Holographic correlation functions out of equilibrium

Takaaki Ishii

University of Colorado **Boulder**

arXiv:1603.06935 w/ Banerjee, Joshi, Mukhophadhyay, Ramadevi arXiv:1605.08387

28 Jun 2016@NumHol2016

Why NumHol?

Because you can't solve analytically.

Do numerical experiments.

Simulate (real) time evolution.

Motivate experiments in laboratories/big machines.

But learn more from theoretical perspectives.

Motivations

Correlators in real-time AdS/CFT formalism: Some complexity. Different methods available. [e.g. Banks et al, Skenderis-van Rees, Keranen-Kleinert]

Numerical time dependent AdS/CFT: Horizon formation, shockwave collision, QGP [e.g. Chesler-Yaffe, Heller et al, Bantilan-Romatschke]

Holography and thermalization of nonequilibrium correlation functions/nonlocal operators [e.g. Balasubramanian et al, Chesler-Teaney]

Plan

1. Basics from field theory

2. Holographic example

Linear response theory

Perturb a Hamiltonian by a tiny source J

$$H = H_0 + \delta H, \quad \delta H \sim JO$$

The source induces a response linearly

$$\langle O(x) \rangle_J - \langle O(x) \rangle_0 = -\int d^d x' G_R(x, x') J(x')$$

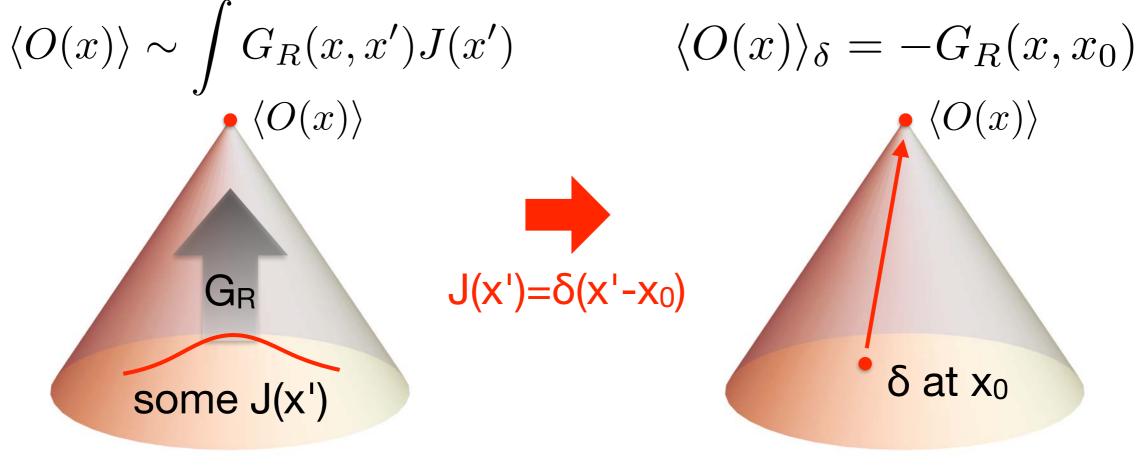
=0 for simplicity

Retarded Green's function:

$$G_R(x, x') = -i\theta(t - t') \langle [O(x), O(x')] \rangle$$

Want to get GR

Response: causal past determines the future.



This looks simple.

Use a δ -source and calculate the response.

Partial Fourier space

Can be a simplification if spatially translationally invariant: Consider each momentum sector.

$$\langle O(x) \rangle \sim \int G_R(x, x') J(x')$$

$$\bigvee \int dx \, e^{i \mathbf{k} \cdot \mathbf{x}} \,, \quad J(x') = f(t') \delta(\mathbf{x'} - \mathbf{x_0})$$

$$\langle O(t; \mathbf{k}) \rangle \sim \int G_R(t, t'; \mathbf{k}) f(t')$$

$$\bigvee \quad f(t') = \delta(t' - t_0)$$

$$\langle O(t; \mathbf{k}) \rangle_{\delta} = -G_R(t, t_0; \mathbf{k})$$

Frequency analysis

Equilibrium: $G_R(t,t_0)$ depends only on t-t₀. Use Fourier transform.

$$\widetilde{G}_R(\omega; \boldsymbol{k}) = \int dt' \, e^{i\omega t'} G_R(t' = t - t_0; \boldsymbol{k})$$

Nonequilibrium: Convert one of the two times in $G_R(t,t_0)$ to frequency. Can use Wigner transform

$$\widetilde{G}_R(\omega, \overline{t}; \boldsymbol{k}) = \int dt' \, e^{i\omega t'} G_R(\overline{t} + t'/2, \overline{t} - t'/2; \boldsymbol{k})$$
$$t' = t - t_0, t = (\overline{t} + t_0)/2$$

Is "G_R a ratio of source and VEV"?

Coordinate space

$$\langle O(t) \rangle_{\delta} \sim \int G_R(t,t') \delta(t'-t_0) \sim G_R(t,t_0)$$

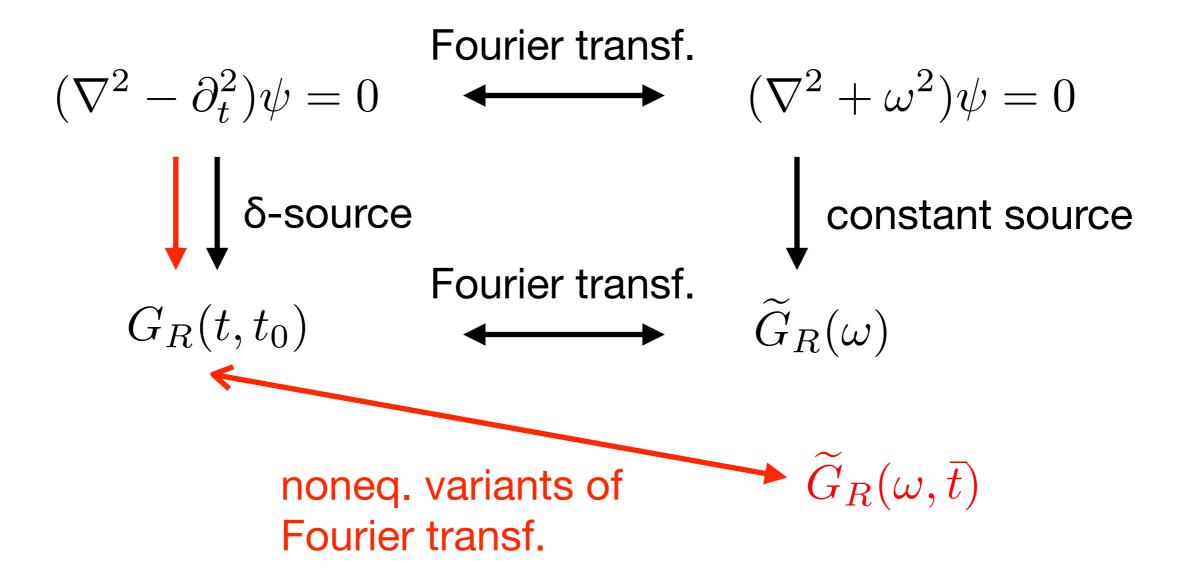
 $G_R(t,t_0)$: You don't divide <O> by $\delta(t)$.

Frequency space
$$\int dt \, e^{i\omega t} \delta(t) = 1$$
$$\langle \widetilde{O}(\omega) \rangle_{\delta} \sim \widetilde{G}_R(\omega) \times 1 \quad \bigoplus \quad \widetilde{G}_R(\omega) \sim \langle \widetilde{O}(\omega) \rangle_{\delta} / 1$$

 $G_R(\omega)$: You may divide <O> by 1.

Summary: Equilibrium or nonequilibrium

No time translation invariance in nonequilibrium problems.



To use holography

Typically: Prepare bulk initial data by the δ -source.

This will be some bulk Green's function.

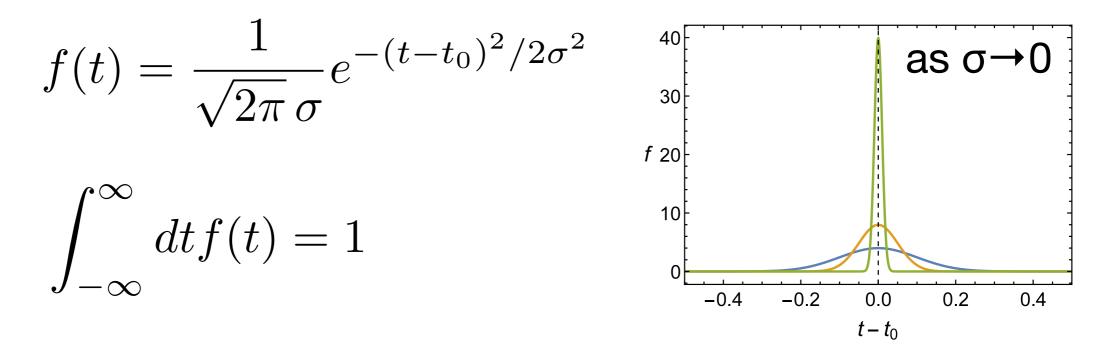
And let it evolve in time.

May be sometimes analytic, sometimes tricky.

Here: Try to avoid technically involved steps and find a way that will be generically applicable.

Using δ(t-t₀) numerically

Use a preferred source whose limit is $\delta(t-t_0)$. e.g.) Normalized Gaussian function



Practically, it works some small σ that gives smaller systematic errors than other errors.

We may extrapolate to $\sigma \rightarrow 0$.

Plan

1. Basics from field theory

2. Holographic example

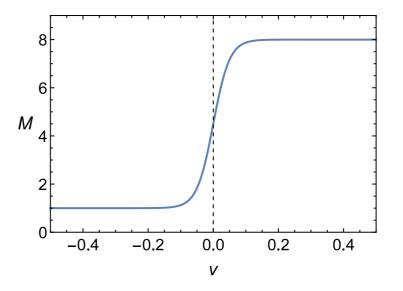
Simple holographic case

Probe scalar in Vaidya-AdS₄ (m²=-2 $\rightarrow \Delta$ =2)

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + m^2 \phi^2 \right)$$
$$ds^2 = \frac{1}{z^2} \left(-F(z, v) dv^2 - 2dv dz + dx^2 \right)$$
$$F(z, v) = 1 - M(v) z^3$$

M(v) changes as $tanh(v/\Delta v)$.

Choose initial and final temperatures twice different.



Holographic dictionary

Solve the bulk EoM using any methods you like.

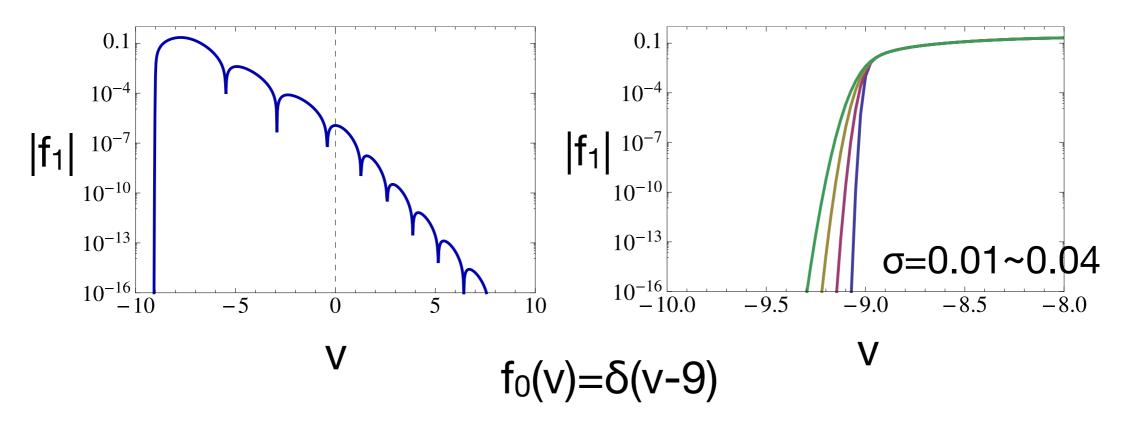
$$(d_+\phi)' - \frac{d_+\phi}{z} + \frac{F}{2z}\phi' + \left(\frac{m^2}{2z^2} + \frac{k^2}{2}\right)\phi = 0$$

Obtain the field theory VEV from the AdS boundary

$$\phi = f_0(v)z + f_1(v)z^2 + \cdots$$
$$\langle O(v) \rangle = f_1(v) - \dot{f}_0(v)$$

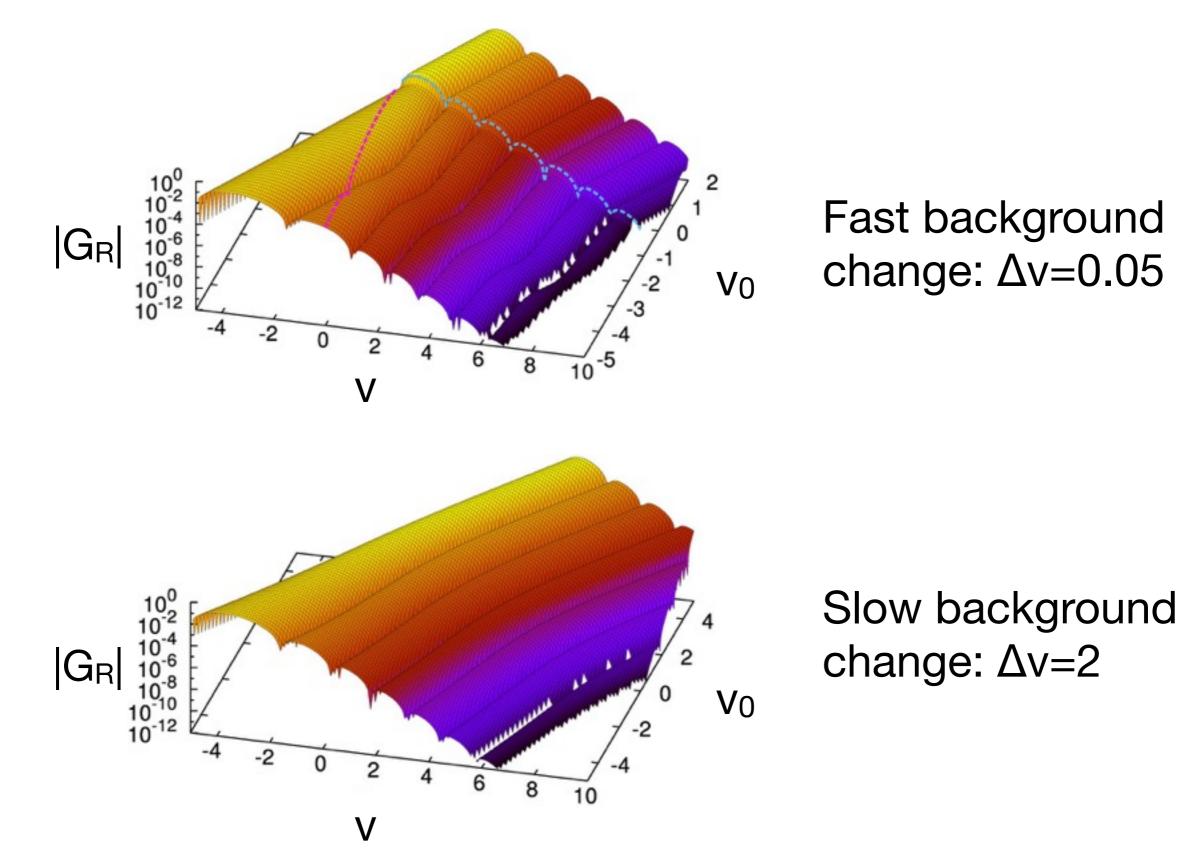
$$G_R(v, v_0) = -\langle O(v) \rangle_{\delta} = -f_1(v) + \frac{\dot{\delta}(v - v_0)}{\text{ultralocal}}$$

$G_R(v,v_0)$ for a given v_0



The v-dependence in $G_R(v,v_0)$ follows the lowest quasinormal mode.

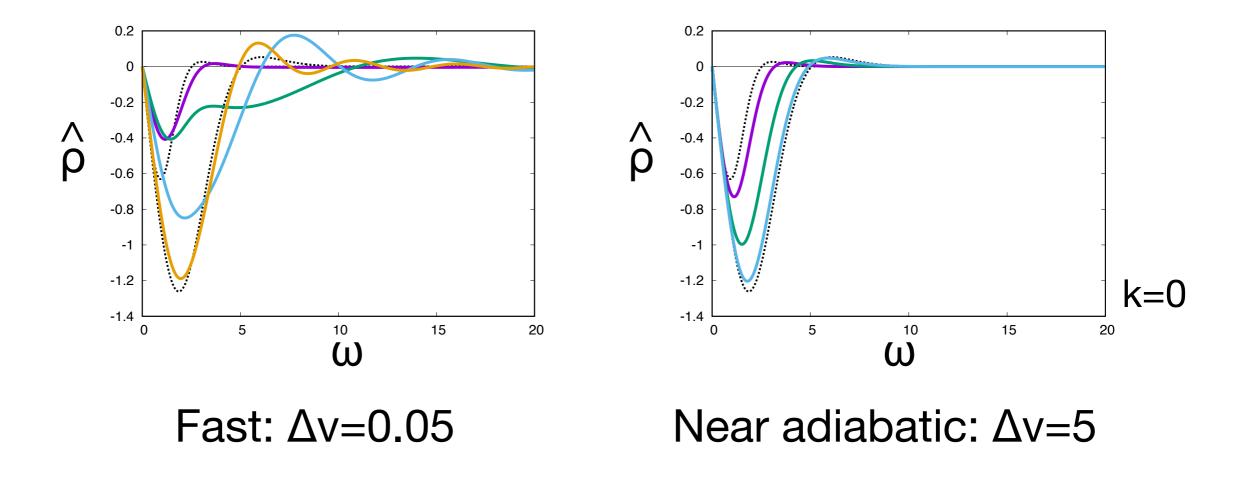
Full G_R(v,v₀)



Spectral function

Spectral function: $\rho = -2 \operatorname{Im} \widetilde{G}_R$

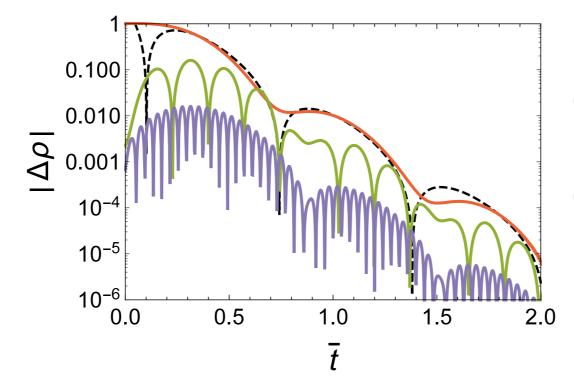
Plotted: $\hat{\rho} \equiv \rho - \rho_{AdS} = \rho - 2\theta(\omega - k)\sqrt{\omega^2 - k^2}$



ī-dependence

How ρ approach the final state

$$\Delta \rho(\omega, \bar{t}; \boldsymbol{k}) = \rho(\omega, \bar{t}; \boldsymbol{k}) - \rho(\omega, \infty; \boldsymbol{k})$$

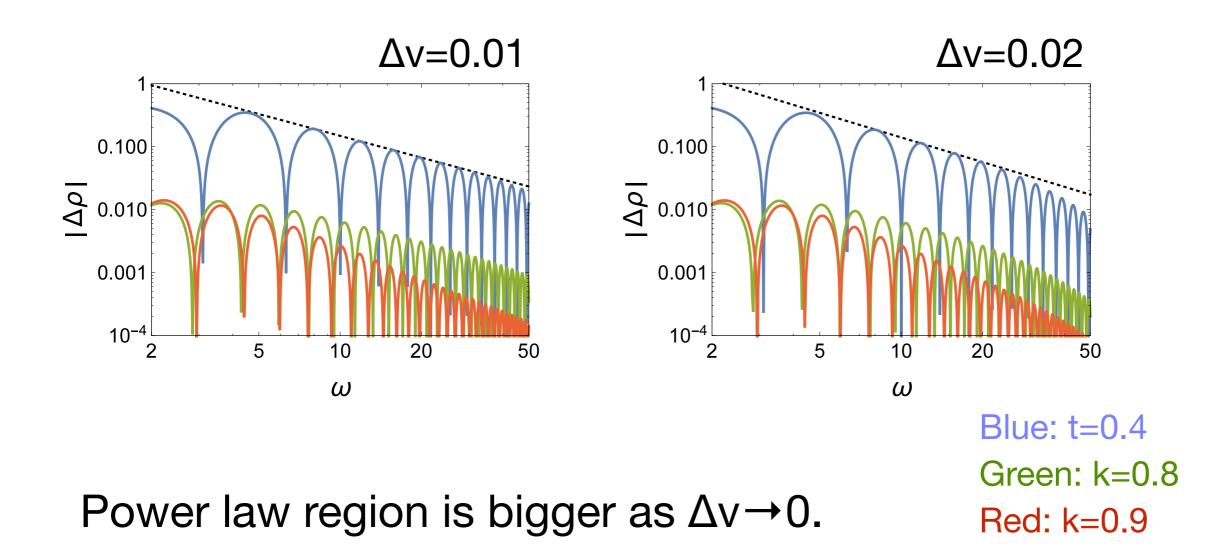


Red: $\omega = 2 \sim \omega_{(1st QNM)}$ Green: $\omega = 10$ Purple: $\omega = 40$ (Black: final state QNM)

Early time: (higher) mode excitations

Late time: BH QNM damping with some ω -oscillations

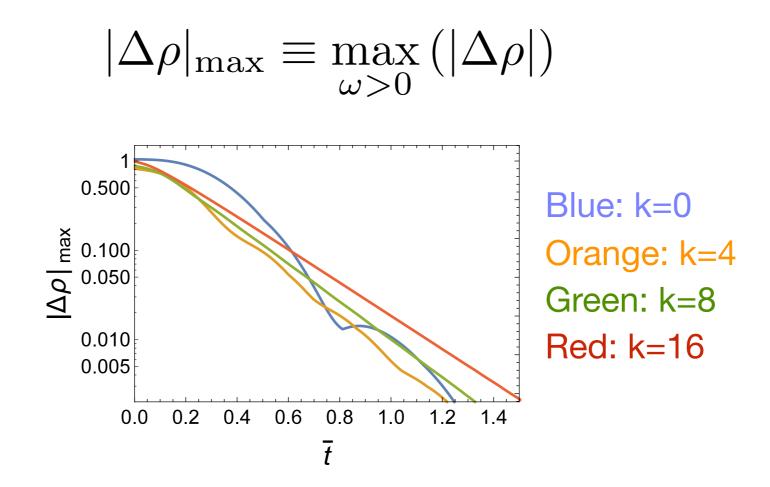
ω-dependence



Higher ω is needed to probe the short timescale of Δv .

k-dependence

Introduce a measure for the difference from final state



QNM decay is more relevant in the late time.

Summary

To calculate $G_R(t,t')$, we introduced the δ -function source numerically by a Gaussian pulse.

Source-response is natural in holography.

Perhaps this brute-force way is generically useful in other setups, while it may be numerically costly.

We obtained the nonequilibrium spectral function.