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— String theory/gauge theory correspondence is by now a mature
framework to address interesting questions in strongly coupled gauge

theories, that are often inaccessible with other theoretical tools

= In a nutshell, it establishes a holographic correspondence (a dictionary)

between two objects:
gauge theory — higher — dimensional

gravitational theory/string theory

m A utility of the correspondence is in the fact that the strong coupling
questions about the gauge theory are mapped into the questions in classical

gravity
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— Physics of holographic superconductors

e Consider effective action in asymptotically AdSy (dual to CFT5 )

1 1
54 = / d$4\/ —g (R + 6 — _FMUFMV — _a¢2 T ¢2>
M, 1 2

s [, is a U(1) field strength
m ¢ is a scalar field dual to A = 2 (a relevant operator) in CF'T5:
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e Consider equilibrium states of a CFT at a finite temperature 1" and a
chemical potential u
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<02> =0 or <OQ> 7é 0
e (O3) = 0 phase:

m exists for arbitrary temperature 1" > 0
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e At low temperatures this Z, symmetric phase becomes unstable:
m on the gravity side this is a Gregory-Laflamme instability due to
’scalarization’ of the Reissner-Nordstrom AdS,; black hole horizon



m ¢ scalar is above the AdS, Breitenlohner-Freedman (BF) bound
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= As Reissner-Nordstrom AdS; black hole becomes extremal (% — 0), it

develops AdS; x R? near horizon geometry with the curvature radius

L2
L= —
276
m In this limit
) 5 (2-1)° 3
My = —2 < MBF[AdSs] — _W =3

becomes unstable (its quasinormal frequency has Im [w] > 0)
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e The condensation of the gravitational scalar ¢ at low temperatures
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—> There are lots of studies/generalizations of the described phenomena in

holography
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— [ want to talk about less known exotic holographic (black hole horizon)

phenomena:

e There is a holographic horizon with a discrete (or continuous) symmetry

B holographic = there is a dual gauge theory interpretation of the gravitational model

e There is a critical energy (or energy density) below which the horizon
becomes unstable with respect to symmetry breaking fluctuations
B we work in microcanonical ensemble

B T will keep calling the instability ”GL”

e There is an equilibrium phase with spontaneously broken symmetry,
branching off the GL onset of the instability, yet, this phase:
m does not exist below the critical energy

m has lower entropy above the criticality than the symmetric phase
= thus,

the horizon is unstable, but it is unknown what is the
end point of its instability!



— To the best of my knowledge, this phenomena was first identified in
bottom-up holographic model:

A. Buchel and C. Pagnutti, “Exotic Hairy Black Holes,” Nucl.
Phys. B 824, 85 (2010) do0i:10.1016/j.nuclphysb.2009.08.017
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—> Later, it was observed in top-down construction:

A. Donos and J. P. Gauntlett, “Superfluid black branes in
AdSy x S7,” JHEP 1106, 053 (2011) doi:10.1007/JHEP06(2011)053
[arXiv:1104.4478 [hep-th]]



— It is also the GL instability physics of small black holes in AdS5 x S°:
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—> [ will report on progress in understanding this phenomena



Outline of the talk:

e "Exotic hairy black holes”

m equilibrium states
m GL instability

e Dynamics of the exotic unstable horizons

m dynamical setup
m validation of the GL instability

m fully non-linear evolutions above/below critically

e (Conclusions and comments



—> The effective four-dimensional gravitational bulk action takes form
(AdSy radius is set to 1)

1
Ss=Scrr+ Sy + 8i = 5 [ de*v=y[Lopr + Ly + Li]
with
m 3 CFT part
Lorr=R+6

m its deformation by a relevant operator O, (here A, = 2)

L= (Vo) + 8

m a sector 5; involving an irrelevant operator O; (here A; = 4) along with its
mixing with O, under the RG dynamics

1
Li=—3 (Vx)? = 2x% — go*x>



— Effective action S4 has a Zs X Zs discrete symmetry that acts as a parity
transformation on the scalar fields ¢ and Y.
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— Effective action S4 has a Zs X Zo discrete symmetry that acts as a parity
transformation on the scalar fields ¢ and Y.
m The discrete symmetry

¢ —¢
is explicitly broken by a relevant deformation of the AdS, CFT;
m while as we will see, the

X <= =X

symmetry is broken spontaneously.

Note: for g < 0,
m; =4—2|g| ¢°

and can be below effective BF bound once the relevant scalar ¢ becomes
large at the horizon (for sufficiently low temperature)

— This mechanism for the GL instability has been proposed by Gubser



Thermal equilibrium phase with (O;) = 0:
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e A — the mass scale associates with the relevant deformation of the CFT:

Herr — Herr + A O

e £ — equilibrium energy density

e s — equilibrium entropy density



Lowest QMN of x scalar (dual to O; operator) in (O;) = 0 phase:

25 30 35 20 A3

e Vertical green line indicates instability below the critical energy density

E.:

Ee
5 = 20.16021(8)



The phase with (O;) # 0 (symmetry broken phase) exists only for £ > &.:
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e The entropy of symmetric phase is larger than that of Z, broken phase



The phase with (O;) # 0 (symmetry broken phase) exists only for £ > &,

(Ssym — Sbroken)/A2 <Oz>/A4 £
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e Vertical green lines indicate &,

e The entropy of symmetric phase is larger than that of Z, broken phase

What is the end-point of the symmetric
phase instability for & < &7
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—> Dynamical set-up: we use characteristic formulation of Chesler-Yaffe

e metric ansatz
dsy = 2dt (dr — A(t,r) dt) + X(t,r)* [di + dz3]
¢ — ¢(t7 7”) ) ¢ — w(tv 7”)

e boundary asymptotic expansions (r — 00):

+ (u — ippo(t) — ip%(t)) e (r%)




—> Parameters of the asymptotic expansion:

p1 (const), — p2(t),  qu(t),  p(comst),  A(¢)
Interpretation:
. pr=4~A,  pa(t) = (On(t))
. qa(t) = (Oi(t))
. o %

e )\(t) — residual radial coordinate diffeomorphism parameter
r— 1+ A(t)

adjusted to keep the location of the apparent horizon fixed:

(875 + A(t,r)0: )E(t, r) = dyd(t,r) =0

r=1



— Brief comment on numerical simulations:

e Use Chesler-Yaffe characteristic formulation as in 1309.1439

e There are subtleties with field redefinitions (scalar ¢ with a
non-normalizable coefficient turned on)

e Subtleties in adjusting A\(¢) to keep apparent horizon location at r = 1.

e Initial conditions are specified with constant amplitudes { A, A, }:

—1/r
P1 €
§b(t:OaT):?+A¢ 2
6—1/7“
X(t — 07 T) — AX r4

—> We did convergence tests and computed residuals; the code is stable,
when the final state is known, it equilibrates to it; many more tests...



—> Results £ > &, (stable regime)

e Left panel: expectation value of the relevant operator; the red thin line

equtlibrium

corresponds to equilibrium value (O,.) , given A

e Right panel: expectation value of the irrelevant operator; note that

(O;(t)) oc ecomstt gt late times.



—> Results £ > &, (stable regime)

In[q4(t)]
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e Blue curve: late time behaviour of In[g]

e Thin red curve: a linear fit to the late time behaviour,

In[q4] = 0.301112 — 0.716569 ¢
fit
e Y-scalar quasinormal frequency at given &:

Im [w] = —0.717075803189094581151415099220017210941



—> Results £ > &, (stable regime)

Aapparent horizon Aapparent horizon
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e Left panel: area of apparent horizon

e Right panel: growth rate of apparent horizon area;

lim Aapparent horizon — 0
t— 00



—> Results £ < &, (unstable regime)

T R S Y B S SR
0.5 1.0 1.5 2.0 2.5

-0.5

-1.0 -
-1.5-
-2.0 -

e Left panel: expectation value of the relevant operator; the red thin line
corresponds to equilibrium value (Q,.)¢qwilibrium oiven A

e Right panel: expectation value of the irrelevant operator; note that

(O;(t)) exponentially growth with time (excluding the backreaction the
growth rate matches perfectly the QNM prediction)

— the code crashed shortly after the time presented



—> Results £ < &, (unstable regime)
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—> Results £ < &, (unstable regime)

Rabcd Rﬁ?\id:o]

39.5
39.0
38.5
38.0

37.5|

37.0

e Simulation below GL instability, but with A, = 0 (the instability is
suppressed):

lim Ropea REAS o) = 36.874569568242876

o In AdSy: R peqRYc = 24



—> Results £ < &, (unstable regime)
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e Simulation below GL instability, with A, = 0.01 (same as previous plots

for {¢, x})
o In AdS4I RabcdRade =24



—> Results £ < &, (unstable regime)

m [s a curvature singularity reached in finite time?

1/RadeRabcd ln[l/RabcdRade]

. . ! . . . !
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e It appears it takes infinite time to reach the curvature singularity

e The red line represents a linear fit to the data tail:

fit =17.7397 — 10.9328 ¢
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e | demonstrated that there are exotic holographic phase transitions with
spontaneous symmetry breaking where
m symmetric phase becomes unstable when £ < &£, with respect to
symmetry-broken fluctuations
m equilibrium symmetry-broken phase exists only for £ > &,
m given &, at equilibrium, symmetry-broken phase has lower entropy
than the symmetric phase

e This phenomena occurs in top-down /bottom-up up holographic models;
in particular it is relevant for the small black hole instability in AdSs x S°

e This raises a question: what is the fate of the instability?

m | argued, based on a numerical simulation, that the endpoint of the
evolution is a naked singularity
m [t appears the singularity does not form in finite boundary time

— More studies are needed...



