Unstable horizons and cosmic censorship violation in holography

Alex Buchel

(Perimeter Institute & University of Western Ontario)

to appear (with Luis Lehner)

 \implies String theory/gauge theory correspondence is by now a mature framework to address interesting questions in strongly coupled gauge theories, that are often inaccessible with other theoretical tools

In a nutshell, it establishes a *holographic correspondence* (a dictionary) between two objects:

gauge theory

higher – dimensional

gravitational theory/string theory

 A utility of the correspondence is in the fact that the strong coupling questions about the gauge theory are mapped into the questions in classical gravity

• Consider effective action in asymptotically AdS_4 (dual to CFT_3)

$$S_4 = \int_{\mathcal{M}_4} dx^4 \sqrt{-g} \left(R + 6 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} \partial \phi^2 + \phi^2 \right)$$

• Consider effective action in asymptotically AdS_4 (dual to CFT_3)

$$S_4 = \int_{\mathcal{M}_4} dx^4 \sqrt{-g} \left(R + 6 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} \partial \phi^2 + \phi^2 \right)$$

- $F_{\mu\nu}$ is a U(1) field strength
- ϕ is a scalar field dual to $\Delta = 2$ (a relevant operator) in CFT_3 :

$$\phi = 0 \ \frac{1}{r} + \mathcal{O}_2 \ \frac{1}{r^2} + \cdots$$

• Consider effective action in asymptotically AdS_4 (dual to CFT_3)

$$S_4 = \int_{\mathcal{M}_4} dx^4 \sqrt{-g} \left(R + 6 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} \partial \phi^2 + \phi^2 \right)$$

- $F_{\mu\nu}$ is a U(1) field strength
- ϕ is a scalar field dual to $\Delta = 2$ (a relevant operator) in CFT_3 :

$$\phi = 0 \ \frac{1}{r} + \mathcal{O}_2 \ \frac{1}{r^2} + \cdots$$

• Consider equilibrium states of a CFT at a finite temperature T and a chemical potential μ

• As well known, there are two phases of the model distinguished whether:

$$\langle \mathcal{O}_2 \rangle = 0 \quad \text{or} \quad \langle \mathcal{O}_2 \rangle \neq 0$$

• As well known, there are two phases of the model distinguished whether:

$$\langle \mathcal{O}_2 \rangle = 0 \quad \text{or} \quad \langle \mathcal{O}_2 \rangle \neq 0$$

- $\langle \mathcal{O}_2 \rangle = 0$ phase:
 - exists for arbitrary temperature $T \ge 0$
 - gravitationally described by Reissner-Nordstrom AdS_4 black hole
 - with unbroken \mathbb{Z}_2 symmetry ($\phi \leftrightarrow -\phi$)

 $\phi \equiv 0$

• As well known, there are two phases of the model distinguished whether:

$$\langle \mathcal{O}_2 \rangle = 0 \quad \text{or} \quad \langle \mathcal{O}_2 \rangle \neq 0$$

• $\langle \mathcal{O}_2 \rangle = 0$ phase:

- exists for arbitrary temperature $T \ge 0$
- gravitationally described by Reissner-Nordstrom AdS_4 black hole
- with unbroken \mathbb{Z}_2 symmetry ($\phi \leftrightarrow -\phi$)

$$\phi \equiv 0$$

- At low temperatures this Z₂ symmetric phase becomes unstable:
 on the gravity side this is a Gregory-Laflamme instability due to
 - 'scalarization' of the Reissner-Nordstrom AdS_4 black hole horizon

• ϕ scalar is above the AdS_4 Breitenlohner-Freedman (BF) bound

$$m_{\phi}^2 = -2 \qquad > \qquad m_{BF[AdS_4]}^2 = -\frac{(4-1)^2}{4L^2} = -\frac{9}{4}$$

• As Reissner-Nordstrom AdS_4 black hole becomes extremal $(\frac{T}{\mu} \to 0)$, it develops $AdS_2 \times R^2$ near horizon geometry with the curvature radius

$$L_2^2 = \frac{L^2}{6}$$

In this limit

$$m_{\phi}^2 = -2 \qquad < \qquad m_{BF[AdS_2]}^2 = -\frac{(2-1)^2}{4L_2^2} = -\frac{3}{2}$$

becomes unstable (its quasinormal frequency has $\text{Im}[\omega] > 0$)

- The condensation of the gravitational scalar ϕ at low temperatures
 - is dynamically "stopped" by nonlinear effects
 - spontaneously breaks \mathbb{Z}_2 symmetry, leading to a new equilibrium phase of the CFT with

$$\langle \mathcal{O}_2 \rangle \neq 0$$

- The condensation of the gravitational scalar ϕ at low temperatures
 - is dynamically "stopped" by nonlinear effects
 - spontaneously breaks \mathbb{Z}_2 symmetry, leading to a new equilibrium phase of the CFT with

 $\langle \mathcal{O}_2 \rangle \neq 0$

 \Longrightarrow There are lots of studies/generalizations of the described phenomena in holography

• There is a holographic horizon with a discrete (or continuous) symmetry

• holographic \equiv there is a dual gauge theory interpretation of the gravitational model

- There is a holographic horizon with a discrete (or continuous) symmetry
 holographic ≡ there is a dual gauge theory interpretation of the gravitational model
- There is a critical energy (or energy density) below which the horizon becomes unstable with respect to symmetry breaking fluctuations
 - \blacksquare we work in microcanonical ensemble
 - I will keep calling the instability "GL"

- There is a holographic horizon with a discrete (or continuous) symmetry
 - holographic \equiv there is a dual gauge theory interpretation of the gravitational model
- There is a critical energy (or energy density) below which the horizon becomes unstable with respect to symmetry breaking fluctuations
 - \blacksquare we work in microcanonical ensemble
 - I will keep calling the instability "GL"
- There is an equilibrium phase with spontaneously broken symmetry, branching off the GL onset of the instability, yet, this phase:
 - does not exist <u>**below**</u> the critical energy
 - has <u>lower</u> entropy above the criticality than the symmetric phase
 - thus,

the horizon is unstable, but it is unknown what is the end point of its instability!

 \implies To the best of my knowledge, this phenomena was first identified in bottom-up holographic model:

A. Buchel and C. Pagnutti, "Exotic Hairy Black Holes," Nucl. Phys. B 824, 85 (2010) doi:10.1016/j.nuclphysb.2009.08.017 [arXiv:0904.1716 [hep-th]] \implies To the best of my knowledge, this phenomena was first identified in bottom-up holographic model:

A. Buchel and C. Pagnutti, "Exotic Hairy Black Holes," Nucl. Phys. B 824, 85 (2010) doi:10.1016/j.nuclphysb.2009.08.017 [arXiv:0904.1716 [hep-th]]

 \implies Later, it was observed in top-down construction:

A. Donos and J. P. Gauntlett, "Superfluid black branes in $AdS_4 \times S^7$," JHEP 1106, 053 (2011) doi:10.1007/JHEP06(2011)053 [arXiv:1104.4478 [hep-th]]

 \implies It is also the GL instability physics of small black holes in $AdS_5 \times S^5$:

O. J. C. Dias, J. E. Santos and B. Way, "Lumpy $AdS_5 \times S^5$ black holes and black belts," JHEP 1504, 060 (2015) doi:10.1007/JHEP04(2015)060 [arXiv:1501.06574 [hep-th]] \implies It is also the GL instability physics of small black holes in $AdS_5 \times S^5$:

O. J. C. Dias, J. E. Santos and B. Way, "Lumpy $AdS_5 \times S^5$ black holes and black belts," JHEP 1504, 060 (2015) doi:10.1007/JHEP04(2015)060 [arXiv:1501.06574 [hep-th]]

 \implies I will report on progress in understanding this phenomena

Outline of the talk:

- "Exotic hairy black holes"
 - equilibrium states
 - GL instability
- Dynamics of the exotic unstable horizons
 - dynamical setup
 - validation of the GL instability
 - fully non-linear evolutions above/below critically
- Conclusions and comments

 \implies The effective four-dimensional gravitational bulk action takes form $(AdS_4 \text{ radius is set to } 1)$

$$S_4 = S_{CFT} + S_r + S_i = \frac{1}{2\kappa^2} \int dx^4 \sqrt{-\gamma} \left[\mathcal{L}_{CFT} + \mathcal{L}_r + \mathcal{L}_i \right]$$

with

• a CFT part

$$\mathcal{L}_{CFT} = R + 6$$

• its deformation by a relevant operator \mathcal{O}_r (here $\Delta_r = 2$)

$$\mathcal{L}_r = -\frac{1}{2} \left(\nabla \phi \right)^2 + \phi^2$$

• a sector S_i involving an irrelevant operator \mathcal{O}_i (here $\Delta_i = 4$) along with its mixing with \mathcal{O}_r under the RG dynamics

$$\mathcal{L}_{i} = -\frac{1}{2} \left(\nabla \chi\right)^{2} - 2\chi^{2} - g\phi^{2}\chi^{2}$$

 \implies Effective action S_4 has a $\mathbb{Z}_2 \times \mathbb{Z}_2$ discrete symmetry that acts as a parity transformation on the scalar fields ϕ and χ .

• The discrete symmetry

$$\phi \leftrightarrow -\phi$$

is explicitly broken by a relevant deformation of the AdS_4 CFT;

• while as we will see, the

 $\chi\leftrightarrow-\chi$

symmetry is broken spontaneously.

<u>Note</u>: for g < 0,

$$m_{\chi}^2 = 4 - 2 |g| \phi^2$$

and can be **below** effective BF bound once the relevant scalar ϕ becomes large at the horizon (for sufficiently low temperature)

 \implies Effective action S_4 has a $\mathbb{Z}_2 \times \mathbb{Z}_2$ discrete symmetry that acts as a parity transformation on the scalar fields ϕ and χ .

• The discrete symmetry

$$\phi \leftrightarrow -\phi$$

is explicitly broken by a relevant deformation of the AdS_4 CFT;

• while as we will see, the

 $\chi\leftrightarrow-\chi$

symmetry is broken spontaneously.

<u>Note</u>: for g < 0,

$$m_{\chi}^2 = 4 - 2 |g| \phi^2$$

and can be **below** effective BF bound once the relevant scalar ϕ becomes large at the horizon (for sufficiently low temperature)

 \implies This mechanism for the GL instability has been proposed by Gubser

Thermal equilibrium phase with $\langle \mathcal{O}_i \rangle = 0$:

• Λ — the mass scale associates with the relevant deformation of the CFT:

$$\mathcal{H}_{CFT} \rightarrow \mathcal{H}_{CFT} + \Lambda \mathcal{O}_r$$

- \mathcal{E} equilibrium energy density
- s equilibrium entropy density

Lowest QMN of χ scalar (dual to \mathcal{O}_i operator) in $\langle \mathcal{O}_i \rangle = 0$ phase:

• Vertical green line indicates instability below the critical energy density \mathcal{E}_c :

$$\frac{\mathcal{E}_c}{\Lambda^3} = 20.16021(8)$$

The phase with $\langle \mathcal{O}_i \rangle \neq 0$ (symmetry broken phase) exists only for $\mathcal{E} > \mathcal{E}_c$:

• Vertical green lines indicate \mathcal{E}_c

• The entropy of symmetric phase is larger than that of \mathbb{Z}_2 broken phase

The phase with $\langle \mathcal{O}_i \rangle \neq 0$ (symmetry broken phase) exists only for $\mathcal{E} > \mathcal{E}_c$:

- Vertical green lines indicate \mathcal{E}_c
- The entropy of symmetric phase is larger than that of \mathbb{Z}_2 broken phase

What is the end-point of the symmetric phase instability for $\mathcal{E} < \mathcal{E}_c$?

 \implies Dynamical set-up:

⇒ Dynamical set-up: we use characteristic formulation of Chesler-Yaffe
metric ansatz

$$ds_4^2 = 2dt \left(dr - A(t, r) \ dt\right) + \Sigma(t, r)^2 \left[dx_1^2 + dx_2^2\right]$$
$$\phi = \phi(t, r), \qquad \psi = \psi(t, r)$$

⇒ Dynamical set-up: we use characteristic formulation of Chesler-Yaffe
metric ansatz

$$ds_{4}^{2} = 2dt (dr - A(t, r) dt) + \Sigma(t, r)^{2} [dx_{1}^{2} + dx_{2}^{2}]$$

$$\phi = \phi(t, r), \qquad \psi = \psi(t, r)$$

• boundary asymptotic expansions $(r \to \infty)$:

$$\Sigma = r + \lambda(t) - \frac{1}{8}p_1^2 \frac{1}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$$

$$A = \frac{r^2}{2} + \lambda(t) \ r - \frac{1}{8}p_1^2 + \frac{1}{2}\lambda(t)^2 - \dot{\lambda}(t) + \left(\mu - \frac{1}{4}p_1p_2(t) - \frac{1}{4}p_1^2\lambda(t)\right)\frac{1}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$$

$$\phi = \frac{p_1}{r} + \frac{p_2(t)}{r^2} + \mathcal{O}\left(\frac{1}{r^3}\right), \qquad \chi = \frac{q_4(t)}{r^4} + \mathcal{O}\left(\frac{1}{r^5}\right)$$

 \implies Parameters of the asymptotic expansion:

$$p_1$$
 (const), $p_2(t)$, $q_4(t)$, μ (const), $\lambda(t)$

Interpretation:

- $p_1 = \Lambda$, $p_2(t) = \langle \mathcal{O}_r(t) \rangle$ • $q_4(t) = \langle \mathcal{O}_i(t) \rangle$ • $-4\mu = \frac{\mathcal{E}}{\Lambda^3}$
- $\lambda(t)$ residual radial coordinate diffeomorphism parameter

$$r \to r + \lambda(t)$$

adjusted to keep the location of the apparent horizon fixed:

$$\left(\partial_t + A(t,r)\partial_r\right)\Sigma(t,r) \equiv \left.d_+\Sigma(t,r)\right|_{r=1} = 0$$

\implies Brief comment on numerical simulations:

- Use Chesler-Yaffe characteristic formulation as in 1309.1439
- There are subtleties with field redefinitions (scalar ϕ with a non-normalizable coefficient turned on)
- Subtleties in adjusting $\lambda(t)$ to keep apparent horizon location at r = 1.
- Initial conditions are specified with constant amplitudes $\{\mathcal{A}_{\phi}, \mathcal{A}_{\chi}\}$:

$$\phi(t=0,r) = \frac{p_1}{r} + \mathcal{A}_{\phi} \frac{e^{-1/r}}{r^2}$$

$$\chi(t=0,r) = \mathcal{A}_{\chi} \ \frac{e^{-1/r}}{r^4}$$

 \implies We did convergence tests and computed residuals; the code is stable, when the final state is known, it equilibrates to it; many more tests...

- Left panel: expectation value of the relevant operator; the red thin line corresponds to equilibrium value $\langle \mathcal{O}_r \rangle^{equilibrium}$, given Λ
- **Right panel**: expectation value of the irrelevant operator; note that $\langle \mathcal{O}_i(t) \rangle \propto e^{-\text{const} \cdot t}$ at late times.

- Blue curve: late time behaviour of $\ln[q_4]$
- Thin red curve: a linear fit to the late time behaviour,

$$\ln[q_4] \bigg|_{fit} = 0.301112 - 0.716569 \ t$$

• χ -scalar quasinormal frequency at given \mathcal{E} :

 $Im[\omega] = -0.717075803189094581151415099220017210941$

- Left panel: area of apparent horizon
- **Right panel**: growth rate of apparent horizon area;

$$\lim_{t \to \infty} \dot{A}_{apparent\ horizon} = 0$$

- Left panel: expectation value of the relevant operator; the red thin line corresponds to equilibrium value $\langle \mathcal{O}_r \rangle^{equilibrium}$, given Λ
- **Right panel**: expectation value of the irrelevant operator; note that $\langle \mathcal{O}_i(t) \rangle$ exponentially growth with time (excluding the backreaction the growth rate matches perfectly the QNM prediction)
- \implies the code crashed shortly after the time presented

- Left panel: area of apparent horizon
- **Right panel**: growth rate of apparent horizon area;

$$\min_{t} \dot{A}_{apparent\ horizon} \gtrsim 0.007$$

• Simulation below GL instability, but with $\mathcal{A}_{\chi} = 0$ (the instability is suppressed):

$$\lim_{t \to \infty} R_{abcd} R^{abcd}_{[\mathcal{A}_{\chi}=0]} = 36.874569568242876$$

• In
$$AdS_4$$
: $R_{abcd}R^{abcd} = 24$

- Simulation below GL instability, with $A_{\chi} = 0.01$ (same as previous plots for $\{\phi, \chi\}$)
- In AdS_4 : $R_{abcd}R^{abcd} = 24$

■ Is a curvature singularity reached in finite time?

- It appears it takes infinite time to reach the curvature singularity
- The red line represents a linear fit to the data tail:

fit = 17.7397 - 10.9328 t

- I demonstrated that there are exotic holographic phase transitions with spontaneous symmetry breaking where
 - symmetric phase becomes unstable when $\mathcal{E} < \mathcal{E}_c$ with respect to symmetry-broken fluctuations
 - equilibrium symmetry-broken phase exists only for $\mathcal{E} > \mathcal{E}_c$
 - given \mathcal{E} , at equilibrium, symmetry-broken phase has lower entropy than the symmetric phase

- I demonstrated that there are exotic holographic phase transitions with spontaneous symmetry breaking where
 - symmetric phase becomes unstable when $\mathcal{E} < \mathcal{E}_c$ with respect to symmetry-broken fluctuations
 - equilibrium symmetry-broken phase exists only for $\mathcal{E} > \mathcal{E}_c$
 - given \mathcal{E} , at equilibrium, symmetry-broken phase has lower entropy than the symmetric phase
- This phenomena occurs in top-down/bottom-up up holographic models; in particular it is relevant for the small black hole instability in $AdS_5 \times S^5$

- I demonstrated that there are exotic holographic phase transitions with spontaneous symmetry breaking where
 - symmetric phase becomes unstable when $\mathcal{E} < \mathcal{E}_c$ with respect to symmetry-broken fluctuations
 - equilibrium symmetry-broken phase exists only for $\mathcal{E} > \mathcal{E}_c$
 - given \mathcal{E} , at equilibrium, symmetry-broken phase has lower entropy than the symmetric phase
- This phenomena occurs in top-down/bottom-up up holographic models; in particular it is relevant for the small black hole instability in $AdS_5 \times S^5$
- This raises a question: what is the fate of the instability?
 - I argued, based on a numerical simulation, that the endpoint of the evolution is a naked singularity
 - It appears the singularity does not form in finite boundary time
- \implies More studies are needed...