Holographic Heavy Ion Collisions in Confining Theories

Miguel Zilhão¹ Pau Figueras David Mateos Miquel Triana

¹Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos, Universitat de Barcelona

June 30 2016, Numerical Relativity and Holography, Santiago de Compostela, Galiza

- **A**

Contents

Motivation

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 - Initial data

3 Final remarks

Image: A matrix and a matrix

Motivation

2) Formalism

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 Initial data

3 Final remarks

э

イロト イヨト イヨト イヨト

QCD

A non-Abelian gauge field theory with Lagrangian

$$\mathcal{L}_{ ext{QCD}} = ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$$

- The theory of strong interactions
- Very difficult to study
- Peculiar properties:
 - Confinement
 - Asymptotic freedom

< ロ > < 同 > < 回 > < 回 >

Confinement

- Force between quarks does not diminish as they are separated
- When one separates a quark from other quarks, the energy in the gluon field is enough to create another quark pair
- Quarks are forever bound into hadrons

< 6 b

Analytically unproven

A new phase: Quark-Gluon Plasma

- *T* << *T_c*: Hadron Gas. Colour is confined;
- $T \sim T_c \sim 10^{12} K$: Rapid crossover;
- T ≫ T_c: Quark-Gluon Plasma. Gas of quarks and gluons; colour is liberated;

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In today's large accelerators, QGP can be created in a heavy-ion collision

Ultra-relativistic heavy-ion collisions

two nuclei approach, collide, form a QGP, the QGP expands and hadronizes, finally hadrons rescatter and freeze out

AdS/CFT

$\mathcal{N}=$ 4 super-Yang-Mills is dual to IIB string theory on $AdS_5 imes S_5$

[Maldacena, Gubser, Klebanov, Polyakov, Witten 1998]

 We can learn about strongly coupled phenomena through gravity computations

Image: A matrix and a matrix

★ ∃ > < ∃ >

AdS/CFT

QCD

- non-conformal
- confinement
- not supersymmetric

 $\mathcal{N}=4\;\text{SYM}$

- conformally invariant
- no confinement
- supersymmetric

э

Holography in confining theories

- QCD is not $\mathcal{N} = 4$ SYM ...
 - In a real heavy ion collision at RHIC or LHC, the temperature of the QGP is $2T_c \lesssim T \lesssim 4T_c$.
 - Since there is no clear separation of scales between the temperature of the fireball and the confinement scale, the latter may play a role in the dynamics.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Formalism

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 Initial data

3) Final remarks

э

イロト イヨト イヨト イヨト

Formalism

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 Initial data

3 Final remarks

AdS-soliton

AdS-soliton background

$$ds^{2} = \frac{r^{2}}{L^{2}} \left(-dt^{2} + dx_{(3)}^{2} \right) + \frac{dr^{2}}{F(r)} + F(r)dy^{2}$$

where $F(r) = \frac{r^{2}}{L^{2}} \left(1 - \frac{r_{0}^{5}}{r^{5}} \right)$ and $\Delta y = \frac{4\pi L^{2}}{5r_{0}}$

2

★ E ► < E ►</p>

AdS-soliton

AdS-soliton background

- Gauge theory lives on $\mathbb{M}_{1,3} \times S^1$;
- the S^1 shrinks smoothly to zero size at $r = r_0$;

THE 1 A

Formalism

AdS-soliton

Zero-frequency limit (ZFL)

Non-linear evolutions
 Initial data

3 Final remarks

Zero-frequency limit (ZFL)

The ZFL framework

- Models colliding objects as point particles moving along geodesics in a background spacetime, colliding instantaneously.
 - A stress-energy tensor for point particles is specified, used as a linearized perturbation of the background.
- Describes very well main features of highenergy collisions of equal-mass black holes.
- A cutoff scale needs to be introduced by hand at high frequencies.

Zero-frequency limit (ZFL)

Dual scalar operator

$$\langle \mathcal{O} \rangle - \langle \mathcal{O}_{\text{static}} \rangle \sim \sum_{n} \frac{\sin\left(\tilde{\omega}_{n} t r_{0}/L^{2}\right)}{t^{3/2}}$$

time-domain dual scalar operator as function of t for fixed distance and $\omega_{\rm cutoff}$

 $t^{-3/2}$ fall-off behaviour generic for massive theories

A (10) A (10)

High energy collision of particles

[Cardoso et al 2014]

Stress-energy tensor for head-on collision of point-particles with mass m and speed v

$$T^{\mu\nu} = \frac{mL^3 r_0}{r^4 \gamma} \delta(x_2) \delta(x_3) \delta(r - r_0) \Theta(-t) \\ \times \left[u^{\mu}_{(1)} u^{\nu}_{(1)} \delta(x - vt) + u^{\mu}_{(2)} u^{\nu}_{(2)} \delta(x + vt) \right] \\ + \frac{\Theta(t) ML^4}{r^4} u^{\mu}_{(3)} u^{\nu}_{(3)} \delta(x) \delta(x_2) \delta(x_3) \delta(r - r_0)$$

and metric

$$ds^2 = ds^2_{\text{soliton}} + \epsilon h_{\mu\nu} dx^{\mu} dx^{\nu}$$

Stress-energy tensor of the dual theory

- Operator |*T_{yy}*(ω, *R*)| (spherically symmetric).
- Spectrum suppressed for frequencies smaller than the fundamental mode of the AdS-soliton.

Non-linear evolutions

Outline

Formalism

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 - Initial data

3 Final remarks

Action and Equations of Motion

d + 1 dimensional action

$$\mathcal{S}=\int d^{d+1}\sqrt{-ar{g}}\left(ar{R}-2\Lambda
ight)$$

$$dar{s}^2 = ar{g}_{AB} dx^A dx^B = e^{-rac{2}{d-2}\phi} g_{\mu
u} dx^\mu dx^
u + e^{2\phi} dy^2 \,,$$

 $\mu = \mathbf{0}, \dots, \textit{d} - \mathbf{1}$

EoMs

$$\begin{split} &\frac{3}{d-2}\nabla_{\mu}\partial^{\mu}\phi + \Lambda e^{-\frac{2}{d-2}\phi} = 0\,,\\ &R_{\mu\nu} = \frac{6}{(d-2)^2}\partial_{\mu}\phi\partial_{\nu}\phi + \frac{2}{d-2}\Lambda e^{-\frac{2}{d-2}\phi}g_{\mu\nu}\,. \end{split}$$

ъ

Characteristic formulation

Bondi-Sachs form

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -e^{\frac{2}{d-2}\phi}\left(A - \frac{F^2}{\Sigma^2}\right)dt^2 + \Sigma\left(e^Bdx_{\perp}^2 + e^{-(d-3)B}dz^2\right) \\ + 2dt\left(e^{\frac{2}{d-2}\phi}dr + Fdz\right).$$

Schematic evolution equations:

$$\partial_r S = H_S(S, B)$$

 $\partial_t \partial_r B = H_B(B, S, \partial_t B)$

Advantages of characteristic evolution

- Initial data is free (no elliptic constraints on the data);
- No second time derivatives (therefore smaller number of basic variables);
- Equations have convenient hierarchical structure in which variables are integrated in turn in terms of characteristic data from prior members of the hierarchy.

A B F A B F

Formalism

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 Initial data

Final remarks

Localised Plasma Balls

[Figueras, Tunyasuvunakool 2014]

- Finite size black holes sitting at IR bottom of AdS-soliton geometry.
- Dual to bubbles of deconfined plasma within the confining vacuum.

Localised Plasma Balls

Einstein-DeTurck equations

$$R_{\mu
u}+rac{d}{L^2}g_{\mu
u}-
abla_{(\mu}\xi_{
u)}=0$$

solved for a global reference metric

$$dar{s}^2 = \left[(1 - I(r))ar{g}_{\mu
u}^{
m near-horizon} + I(r)ar{g}_{\mu
u}^{
m soliton}
ight] dx^{\mu} dx^{
u}$$

interpolating between the near-horizon geometry of a topologically spherical black hole and the AdS-soliton metric [Figueras, Tunyasuvunakool 2014]

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

2) Formalism

- AdS-soliton
- Zero-frequency limit (ZFL)
- Non-linear evolutions
 Initial data
- 3 Final remarks

э

イロト イヨト イヨト イヨト

Final Remarks

- Collisions in AdS spaces provide convenient framework to study heavy-ion collisions.
- How does the presence of a confinement scale affect the relaxation process?
- We use an AdS-soliton model to model confinement and study its effect in the evolution of the system:
 - Estimates for the energy spectrum through the ZFL;
 - Formalism for non-linear evolutions;
 - Localised Plasma Balls as initial data.

A B F A B F