mode solution in
that regime due to D. Dold (2015)

More in the talk of Stephen Green (study of superradiant
instabilities using the canonical energy).
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Let us turn to Problem 1, the wave equation (Maxwell, Bianchi)
with dissipative boundary conditions on pure AdS.

This is joint work with Luk, Smulevici and Warnick (HLSW).

Informally, the result will be that now solutions do decay but there
is an interesting trapping phenomenon at infinity that limits the
amount of decay that can be inferred.
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The main theorem for (W)
Consider the conformal wave equation with dissipative bc:

�gAdS
u+ 2u = 0 with r2∂r (ru) + ∂t (ru) = 0 on I. (7)

Define the energy density

ε [u] =
√

1 + r2

(
(∂tu)

2
+ u2

1 + r2
+
[
∂r

(√
1 + r2u

)]2
+
∣∣∣ /∇u∣∣∣2) .

Theorem 6 (HLSW). Any smooth solution of (7) satisfies

1. Uniform Boundedness: For any 0 < T <∞ we have∫
ΣT

ε [u]√
1 + r2

r2drdω .
∫

Σ0

ε [u]√
1 + r2

r2drdω ,

2. Degenerate integrated decay without derivative loss:∫ ∞
0

dt

∫
Σt

ε[u]

1 + r2
r2drdω .

∫
Σ0

ε [u]√
1 + r2

r2drdω .
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3. Non-degenerate integrated decay with derivative loss:∫ ∞
0

dt

∫
Σt

ε[u]√
1 + r2

r2drdω .
∫

Σ0

ε [u] + ε [∂tu]√
1 + r2

r2drdω .

Remarks

1. Similar statements hold for higher order energies.

2. As a corollary one obtains∫
Σt

ε [u]√
1 + r2

r2drdω .
1

1 + t

∫
Σ0

ε [u] + ε [∂tu]√
1 + r2

r2drdω

3. We prove analogues of these statements for (M) and (B).
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Any statement of decay has to lose derivatives:

Theorem 7 (HLSW). There exists no constant C > 0 such that∫ ∞
0

dt

∫
Σt

ε[u]√
1 + r2

r2drdω ≤ C
∫

Σ0

ε [u]√
1 + r2

r2drdω .

Similarly, there exists no continuous positive function f : R+ → R+

such that f (t)→ 0 as t→∞ and∫
Σt

ε[u]√
1 + r2

r2drdω ≤ f (t)

∫
Σ0

ε[u]√
1 + r2

r2drdω

This should be compared with a cylinder in Minkowski space where
these estimates can be proven (the solution decays exponentially).
→ Lions, Chen, Lagnese or HLSW
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Theorem 4 is proven using the Gaussian beam approximation.

Compare ...

1. Problem 1: The wave equation �gESU
v − v = 0 on Rt × S3

h

(with the natural product metric of the Einstein cylinder)
where S3

h is the (say northern) hemisphere of the 3-sphere S3

with boundary at ψ = π
2 , where (say optimally) dissipative

boundary conditions are imposed.

2. Problem 2: The wave equation �ηv − v = 0 on Rt × B3 (with
the flat metric) where B3 is the unit ball with boundary S2

where dissipative boundary conditions are imposed.
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Maxwell case

In the Maxwell case essentially the same argument goes through
replacing

ε [u] =
√

1 + r2
(
|E|2 + |H|2

)
where Ei = F (e0, ei) and Hi = ?gAdS

F (e0, ei) for i = r̄, 1, 2

and the dissipative conditions

r2
(
EA + ε B

A HB

)
→ 0 at I

→ energy estimates "by hand", Qµν tracefree
→ T -estimate controls EA and HA on boundary
→ X-estimate gives Er̄ and Hr̄.
→ weighted elliptic estimates for first order system.
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Bianchi case

In the Bianchi case we replace

ε [u] =
(
1 + r2

) 3
2
(
|E|2 + |H|2

)
where EAB = W (e0, eA, e0, eB) and HAB = ?gAdS

W (e0, eA, e0, eB)

and the dissipative conditions

r3

(
EAB −

1

2
δABE

C
C + ε

C
(A HB)C

)
→ 0 at I

→ compare the radiative modes "α, α"

That these are the correct "optimally dissipative" conditions is
non-trivial.
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Some difficulties encountered

• Using (divergence-free, symmetric, traceless) Bel-Robinson
tensor Qabcd = W 2 + (?W )

2 and vectorfield ∂t does not work.

• boundary term reads∫
Σ̃∞

1

2
εABEAr̄HBr̄ + εABEACH

C
B

seems to require additional boundary condition!

• go to a reduced system (insert the constraints into the
evolution equation before starting to derive estimates)

• prove boundedness and integrated decay at the same time

Y =
√

3∂t +X

27



Final Remarks and Work in Progress

In view of AdS being conformally flat, the equation (B) is the
linearization of the full Bianchi equation

(∇g)aWabcd = 0 .

Our linear estimates form a key ingredient for a full proof of the
non-linear stability of AdS under dissipative boundary conditions.
Other ingredients are

• weighted elliptic estimates for the second fundamental form

• weighted elliptic estimates for the lapse

This is work in progress (HLSW).
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Unique Continuation Properties in aAdS

Question: In what way is the trace of a solution of

Rµν = Λgµν

on I "in correspondence" with the solution in the interior?

We start again with toy problem (Klein-Gordon)

�gψ + αψ + aµ∂µψ + V ψ = 0

for g being an aAdS spacetime.
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Classical Unique Continuation

Does Cauchy data on a boundary hypersurface S determine the
solution – if it exists – of a PDE uniquely in a neighbourhood of
(one side of) the boundary.

For linear equations, we can rephrase this as

Does zero Cauchy data on a boundary hypersurface S imply that the
solution of a PDE must vanish in a neighbourhood of (one side of)
the boundary.

Recall �ηψ = 0 is ill-posed with Cauchy data on a timelike
hyperplane (Hadamard)! We only ask for uniqueness here!
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Pseudoconvexity

Before discussing AdS, let’s consider even simpler case of standard
wave equation on Minkowski space, S a timelike hypersurface.

There is a condition on the geometry of S that implies that the
unique continuation property holds: pseudoconvexity.

Informal (intuitive) Definition: S has a + and a − side. If a
null-geodesic tangent to S at a point p ∈ S remains strictly to the
negative side near p, then S is pseudoconvex in the +direction.
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Σ

f>0 f<0

null geodesic

P

Σ := {f = 0} is pseudoconvex (with respect to �g and direction +)
iff the following holds: ∇2f (X,X) < 0 on Σ if g (X,X) = Xf = 0.
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Examples

A hyperplane in Minkowski space is not pseudoconvex.
(It is called 0-pseudoconvex as null-geodesics rule the plane S.)

A timelike cylinder in Minkowski space is pseudoconvex in the
direction of its interior.

(Alinhac) S not pseudoconvex =⇒ there exist a and V such that
unique continuation fails for �ηψ + aµ∂µψ + V ψ = 0 !
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The aAdS case

Cauchy data: Imposing both Dirichlet and Neumann conditions for
ψ on I should make the solution unique.

Pseudoconvexity: The boundary I is 0-pseudoconvex! Level sets of
constant r are pseudoconvex (degenerating as r → 0).

Idea: "Bend" the hypersurfaces to construct local foliation of
pseudoconvex hypersurfaces.

For pure AdS, length of Sf has to be longer than refocussing time
of the null-geodesics!
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t = TAdS

t = 0t = 0

t = TAdS

LHS: Refocussing null-geodesics (TAdS = π)
RHS: Foliation by level sets of f (t, r) = 1

r sin(ct) with c < 1.
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Informal statement of the theorem

Theorem 8 (G.H., A. Shao). LetM = (0, R)× (0, T · π)× S2 for
T > 1 be an asymptotically AdS spacetime patch and ψ satisfy

�gψ + αψ + aµ∂µψ + V ψ = G (ψ, ∂ψ)

onM for a and V smooth and suitably decaying near the boundary
and suitable conditions on G. Then if both Dirichlet and Neumann
conditions hold for ψ on I+ we have that ψ ≡ 0 in a neighborhood
of I.

The proof runs via a Carleman estimate exploiting crucially the
foliation by (degenerate) pseudoconvex hypersurfaces near I and
an appropriate renormalisation of the wave equation.
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More details

LetM = (0, R)× (0, T · π)× S2 and equip it with metric

g =
dρ2 + g (ρ)

ρ2

where (Fefferman-Graham)

g (ρ) = g̊ (t, x)− ρ2P (t, x) + ρ3S (t, x) + ...

Note that if g satisfies the vacuum Einstein equations, then P is
the Schouten tensor of g̊ and S is the stress-energy tensor of g.

If ∂tg̊ = 0, a good pseudoconvex foliation exists near I provided

P − 1

T 2
dt2 + ζg̊

is positive definite for some function ζ on I.
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We first proved Theorem 1 for ∂tg̊ = 0 (static boundary), CMP 2016.

We are currently writing a paper that obtains the analogous result
for ∂tg̊ 6= 0 (length of interval + pc-condition changes)

Main difficulty: "Old" hypersurfaces cease to be pseudoconvex if
metric is perturbed in this way. → new foliation whose
construction involves ∂tg̊.

The time period required for UC depends on the size of ∂tg̊.
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Generalisations

1. We proved the theorem for a class of tensorial wave equations
(applications to the Einstein equations) and higher dimensions

2. Borderline case T = 1: If g̊ = −dt2 + γS2 and g satisfies the
Einstein equations, then a uniqueness result can be obtained
provided the stress energy tensor S is negative definite
(work in progress) Applications?
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Work in Progress

1. extending Killing symmetries from the boundary to the interior
(work in progress)

2. prove a holographic principle for Einstein equations
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Summary

1. Well-posedness statements for linear and non-linear toy-models

2. Global estimates for Klein-Gordon on Kerr-AdS
Dir → log-decay, slow!

3. Global estimates for wave, Maxwell and Bianchi on AdS
fast decay but trapping near the boundary (refocusing)

4. unique continuation results: build on insights from WP theory
and refocusing phenomenon
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