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Anti-de Sitter (AdS) spacetime in d+1 dimensions

AdS is the maximally symmetric solution of the vacuum Einstein
equations Rαβ − 1

2 gαβ R+Λgαβ = 0 with negative Λ (a counterpart of
Minkowski (Λ = 0) and de Sitter (Λ > 0)):

ds2 =−(1+ r2/`2)dt̃2 +
dr2

1+ r2/`2 + r2dΩ
2
Sd−1

where `2 =−d(d−1)/(2Λ), r ≥ 0, and −∞ < t < ∞.

Substituting r = ` tanx (0≤ x < π/2) and t̃ = ` t we get

ds2 =
`2

cos2x

(
−dt2 +dx2 + sin2xdΩ

2
Sd−1

)
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Peculiar causal structure of AdS

ds2 =
`2

(cosx)2

[
−dt2 +dx2 +(sinx)2 dΩ

2
Sd−1

]
, −∞ < t < ∞, 0≤ x <

π

2

Conformal infinity x = π/2 is the timelike hypersurface I = R×Sd−1 with the
boundary metric ds2

I =−dt2 +dΩ2
Sd−1

Null geodesics get to infinity in finite time
(but infinite affine length)

AdS is not globally hyperbolic -
to make sense of evolution one needs to
choose boundary conditions at I

Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

?t

x = 0 x = π

2
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Is AdS stable?
By the positive energy theorem AdS space is the unique ground state
among asymptotically AdS spacetimes (much as Minkowski space is the
unique ground state among asymptotically flat spacetimes)

Minkowski spacetime was proved to be asymptotically stable by
Christodoulou and Klainerman (1993)

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - may be
absent in AdS (for no flux boundary conditions I acts as a mirror)

Model for nonlinear dynamics: The problem seems tractable only in 1+1
dimensions⇒ spherical symmetry⇒ need matter to generate dynamics
Simple matter model: massless scalar field φ in d+1 dimensions

Gαβ +Λgαβ = 8πG
(

∂αφ ∂β φ − 1
2

gαβ ∂µφ∂
µ

φ

)

gαβ
∇α∇β φ = 0, ds2 =

`2

cos2 x

(
−Ae−2δ dt2 +A−1dx2 + sin2 xdΩ

2
Sd−1

)
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Model

The line element for asymptotically AdS spacetimes at spherical
symmetry

ds2 =
`2

cos2 x

(
−Ae−2δ dt2 +A−1dx2 + sin2 xdΩ

2
Sd−1

)
,

(t,x) ∈ R× [0,π/2).

Auxiliary variables (′ = ∂x,˙= ∂t): Π = A−1eδ φ̇ and Φ = φ ′ .

Field equations (units 8πG = d−1)

δ
′ =−sin2x

2
(
Φ

2 +Π
2) , A′ = 2(1−A)

d−1− cos2x
sin2x

−Aδ
′ ,

Π̇ =
1

tand−1 x

(
tand−1 xAe−δ

Φ

)′
, Φ̇ =

(
Ae−δ

Π

)′
.

AdS space: φ ≡ 0, δ ≡ const, A≡ 1,

Schwarzschild-AdS: φ ≡ 0, δ ≡ const, A≡ 1−M cos2 x/ tand−2 x.
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Boundary conditions
Smoothness at the center enforces parity conditions on the fields at x = 0
(where Λ is irrelevant)
Mass function and asymptotic mass:

A(t,x)≡ 1−m(t,x)cos2 x/ tand−2 x

M = lim
x→π/2

m(t,x) =

π/2∫

0

(
AΦ

2 +AΠ
2)(tanx)d−1 dx

Smoothness at spatial infinity and the demand for the total mass M to be
finite put reflecting boundary conditions on φ at x = π/2,
in particular (using z = π/2− x)

φ(t,x) = fd(t)zd +O
(
zd+2) ,

A(t,x) = 1−M zd +O
(
zd+2) , δ

′(t,x) = O
(
z2d−1) .

For this model there is no freedom in prescribing boundary conditions
The problem is locally well-posed [Friedrich, 1995], [Holzegel&Smulevici,
2011] Animation
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Key numerical evidence for AdS instability
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Key numerical evidence for AdS instability
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Conjecture (Bizoń-R. 2011)
AdSd+1 (for d ≥ 3) is unstable under arbitrarily small perturbations (against
collapse)

Numerical evidence: perturbations of size ε collapse in time O(ε−2).
The linear spectrum is fully resonant. Nonlinear interactions between
harmonics give rise to transfer of energy from low to high frequencies.
The turbulent cascade leads to concentration of energy on finer and finer
spatial scales so eventually a black hole is expected to form.

Spectral properties:

Linearized equation [Ishibashi&Wald, 2004]

φ̈ +Lφ = 0 , L =− 1
tand−1x

∂x

(
tand−1x∂x

)
,

Eigenvalues and eigenvectors of L read (j = 0,1, . . .):

Lej(x) = ω2
j ej(x), with ω2

j = (d+2j)2 and ej(x) = Nj cosd xP(d/2−1,d/2)
j (cos2x) ,

(ei|ej) =
∫ π/2

0 ei ej tand−1 xdx = δij

dωj/dj =±2 the spectrum is nondispersive!
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Energy spectrum in 3+1 dimensions

Spectral decomposition of the total energy

M =

π/2∫

0

(
AΦ

2 +AΠ
2) tan2xdx =

∞

∑
j=0

Ej(t)

where Ej := (ej ,
√

AΠ)2 +ω
−2
j (e′j ,

√
AΦ)2

Energy spectrum (Ej as a function of j) is an important characteristic of
turbulent dynamics
Animation

Just before collapse Ej ∼ j−α with α ≈ 1.2 (6/5??),
[Craps et.al., unpublished], [Freivogel&Yang, 2015]: in general α = d−2.
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Remarks
Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
[Colliander&Keel, 2008], [Staffilani,Takaoka&Tao, 2008], [Carles&Faou, 2010])
and our work shows that Einstein’s equations are not an exception.

For Einstein’s equations the transfer of energy to high frequencies cannot
proceed forever because concentration of energy on smaller and smaller
scales inevitably leads to the formation of a black hole.

The role of negative cosmological constant seems to be purely
kinematical, that is the only role of Λ is to confine the evolution in an
effectively bounded domain. Similar turbulent dynamics has been
observed for small perturbations of Minkowski in a box [Maliborski, 2012]

Generalizations: different matter models (complex scalar field
[Buchel,Lehner&Liebling, 2012], Yang-Mills [Maliborski, PhD Thesis 2014]),
relaxing symmetry (pure gravity) [Dias,Horowitz&Santos, 2011], instability of
AdS2+1 [Bizoń&Jałmużna, 2013], Gauss-Bonnet gravity [Deppe et al., 2015],
massive scalars [Deppe&Frey, 2015]. 11 / 34



”Naive” perturbative expansion
For small initial data (φ , φ̇)|t=0 = (εf (x),εg(x)):

φ = εφ1 + ε
3
φ3 + ..., δ = ε

2
δ2 + ε

4
δ4 + ..., 1−A = ε

2A2 + ε
4A4 + ...

with (φ1, φ̇1)|t=0 = (f (x),g(x)) and (φj, φ̇j)|t=0 = (0,0) for j > 1.

First order: linearized equation [Ishibashi&Wald, 2004] φ̈1 +Lφ1 = 0 gives
φ1(t,x) = ∑

∞
j=0 Aj cos(ωjt+Bj)ej(x) with (Lej(x) = ω2

j ej(x), j = 0,1, . . .):

ω2
j = (d+2j)2 and ej(x) = Nj cosd xP(d/2−1,d/2)

j (cos2x), L =− ∂x(tan2x∂x)
tan2x

second order: back reaction on the metric (easy to solve)

third order: φ̈3 +Lφ3 = S; projection on the basis {ej} gives an infinite set of
decoupled forced harmonic oscillations for the generalized Fourier coefficients
cj(t) := (ej, φ3): c̈j +ω2

j cj = Sj := (ej, S). Then, in general, secular terms arise:

g̈(t)+ω
2
0 g(t) = acos(ωt), g(0) = c, ġ(0) = c̃ ,

g(t) =
c̃

ω0
sin(ω0t)+ ccos(ω0t)+





a(cos(ωt)− cos(ω0t))
ω2

0 −ω2
, ω0 6= ω ,

a
2ω0

t sin(ω0t) , ω0 = ω .
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Time-periodic asymptotically AdS solutions. Perturbative
construction.

We search for solutions of the form

φ = ε cos(ωγ t)eγ(x)/eγ(0)+O(ε3) ,

with one dominant mode, ε (the φ(0,0) value) is a small parameter.
We rescale the time variable

τ = Ωγ t, Ωγ = ωγ + ∑
even λ≥2

ε
λ

ωγ,λ

and expand the fields perturbatively ε

φ = ε cos(τ)eγ(x)+ ∑
odd λ≥3

ε
λ

φλ (τ,x),

δ = ∑
even λ≥2

ε
λ

δλ (τ,x), 1−A = ∑
even λ≥2

ε
λ Aλ (τ,x),

We use frequency corrections and integration constants to kill secular
terms (order by order) - miraculously it works!
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Time-periodic asymptotically AdS solutions. Numerical
construction.

φ = ∑
0≤j<K

fj(τ)ej(x) = ∑
0≤i<N

∑
0≤j<K

fi,j cos((2i+1)τ)ej(x) ,

Π= ∑
0≤j<K

pj(τ)ej(x) = ∑
0≤i<N

∑
0≤j<K

pi,j sin((2i+1)τ)ej(x) .

Find the solution by determining
2×K×N +1 numbers

Set the equations on a numerical
grid of K×N collocation points

Add one equation for the
normalization condition

∑
0≤i<N

∑
0≤j<K

fi,jej(0) = ε
0 Π�2

Π�2

x

Τ

Hxk, ΤnL

Highly nonlinear system solved with the Newton-Raphson algorithm.
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Time-periodic asymptotically AdS solutions (d=4).
Results & consistency.
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Time-periodic solution of Einstein equations [Maliborski,R, 2013]
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Remarks

There exist (non-linearly) stable time-periodic solutions in Einstein
AdS–massless scalar field system
I further studies and genralization to massive case: [Maliborski, PhD Thesis

2014], [Kim, 2015], [Fodor et al., 2015]

Cosmological constant confines the evolution in an effectively bounded
domain – the possibility of the existence of time-periodic solutions (in
contrast to asymptotically flat case)
Time-periodic solutions in pure vacuum case
I in the cohomogeneity – two Bianchi IX ansatz ([Bizoń,Chmaj&Schmidt,

2005]): [Maliborski, PhD Thesis 2014]
I with helical Killing field [Horowitz&Santos, 2014]

The existence of time-periodic solutions of (non-linear) wave equations on
compact domains seems to be common [Maliborski, PhD Thesis 2014]
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Resonant approximation for the AdS Einstein-scalar system
naive perturbative scheme: φ = εφ1 + ε3φ3 + ... worked fine for
time-periodic solutions, but in general φ = ε

(
φ1 + ε2t+ ...

)

resummed: φ1 = ∑j Aj(τ)cos(ωjt+Bj(τ))ej(x), with ”slow time” τ = ε2t
(the time dependence in Aj(τ), Bj(τ)) used to kill secular terms.

2ωn
dAn

dτ
= ∑

j+k−l=n
j6=n,k 6=n

SjklnAjAkAl sin(Bn +Bl−Bj−Bk)

2ωn
dBn

dτ
= TnA2

n + ∑
j6=n

RjnA2
j + A−1

n ∑
j+k−l=n
j6=n,k 6=n

SjklnAjAkAl cos(Bn +Bl−Bj−Bk)

Main advantage: scaling symmetry Bn(τ)→ Bn(ε
2τ), An(τ)→ εAn(ε

2τ) =⇒
access to the ε → 0 limit! Interaction coefficients found numerically in 3+1
[Balasubramanian et al., 2014], then explicitly [Craps et al., 2014] (for any d)
We have shown that [Bizoń,Maliborski,R., 2015]:

this infinite system has a solution that becomes singular in finite time
this singular solution governs the generic blowup
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Full GR evolution
We shall illustrate the numerical results using the time-symmetric
two-mode initial data in 4+1: φ(0,x) = ε

(1
4 e0(x)+ 1

6 e1(x)
)

Key observation: horizon forms in time tH(ε)∼ ε−2

−4.5 −4 −3.5 −3

ln ε

5

7.5

ln
t H

Fitting tH = τHε−2 +C we get τH ≈ 0.514

This scaling suggests that the instability of AdS should be seen in the
resonant approximation.
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Truncated resonant system - numerics

For the numerical computation we truncate (RS) at N = 172 (TRS)

For the two-mode initial data the higher modes are quickly excited
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For early times An(τ)∼ τn−1 while the phases Bn(τ) evolve linearly.
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Full GR vs. truncated resonant system - energy spectrum
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Later times
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3× 10−5 ± |A96|
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)αn = AneiBn

A highly oscillatory behavior develops causing numerical difficulties.

The time-step of numerical integration, for which the algorithm is
convergent, tends to zero as the cutoff N increases.

This suggests that the solution of (RS) develops an oscillatory singularity
in some finite time τ∗.

Remark: for any finite N the solution of TRS can be numerically continued
past τ∗, however this ‘afterlife’ is an artifact of truncation.

22 / 34



Analyticity strip method

We make the ansatz An(τ)∼ n−γ(τ)e−ρ(τ)n for large n.

Fitting to the data we get
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τ

0

0.5

1
ρ

0.49 0.5 0.51

−0.02
0

0.02

It appears that the ‘analyticity radius’ ρ(τ) tends to zero in a finite time τ∗.

Moreover, the fit reveals that limτ→τ∗ γ(τ) = 2.
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Asymptotic analysis

2ωn
dBn

dτ
= TnA2

n + ∑
j6=n

RjnA2
j + A−1

n ∑
j+k−l=n
j6=n,k 6=n

SjklnAjAkAl cos(Bn +Bl−Bj−Bk)

We assume that Aj(τ)∼ j−2e−ρ0(τ∗−τ)j for large j and τ → τ∗

Asymptotic behavior of the interaction coefficients

Tn ∼ n5, Rjn ∼ n2j3, Sλ j,λk,λ l,λn ∼ λ
4 Sjkln

The latter implies that ∑
j+k−l=n
j 6=n,k 6=n

Sjkln(jkl)−2 = O(1)

It follows that for τ → τ∗

∑
j

RjnA2
j ∼ n2

∑
j

j−1e−2ρ0(τ∗−τ)j ∼ n2 ln(τ∗− τ)

dBn

dτ
∼ n ln(τ∗− τ) blows up logarithmically

Moreover, Bn behave linearly with n, hence Bn +Bl−Bj−Bk ≈ 0
for the resonant quartets (confirming that the ansatz is self-consistent). 24 / 34



Numerical confirmation
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Performing this fit for all n > 40 we confirm that the coefficients an and bn vary linearly
with n, while τ∗ ≈ 0.509 does not depend on n. The blowup time τ∗ is close to the
collapse time for the true solution τH := limε→0 ε−2tH(ε)≈ 0.514.
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Full GR vs. truncated resonant system - Ricci scalar
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Remarks

We have constructed the asymptotic solution of the resonant system that
becomes singular in finite time.

Numerics shows that this solution acts as a universal attractor for blowup
in the resonant system.

Key question: how to transfer this blowup result from the resonant system
to the full system?

It is not clear to us what (if any) is the physical interpretation of the
oscillatory singularity for the resonant system.

Nonetheless, the fact that solutions of the resonant system blow up in
finite time (for typical initial data) strongly indicates that the corresponding
solutions of the full system collapse on the timescale O(ε−2).
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Conclusions

Dynamics of asymptotically AdS spacetimes is an exceptional meeting
point of fundamental problems in general relativity, PDE theory, theory of
turbulence, and high energy physics. Understanding of these connections
is at its infancy.

From numerical explorations of Einstein’s equations there can grow
understanding, conjectures, and roads to proofs and phenomena that
would not have been imaginable in the pre-computer era. The role of
computation in general relativity seems destined to expand in future.
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computer simuations performed at

Deszno supercomputer at Jagiellonian University

AEI Golm cluster

PL-Grid, Cyfronet, Kraków
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Anti-de Sitter spacetime in d+1 dimensions
Geomerically, AdSd+1 is wrapped around hyperboloid

−
(

T1
)2
−
(

T2
)2

+
(

X1
)2

+ · · ·+
(

Xd
)2

=−`2

embedded in flat, d+2 dimensional space with line element

ds2 =−
(

dT1
)2
−
(

dT2
)2

+
(

X1
)2

+ · · ·+
(

Xd
)2

.

Global coordinates: T1 = ` secx cos t, T2 = ` secx sin t, Xk = ` tanxnk with
−∞ < t <+∞, 0≤ x < π/2, ∑

d
k=1
(
nk
)2

= 1; the induced metric:

ds2 =
`2

(cosx)2

[
−dt2 +dx2 +(sinx)2 dΩ

2
Sd−1

]

Poincaré patch:

T1−Xd = `2/z > 0
T2 = `t/z
Xi = `xi/z



⇒ T1 +Xd = z

(
1+

~x2− t2

z2

)

induced metric: ds2 = `2−dt2+d~x2+dz2

z2 .
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Linear stability of AdS
Scalar wave equation �gψ−µ2ψ = 0 after separation of angular
variables ψ(t,x,ω) = ∑φA(t,x)SA(ω) reduces to

φ̈ +Lφ = 0 , L =− 1
tand−1 x

∂x
(
tand−1 x∂x

)
+

µ2

cos2x
+

l(l+d−2)
sin2x

L is positive for µ2 ≥ µ2
BF =−d2/4 and essentially self-adjoint on

L2([0,π/2], tandxdx) for µ2 ≥ µ2
BF +1. For µ2

BF ≤ µ2 < µ2
BF +1 there is

a one-parameter freedom of choosing a reflecting boundary condition at
π/2 (Breitenlohner-Freedman 1982, Ishibashi-Wald 2004)
Electromagnetic and gravitational perturbations are governed by the
same operator but with different parameters (d,µ2)
Conclusion: for reflecting boundary conditions AdS is linearly stable
under scalar, electromagnetic, and gravitational perturbations
Dirichlet eigen-frequencies

±ωk = 2k+1+
1
2

√
d2 +4µ2 +

1
2

√
(d−2)2 + l(l+d−2)

dωk

dk
=±2 ⇒ waves are nondispersive

31 / 34



V. Balasubramanian et al., Holographic Thermalization,
stability of AdS, and the Fermi-Pasta-Ulam-Tsingou paradox,
PRL113, 071601 (2014)

Two-modes initial data and the inverse cascade.
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Resonant approximation (example) �gφ −φ 3 = 0 on AdS5

∂ttφ +Lφ + sec2xφ
3 = 0, L =− tan−3x∂x(tan3x∂x) (?)

Linear spectrum: Len = ω2
n en where ω2

n = (2n+4)2 (n = 0,1, . . . )

Plugging the mode expansion φ(t,x) = ∑n cn(t)en(x) into (?) we get

d2cn

dt2 +ω
2
n cn = ∑

jkl
Ijkln cjckcl, Ijkln =−(ejekel sec2x,en)

In the interaction picture, defined by variation of constants,

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt− β̄ne−iωnt)

this becomes

2iωn
dβn

dt
= ∑

jkl
Ijkln cjckcl e−iωnt

Each term in the sum has a factor e−iΩt, where Ω = ωn±ωj±ωk±ωl.
Two kinds of terms: Ω = 0 (resonant) and Ω 6= 0 (non-resonant).
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Resonant approximation (example) - continued
We define the slow time τ = ε2t and rescale βn(t) = εαn(τ).

The non-resonant terms ∝ e−iΩτ/ε2
are highly oscillatory for small ε

and therefore negligible (at least for some time).

Keeping only the resonant terms (which is equivalent to time-averaging),
we obtain the infinite autonomous dynamical system (resonant system)

2iωn
dαn

dτ
= ∑

jkl
Ijkln αjαkᾱl ,

where the summation runs over the set of indices {jkl} for which Ω = 0
and Ijkln 6= 0. This set can be shown to reduce to {jkl | j+ k− l = n}.
The resonant system is invariant under the scaling αn(τ)→ ε−1αn(τ/ε2)

The resonant approximation is valid on the timescale O(ε−2). Thus,
on this timescale the dynamics of solutions of the cubic wave equation
is dominated by resonant interactions.
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