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=⇒ String theory/gauge theory correspondence is by now a mature

framework to address interesting questions in strongly coupled gauge

theories, that are often inaccessible with other theoretical tools

In a nutshell, it establishes a holographic correspondence (a dictionary)

between two objects:

gauge theory ⇐⇒ higher− dimensional

gravitational theory/string theory

A utility of the correspondence is in the fact that the strong coupling

questions about the gauge theory are mapped into the questions in classical

gravity
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• Consider equilibrium states of a CFT at a finite temperature T and a

chemical potential µ
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• As well known, there are two phases of the model distinguished whether:

〈O2〉 = 0 or 〈O2〉 6= 0

• 〈O2〉 = 0 phase:

exists for arbitrary temperature T ≥ 0

gravitationally described by Reissner-Nordstrom AdS4 black hole

with unbroken Z2 symmetry (φ↔ −φ )

φ ≡ 0

• At low temperatures this Z2 symmetric phase becomes unstable:

on the gravity side this is a Gregory-Laflamme instability due to

’scalarization’ of the Reissner-Nordstrom AdS4 black hole horizon



φ scalar is above the AdS4 Breitenlohner-Freedman (BF) bound

m2
φ = −2 > m2

BF [AdS4]
= − (4− 1)2

4L2
= −9

4

As Reissner-Nordstrom AdS4 black hole becomes extremal (Tµ → 0), it

develops AdS2 × R2 near horizon geometry with the curvature radius

L2
2 =

L2

6

In this limit

m2
φ = −2 < m2

BF [AdS2]
= − (2− 1)2

4L2
2

= −3

2

becomes unstable (its quasinormal frequency has Im[ω] > 0)
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• The condensation of the gravitational scalar φ at low temperatures

is dynamically “stopped” by nonlinear effects

spontaneously breaks Z2 symmetry, leading to a new equilibrium phase

of the CFT with

〈O2〉 6= 0

=⇒ There are lots of studies/generalizations of the described phenomena in

holography
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=⇒ I want to talk about less known exotic holographic (black hole horizon)

phenomena:

• There is a holographic horizon with a discrete (or continuous) symmetry

holographic ≡ there is a dual gauge theory interpretation of the gravitational model

• There is a critical energy (or energy density) below which the horizon

becomes unstable with respect to symmetry breaking fluctuations

we work in microcanonical ensemble

I will keep calling the instability ”GL”

• There is an equilibrium phase with spontaneously broken symmetry,

branching off the GL onset of the instability, yet, this phase:

does not exist below the critical energy

has lower entropy above the criticality than the symmetric phase

thus,

the horizon is unstable, but it is unknown what is the

end point of its instability!
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=⇒ Later, it was observed in top-down construction:

A. Donos and J. P. Gauntlett, “Superfluid black branes in

AdS4 × S7,” JHEP 1106, 053 (2011) doi:10.1007/JHEP06(2011)053

[arXiv:1104.4478 [hep-th]]



=⇒ It is also the GL instability physics of small black holes in AdS5 × S5:

O. J. C. Dias, J. E. Santos and B. Way, “Lumpy AdS5 × S5 black

holes and black belts,” JHEP 1504, 060 (2015)
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O. J. C. Dias, J. E. Santos and B. Way, “Lumpy AdS5 × S5 black

holes and black belts,” JHEP 1504, 060 (2015)
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=⇒ I will report on progress in understanding this phenomena



Outline of the talk:

• ”Exotic hairy black holes”

equilibrium states

GL instability

• Dynamics of the exotic unstable horizons

dynamical setup

validation of the GL instability

fully non-linear evolutions above/below critically

• Conclusions and comments



=⇒ The effective four-dimensional gravitational bulk action takes form

(AdS4 radius is set to 1)

S4 = SCFT + Sr + Si =
1

2κ2

∫

dx4
√−γ [LCFT + Lr + Li]

with

a CFT part

LCFT = R + 6

its deformation by a relevant operator Or (here ∆r = 2)

Lr = −1

2
(∇φ)2 + φ2

a sector Si involving an irrelevant operator Oi (here ∆i = 4) along with its

mixing with Or under the RG dynamics

Li = −1

2
(∇χ)2 − 2χ2 − gφ2χ2
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=⇒ Effective action S4 has a Z2 × Z2 discrete symmetry that acts as a parity

transformation on the scalar fields φ and χ.

The discrete symmetry

φ↔ −φ
is explicitly broken by a relevant deformation of the AdS4 CFT;

while as we will see, the

χ↔ −χ
symmetry is broken spontaneously.

Note: for g < 0,

m2
χ = 4− 2 |g| φ2

and can be below effective BF bound once the relevant scalar φ becomes

large at the horizon (for sufficiently low temperature)

=⇒ This mechanism for the GL instability has been proposed by Gubser



Thermal equilibrium phase with 〈Oi〉 = 0:
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• Λ — the mass scale associates with the relevant deformation of the CFT:

HCFT → HCFT + Λ Or

• E — equilibrium energy density

• s — equilibrium entropy density



Lowest QMN of χ scalar (dual to Oi operator) in 〈Oi〉 = 0 phase:
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• Vertical green line indicates instability below the critical energy density

Ec:
Ec
Λ3

= 20.16021(8)
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• Vertical green lines indicate Ec
• The entropy of symmetric phase is larger than that of Z2 broken phase

What is the end-point of the symmetric

phase instability for E < Ec?



=⇒ Dynamical set-up:



=⇒ Dynamical set-up: we use characteristic formulation of Chesler-Yaffe

• metric ansatz

ds24 = 2dt (dr −A(t, r) dt) + Σ(t, r)2
[

dx21 + dx22
]

φ = φ(t, r) , ψ = ψ(t, r)



=⇒ Dynamical set-up: we use characteristic formulation of Chesler-Yaffe

• metric ansatz

ds24 = 2dt (dr −A(t, r) dt) + Σ(t, r)2
[

dx21 + dx22
]

φ = φ(t, r) , ψ = ψ(t, r)

• boundary asymptotic expansions (r → ∞):

Σ = r + λ(t)− 1

8
p21

1

r
+O

(

1

r2

)

A =
r2

2
+ λ(t) r − 1

8
p21 +

1

2
λ(t)2 − λ̇(t)

+

(

µ− 1

4
p1p2(t)−

1

4
p21λ(t)

)

1

r
+O

(

1

r2

)

φ =
p1
r

+
p2(t)

r2
+O

(

1

r3

)

, χ =
q4(t)

r4
+O

(

1

r5

)



=⇒ Parameters of the asymptotic expansion:

p1 (const) , p2(t) , q4(t) , µ (const) , λ(t)

Interpretation:

•
p1 = Λ , p2(t) = 〈Or(t)〉

•
q4(t) = 〈Oi(t)〉

•
−4µ =

E
Λ3

• λ(t) — residual radial coordinate diffeomorphism parameter

r → r + λ(t)

adjusted to keep the location of the apparent horizon fixed:
(

∂t +A(t, r)∂r

)

Σ(t, r) ≡ d+Σ(t, r)

∣

∣

∣

∣

r=1

= 0



=⇒ Brief comment on numerical simulations:

• Use Chesler-Yaffe characteristic formulation as in 1309.1439

• There are subtleties with field redefinitions (scalar φ with a

non-normalizable coefficient turned on)

• Subtleties in adjusting λ(t) to keep apparent horizon location at r = 1.

• Initial conditions are specified with constant amplitudes {Aφ,Aχ}:

φ(t = 0, r) =
p1
r

+Aφ
e−1/r

r2

χ(t = 0, r) = Aχ
e−1/r

r4

=⇒ We did convergence tests and computed residuals; the code is stable,

when the final state is known, it equilibrates to it; many more tests...



=⇒ Results E > Ec (stable regime)
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• Left panel: expectation value of the relevant operator; the red thin line

corresponds to equilibrium value 〈Or〉equilibrium, given Λ

• Right panel: expectation value of the irrelevant operator; note that

〈Oi(t)〉 ∝ e−const·t at late times.
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• Blue curve: late time behaviour of ln[q4]

• Thin red curve: a linear fit to the late time behaviour,

ln[q4]

∣
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fit

= 0.301112− 0.716569 t

• χ-scalar quasinormal frequency at given E :

Im[ω] = −0.717075803189094581151415099220017210941



=⇒ Results E > Ec (stable regime)
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• Left panel: area of apparent horizon

• Right panel: growth rate of apparent horizon area;

lim
t→∞

Ȧapparent horizon = 0



=⇒ Results E < Ec (unstable regime)
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• Left panel: expectation value of the relevant operator; the red thin line

corresponds to equilibrium value 〈Or〉equilibrium, given Λ

• Right panel: expectation value of the irrelevant operator; note that

〈Oi(t)〉 exponentially growth with time (excluding the backreaction the

growth rate matches perfectly the QNM prediction)

=⇒ the code crashed shortly after the time presented



=⇒ Results E < Ec (unstable regime)
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• Left panel: area of apparent horizon

• Right panel: growth rate of apparent horizon area;

min
t
Ȧapparent horizon & 0.007



=⇒ Results E < Ec (unstable regime)
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• Simulation below GL instability, but with Aχ = 0 (the instability is

suppressed):

lim
t→∞
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[Aχ=0] = 36.874569568242876

• In AdS4: RabcdR
abcd = 24
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• Simulation below GL instability, with Aχ = 0.01 (same as previous plots

for {φ, χ})
• In AdS4: RabcdR

abcd = 24



=⇒ Results E < Ec (unstable regime)

Is a curvature singularity reached in finite time?
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• It appears it takes infinite time to reach the curvature singularity

• The red line represents a linear fit to the data tail:

fit = 17.7397− 10.9328 t
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Conclusions:

• I demonstrated that there are exotic holographic phase transitions with

spontaneous symmetry breaking where

symmetric phase becomes unstable when E < Ec with respect to

symmetry-broken fluctuations

equilibrium symmetry-broken phase exists only for E > Ec
given E , at equilibrium, symmetry-broken phase has lower entropy

than the symmetric phase

• This phenomena occurs in top-down/bottom-up up holographic models;

in particular it is relevant for the small black hole instability in AdS5×S5

• This raises a question: what is the fate of the instability?

I argued, based on a numerical simulation, that the endpoint of the

evolution is a naked singularity

It appears the singularity does not form in finite boundary time

=⇒ More studies are needed...


