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What are quasinormal modes?

1. Within the AdS/CFT correspondence quasinormal modes correspond
to poles in the retarded Green’s function of some local operator (like
the energy momentum tensor) evaluated at finite temperature

2. This corresponds to analyzing what kind of (collective) modes may
propagate in the system at the linearized level

I Typically we are interested in plane wave excitations

e−iω(k)t+ikx

I ... and determining the dispersion relation ω(k)

3. Using the above interpretation one can also ask a more general
question about linearized excitations above some dynamical
background...

4. In this case the plane wave form will have to be modified...
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What kind of excitations propagate in a static uniform strongly
coupled plasma system?
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Answer 1: Hydrodynamics

I The energy-momentum tensor Tµν is expressed in terms of a local
temperature T and flow velocity uµ

I Tµν is expressed as an expansion in the gradients of the flow
velocities (shown here for N = 4 SYM)

Tµνrescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸
perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν2a + 2Tµν2b + (2− log 2)

(
1
3
Tµν2c + Tµν2d + Tµν2e

))
︸ ︷︷ ︸

second order hydrodynamics

I Consider small perturbations

Tµν =


E 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

+ δTµνe−iωt+ikx
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Answer 1: Hydrodynamics

I If Tµν is described by (1st order viscous) hydrodynamics then one
can derive dispersion relation of long wavelength modes from
hydrodynamic equations:
shear modes:

ωshear = −i η

E + p
k2

sound modes:

ωsound =
1√
3
k − i 2

3
η

E + p
k2

I If we were to include terms in Tµν with more derivatives (higher
order viscous hydrodynamics), we would get terms with higher
powers of k in the dispersion relations...

I Hypothetical resummed all-order hydrodynamics would predict the
full dispersion relation for these modes ωshear (k), ωsound (k)

What happens in the AdS/CFT description?
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Answer 2: AdS/CFT – gravitational description

I Small disturbances of the uniform static plasma ≡ small
perturbations of the black hole metric (≡ quasinormal modes
(QNM))

g5Dαβ = g5D,black hole
αβ + δg5Dαβ (z)e−iωt+ikx

I Dispersion relation fixed by linearized Einstein’s equations. Results
for the sound channel

from Kovtun,Starinets hep-th/0506184
I This is equivalent to summing contributions from all-order viscous

hydrodynamics
I But, in addition, there is an infinite set of higher QNM — effective

degrees of freedom not contained in the hydrodynamic description at
all!
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What is the physics of (the higher) quasinormal modes?

8 / 44



Physics of higher QNMs

I QFT has much more degrees of freedom than only hydrodynamic
ones...

I Suppose that we have a weakly coupled system with some
distribution of momenta

I Hydrodynamics is essentially a description of the evolution of the
local conserved charges of the system

I We can also ask questions about the evolution of the shape of the
distribution — this will correspond to nonhydrodynamic quasinormal
modes...

Simple system governed only by nonhydrodynamic modes...
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Physics of higher QNMs — Homogeneous isotropization

I Consider spatially homogeneous plasma with anisotropic momentum
distributions. This corresponds to a constant (in space) energy
momentum tensor with anisotropic pressures

I The system will evolve in time with the energy-momentum tensor
having the form

Tµν =


ε 0 0 0
0 p‖(t) 0 0
0 0 p⊥(t) 0
0 0 0 p⊥(t)


I Due to the symmetries of the system there is no flow — the setup is

orthogonal to hydrodynamic degrees of freedom

The whole process of equilibration is due to degrees of
freedom present in nonhydrodynamic quasinormal modes

I This has been first studied numerically in the context of a quench
(time dependent gauge theory metric here) by Chesler, Yaffe.
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Physics of higher QNMs — Homogeneous isotropization

I Heller, Mateos, van der Schee, Triana made a detailed investigation
of homogeneous isotropization from various initial conditions in
terms of linearized/QNM approximations

I Relatively good description of nonlinear evolution was found using
lowest 10 QNMs as well as linearized Einstein equations

I However the homogeneous isotropization setup is quite special as
the energy is constant and one knows which QNMs to use...

QNMs on top of a hydrodynamic background?
(see later)
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(see later)
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Physics of higher QNMs

Comments

I A typical picture of the quasinormal spectrum of a black hole:

from Kovtun,Starinets hep-th/0506184

I A characteristic generic feature is the nonzero real part
I In contrast on the field theory side (weak coupling perturbation

theory, the Boltzmann equation), the decaying modes are purely
imaginary...

I Challenge for lattice QCD!
I Other systems: cold atoms: see talk by P. Romatschke
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Quasinormal modes as a kind of UV completion of hydrodynamics

Suppose that we know all high order
hydrodynamic transport coefficients...

Are the nonhydrodynamic higher QNMs
determined or arbitrary?
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

I In a conformal theory, Tµµ = 0 and ∂µTµν = 0 determine, under the
above assumptions, the energy-momentum tensor completely in
terms of a single function ε(τ), the energy density at mid-rapidity.

I The assumptions of symmetry fix uniquely the flow velocity
I Gradient expansion coincides with an expansion in

1

τ
2
3

I A new combination of transport coefficients appears at each order in
the above expansion
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Large τ behaviour of ε(τ)

I Structure of the analytical result for large τ :

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ, Heller; Heller

I Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

I In general:

ε(τ) =
∞∑

n=2

εn

τ
2n
3

I At each order new transport coefficients start to contribute to εn...
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Large τ behaviour of ε(τ)

I By iteratively solving numerically the linear ODE’s from fluid/gravity
duality, we obtained 240 coefficients in the gradient expansion

Heller, RJ, Witaszczyk

ε(τ) =
242∑
n=2

εn

τ
2n
3

• chief complication – generate the r.h.s. of the
equations
• to get to so high orders we need very high
precision computations
• first couple of orders – easy and fast

I Introduce u ≡ 1/τ 2/3

ε(u) =
242∑
n=2

εnun

I The coefficients of this series are determined only by hydrodynamic
transport coefficients and a single ‘initial condition’

Question:

Can we infer anything about the nonhydrodynamic higher
quasinormal modes just from this series?
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I The coefficients grow
factorially εn ∼ n!

I Zero radius of convergence
−→ asymptotic series...

1. Define the Borel transform

ε̃(u) =
242∑
n=2

εn

n!
un

2. Identify singularities of the Borel transform ε̃(u) (Pade approximant)

3. Interpret the meaning of the singularities through the inverse Borel
transform

εinverse Borel (u) =

∫
C
e−s ε̃(su) ds where u = τ−

2
3
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Singularities in the Borel plane

I Branch cuts on the Borel plane
I Branch points set the radius of

convergence of the Borel transform

Question:

What is the physical interpretation of the branch cut
singularities?
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Singularities in the Borel plane

I Deform the contour of the inverse
Borel transform

εresum(τ) =

∫ ∞
0
e−ζ ε̃

(
ζ/τ

2
3

)
dζ

I The pole at the edge of the cut
(ζ0 = 4.12065 + 4.67895 i) will
contribute as

e−(4.12065+4.67895 i) τ
2
3

I This is exactly the first lowest non-hydrodynamic quasi-normal
mode! but recall e−const·πTt

I It is simply related to the scalar QNM of the planar black hole
through RJ, Peschanski

−i (3.1195− 2.7467 i)︸ ︷︷ ︸
planar BH QNM

∫
πT (τ)︸ ︷︷ ︸
1/τ

1
3

dτ = −i 3
2

(3.1195− 2.7467 i)︸ ︷︷ ︸
−4.12005−4.67925 i

τ
2
3
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e−(4.12065+4.67895 i) τ
2
3

I This is exactly the first lowest non-hydrodynamic quasi-normal
mode! but recall e−const·πTt

I It is simply related to the scalar QNM of the planar black hole
through RJ, Peschanski
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Singularities in the Borel plane
What is the interpretation of the whole branch cut?

I From the marked cut we obtain a
preexponential power law factor

τ−1.5426+0.5192 i · e−i 32 (3.1193−2.7471 i)τ
2
3

I The preexponential power law can still be understood in terms of an
‘adiabatic’ approximation

πT (τ) =
1

τ
1
3

(
1− 1

6τ
2
3

+ . . .

)
−→

∫
πT (τ)dτ ∼ 3

2
τ
2
3−1

6
log τ+. . .

I The QNM including viscous corrections follows from the simple
formula

τ−2e−iωQNM
∫
πT (τ)dτ → −2−i(3.1195−2.7467i)︸ ︷︷ ︸

ωQNM

·(− 16 ) = −1.54222+0.519917i
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Comments

I The explicit (high order) hydrodynamic transport coefficients in
N = 4 SYM are linked with nonhydrodynamic degrees of freedom

I Once we include hydrodynamics, the higher quasinormal
modes/degrees of freedom have to be included for consistency

I The setup is surprisingly akin to the relation of perturbation theory
and instantons in QFT...

I People started to analyze resurgence properties of
(phenomenological) partially resummed hydrodynamic models

Heller, Spaliński; Aniceto, Spaliński

I The hydrodynamic QNMs appear here as
branch cuts

I This makes it difficult to see the next highest
QNMs

There exists another setup where this
difficulty is not present...
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Plasma in a FRW background
Buchel, Heller, Noronha

I The authors considered N = 2∗ plasma in an expanding FRW
universe

I Hydrodynamic entropy production in terms of scale factor
I The obtained series is asymptotic −→ Borel transform −→ Pade

approximant −→ singularities in the Borel plane

from 1603.05344

I Agrees very well with the first 10 QNM!
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Quasinormal modes on top of a hydrodynamic background
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Quasinormal modes on top of a hydrodynamic background

I In the boost invariant setting we saw that the 4D spacetime
dependence of a QNM is no longer a plane wave...

I It is interesting to understand QNMs in various time-dependent
settings — of course QNM’s have to be understood in a slightly
more general sense than usual...

I A classic example would be QNM on top of a generic hydrodynamic
fluid background

I This may be important for practical applications as the typical
configurations of plasma produced in experiments are very far from
being uniform and static

I In this sense homogenous isotropization is a very much nongeneric
setup which can be very cleanly understood in terms of QNMs on
top of a static black hole — typically we have to deal with a mixture
of hydrodynamic and nonhydrodynamic modes

I In general time-dependent backgrounds very little is known about
QNMs...
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A simple scalar example
Heller, RJ, Spaliński, Witaszczyk

I Consider a scalar degree of freedom φ (e.g. φ =
〈
trF 2

〉
)

I Initially, let us consider the case of the background of static uniform
plasma...

I On the AdS/CFT side, the scalar degree of freedom is described by
pairs of quasinormal modes:

from Kovtun,Starinets hep-th/0506184

I We will focus on the lowest (least damped) modes characterized by

ω = ±ωR (k)T − iωI (k)T

where we extracted a trivial scaling with the temperature
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A simple scalar example

I The general 4D behaviour of the scalar expectation value is

φ(t, x) =

∫
d3k α(k) e−ωI Tt cos(ωRTt + β(k)) e ikx

I We can now deduce the 4D equation of motion obeyed by φ(t, x)

1
T
d
dt

1
T
d
dt
φ+ 2ωI

1
T
d
dt
φ+

(
ω2I + ω2R

)
φ = 0

I Despite appearances this is really a PDE — the dependence on
spatial coordinates sits in ωQNM (k) with k2 → −∆⊥

I E.g. ωI = 0 and ωR (k) = 1
T

√
m2 + k2 would give the standard

Klein-Gordon equation
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A simple scalar example

1
T
d
dt

1
T
d
dt
φ+ 2ωI

1
T
d
dt
φ+

(
ω2I + ω2R

)
φ = 0

Dispersion relation (in sound channel):

from Kovtun,Starinets hep-th/0506184

• Key feature: the frequencies have only very mild dependence on the
spatial momentum — the dynamics becomes ‘ultralocal’

• Damping occurs locally (and independently) in space...

Proceed to general hydrodynamic flows...
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A simple scalar example

1
T
d
dt

1
T
d
dt
φ+ 2ωI

1
T
d
dt
φ+

(
ω2I + ω2R

)
φ = 0

I The equation in a generic hydrodynamic background should locally
look like the equation above...

I We should ‘covariantize’ the time derivative...
1
T
d
dt
−→ D ≡ 1

T
uµ∂µ

I This should be true only up to terms involving ∂µuν which are not
fixed by this argument...

I We propose to include first gradient corrections by imposing Weyl
covariance... (hence we asssume a conformal theory)

c.f. Loganayagam
I We define D in terms of the ‘Weyl derivative’:

Dφ ≡ 1
T
uµDW

µ φ =
1
T
uµ(∂µφ+ wAµφ)

where w is the Weyl weight of the field and
Aµ = uλ∂λuµ − 13 (∂λu

λ)uµ
28 / 44
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Metric QNM

I For the transverse traceless tensor Πµνnoneq, we proposed the following
equation

1
T
DW 1
T
DW Πµνnoneq + 2ωI

1
T
DW Πµνnoneq +

(
ω2I + ω2R

)
Πµνnoneq = 0

I We checked that the new terms introduced by the Weyl derivative
were necessary for correctly reproducing the linear perturbations on
top of the viscous boost-invariant geometry

I We proposed a phenomenological way to couple the above equation
to hydrodynamics in order to incorporate the lowest
nonhydrodynamic degrees of freedom into a common 4D
description... Heller, RJ, Spaliński, Witaszczyk

Challenge:

A general theory of QNMs over fluid backgrounds is still needed...
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Quasinormal modes and the range of applicability of hydrodynamics
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The range of applicability of hydrodynamics

I Once we know the (complex) dispersion relation of all modes we can
ask whether for all momenta k , the hydrodynamic modes are less
damped than the higher QNM’s

I In the conformal case in the sound channel this is always the case:

from Kovtun,Starinets hep-th/0506184

I However Landsteiner discovered that in the shear channel, the
hydrodynamic mode becomes more damped than the nonhydro
mode for q = k

2πT > 1.3

from Landsteiner 1202.3550
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The range of applicability of hydrodynamics

Coupling dependence
Stricker

Waeber, Schafer, Vuorinen, Yaffe
Grozdanov, Kaplis, Starinets

I If one decreases the coupling, on the gravity side one has to add
higher derivative corrections to Einstein gravity

I The imaginary parts of the higher quasinormal modes decrease
I The range of applicability of a hydrodynamic description goes down

as we decrease the coupling...

from Grozdanov, Kaplis, Starinets 1605.02173
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The range of applicability of hydrodynamics

Nonconformality – phase transitions
RJ, Jankowski, Soltanpanahi

see talk by J. Jankowski

I In the vicinity of a phase transition (or even a sharp crossover) we
get an additional constraint in the sound channel

I For certain momenta the lowest nonhydrodynamic mode in the
sound channel becomes less damped than the ordinary
hydrodynamic sound mode...
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Quasinormal modes in other setups

1. Nonconformal plasma

2. Magnetic fields

3. Nonrelativistic systems
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How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform N = 4 SYM – explicitly known (but rather complicated)
gravitational background

N = 2∗ theory

2. Bottom-up approach: AdS/QCD

Assume AdS/CFT dictionary but try to model the gravity+matter
background so as to approach as closely as possible to QCD physics
(or other physics of interest)
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QNMs in N = 2∗ theory

Buchel, Heller, Myers

QNM of scalar operators

from 1503.07114

I The authors observed only mild modifications due to
nonconformality in the scalar sector

I As far as thermalization is concerned (i.e. the approach to
hydrodynamics from the high temperature regime) the current
estimates from N = 4 SYM theory should be quite robust
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QNMs for various nonconformal plasmas
RJ, Plewa, Soltanpanahi, Spaliński

RJ, Soltanpanahi, Jankowski x2
see talk by J. Jankowski

A bottom-up model

I Following Gubser et. al. we consider a gravity+scalar field system:

S =
1

2κ25

∫
d5x
√
g
[
R − 1

2
(∂φ)2 − V (φ)

]
,

I Here V (φ) is a self-interaction potential which we choose to
reproduce the physics of interest (like lattice QCD equation of state,
or a 1st or 2nd order transition)

I We choose the following parametrization for V (φ):

V (φ) = 12 cosh(γφ) + b2φ2+ b4φ4+ b6φ6 ∼ −12 +
1
2
m2φ2+O(φ4)

or (in the case of IHQCD)

V (φ) = −12(1 + φ2)
1
4 cosh(γφ) + b2φ2
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QNMs for various nonconformal plasmas

RJ, G. Plewa. H. Soltanpanahi, M. Spaliński:

I Choose V (Φ) to agree with lattice QCD equation of state (more
precisely speed of sound cs(T )2) Gubser, Noronha...
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Massless scalar QNM’s – QCD crossover potential
The damping of quasinormal modes decreases by a factor of two
around Tc :

I The damping is essentially insensitive to differences in the UV
I The change in the damping seems to be correlated with deviations

of the speed of sound from conformality
I Message 1: Approach to hydrodynamics is just as in the conformal

case
I Message 2: We may expect the relevance of nonhydrodynamic

modes close to the phase transition
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Metric QNM’s – potentials with phase transition

We observe a rich variety of behaviours especially in the sound channel...
see talk by Jankowski

1st order phase transition example
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1st order phase transition potential
see talk by Jankowski

Overcooled branch T ∼ 1.00004Tmin:

I Speed of sound is very small
I Real part of the hydrodynamic sound mode vanishes for a range of

momenta (here approximately 0.5 < q < 1)
I The sound mode becomes nonpropagating for a range of length

scales
I The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]

I We see a crossing between hydro sound mode and nonhydrodynamic
mode! (limits applicability of hydrodynamics)
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QNMs in magnetic fields

Janiszewski, Kaminski 1508.06993
Demircik, Gürsoy 1605.08118

see also talk by Koirala

I Janiszewski, Kaminski studied magnetic black branes (top-down)
I Demircik, Gürsoy studied an improved holographic QCD model

(IHQCD) with external magnetic field
I Surprisingly complex pattern of behaviours

from 1605.08118
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QNMs in nonrelativistic systems

Gürsoy, Jansen, Sybesma, Vandoren

I See talk by Jansen for details...
I QNMs for pressure anisotropy depend on the ratio

α =
z
d − 1

I Again quasinormal modes give a good ballpark for understanding
nonlinear homogeneous isotropization...
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Conclusions

I (Higher) Quasinormal mode represent important field theory degrees
of freedom responsible for generic equilibration

I They are intrinsically linked with high order hydrodynamics akin to
the relation of perturbation theory and nonperturbative instantons

I This holds not only qualitatively but also quantitatively
I One can study QNM on top of fluid/gravity backgrounds –

ultralocality – but still a lot to understand
I One can use them for constraining the range of applicability of

hydrodynamics
I They exhibit quite intricate behaviours in the nonconformal and/or

magnetic field case
I Despite all that one has to keep in mind that there is important

physics which makes its appearance only in the nonlinear regime...
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