Quenching an electric field in metallic holography

Benjamin Withers Queen Mary University of London

based on 1606.03457

NumHol2016, Santiago de Compostela

- Transport properties of strongly coupled systems of interest both experimentally and theoretically.
- Holography furnishes us with tractable examples of theories dual to classical gravity
- Transport properties can be straightforwardly extracted by perturbing black branes describing equilibrium states
- Here, electric (σ) thermoelectric ($\beta, \bar{\beta}$) and thermal ($\bar{\kappa}$)
- Turn on sources $E, \ \nabla T$
- Measure electric (J^i) and heat ($Q^i = T^{ti} \mu J^i$) currents

$$\left(\begin{array}{c}J\\Q\end{array}\right) = \left(\begin{array}{cc}\sigma & \beta T\\\bar{\beta}T & \bar{\kappa}T\end{array}\right) \left(\begin{array}{c}E\\-(\nabla T)/T\end{array}\right)$$

- Translationally invariant, momentum conserved, $\omega=0$ vector mode in the bulk
- Desirable to explicitly break translations, introduces a momentum relaxation timescale $\ensuremath{-i}$

$$\omega = \frac{-i}{\tau_{\rm rel}}$$

- For long τ_{rel} transport governed by `modified' hydro modes due to only approximately conserved momentum, coherent
- For short au_{rel} no long lived momentum and no hydro, incoherent

$$\omega = \frac{-i}{\tau_{\rm rel}}$$

- A variety of stationary black branes which realise momentum relaxation
 - Holographic lattices [Horowitz, Santos, Tong][Chesler, Lucas, Sachdev][Balasubramanian, Herzog][Rangamani, Rozali, Smyth][...]
 - Holographic disorder [Hartnoll, Santos][...]
 - Helical black branes [Donos, Hartnoll][Donos, Gouteraux, Kiritsis][...]
 - Q-lattices, Axion models [Donos, Gauntlett] [Andrade, B.W.][...]
 - ...

This talk: electric field quench

- Here we take an inhomogeneous model and do a time dependent quench of an applied electric field
- From boundary perspective we'll see:
 - bounded momentum due to inhomogeneities
 - unbounded energy response due to Joule heating
 - relaxation of currents
- From bulk point of view expect qualitatively different dynamics (momentum not conserved), e.g. in approach to equilibrium.
- QNM spectrum governing current relaxation can depend qualitatively on inhomogeneity, we will see this imprint in the dynamics

This talk: electric field quench

- Time dependent, need numerics (characteristic formulation)
- Usually a 2+1 problem, but with an axion-like model can reduce to 1+1
- Exception for no net charge density: current but no momentum, generalises results of [Horowitz, Iqbal, Santos]
 — nonlinear response encoded by a Vaidya spacetime
- Here we don't find any nonlinear steady states, due to Joule heating. Contrast with probe limit e.g. [Karch][Sonner, Green][Baggioli, Pujolas], where one effectively has a heat bath.

Outline

- Model
- Exact solutions at $\rho = 0$
- Numerics at $\,\rho
 eq 0$
 - Holding E constant
 - linear E and steady states,
 - nonlinear E and Joule heating
 - Returning to equilibrium
 - event horizon,
 - QNMs
 - relaxation of currents

Model and equilibrium

Bulk model

• Model of choice: Einstein-Maxwell + axions ϕ_I

$$S = \frac{1}{2\kappa^2} \int_M \sqrt{-g} \left[R - 2\Lambda - \frac{1}{2} \sum_{I=1}^2 (\partial \phi_I)^2 - \frac{1}{4} F^2 \right] d^4x$$

• Ward identities

$$\partial_{\mu} \langle T^{\mu}{}_{\nu} \rangle = \partial_{\nu} \phi_{I}^{(0)} \langle O_{I} \rangle + (F^{(0)})_{\nu}{}^{\mu} \langle J_{\mu} \rangle$$
$$\partial_{\mu} \langle J^{\mu} \rangle = 0$$

- Giving the axions linear sources $\phi_I^{(0)} \propto x^I$ turns on the RHS and relaxes momentum
- In linear response get a steady state with balance on RHS

[Andrade, B.W.]

Bulk model - equilibrium

• For isotropic configurations of axions, $\phi_I^{(0)} = \alpha x^I$ there are analytic stationary black brane solutions

$$ds^{2} = \frac{1}{r^{2}} (-f(r)dv^{2} - 2dvdr + dx^{2} + dy^{2})$$

$$A = (\mu - \rho r)dv, \quad \phi_{I} = \alpha x^{I}$$

$$f(r) = 1 - \frac{1}{2}\alpha^{2}r^{2} - mr^{3} + \frac{1}{4}\rho^{2}r^{4}$$

- $AdS_2 \times R^2$ at low temperatures, even for $\mu = \rho = 0$
- For some parameters have negative energy density
- Curious special point: $\epsilon = \rho = 0$ $T \neq 0$
- Finite DC electric and thermoelectric conductivities

$$\sigma = 1 + \frac{\mu^2}{\alpha^2} \qquad \qquad \bar{\beta} = \frac{4\pi\rho}{\alpha^2}$$

Bulk model - driving with sources

• Throughout this talk sources are:

$$\phi_I^{(0)} = \alpha x^I \qquad \qquad F^{(0)} = E(t)dx \wedge dt$$

• Insert in Ward identities:

$$\partial_t \epsilon = EJ$$

$$\partial_t J_E = \alpha \langle O_1 \rangle + E\rho$$

- Joule heating unavoidable time dependent black branes
- In general there will also be a time dependent energy current, but cancellations can occur

Exact results at $\rho = 0$

- For no net charge there is electric current but no momentum.
- Vaidya solution in 4D Einstein-Maxwell [Horowitz, Iqbal, Santos]
- With axions:

$$ds^{2} = \frac{1}{r^{2}}(-f(v,r)dv^{2} - 2dvdr + dx^{2} + dy^{2})$$

$$A = E(v)x \, dv, \quad \phi_{I} = \alpha x^{I}$$

$$f(v,r) = 1 - \frac{1}{2}\alpha^{2}r^{2} - m(v)r^{3}.$$

- Joule heating $\partial_v(2m(v)) = E(v)^2$
- Instantaneous response J = E
- Electric current but no energy currents: $\sigma = 1, \bar{\beta} = 0$
- Here α is surplus to requirements

$\rho \neq 0$ Numerical evolution

• Characteristic evolution:

$$ds^{2} = \frac{1}{r^{2}} \left(-F(v,r)dv^{2} - 2dvdr + 2e^{B(v,r)}F_{x}(v,r)dvdx + S(v,r)(e^{2B(v,r)}dx^{2} + e^{-2B(v,r)}dy^{2}) \right)$$

$$A = (E(v)x + a_{v}(v,r))dv + a_{x}(v,r)dx$$

$$\phi_{1} = \alpha x + \Phi(v,r)$$

$$\phi_{2} = \alpha y$$

- x,y inhomogeneity doesn't appear in the equations of motion
- Crank-Nicolson for stepping in v
- Chebyschev collocation in r
- For large injections of energy we adapt the radial coordinate so AH sits at r=1

$\rho \neq 0$ Holding E constant

- Initial temperature T_i , charge density ho, relaxation param. lpha
- Quench an applied electric field to a constant value E_f

$$E(t) = \frac{1}{2} \left(\tanh\left(\frac{t}{w}\right) + 1 \right) E_f$$

Read off electric and thermoelectric conductivities

$$J = \sigma E_f,$$
$$Q \equiv J_E - \mu J = \bar{\beta} T E_f$$

Consider two cases: Small electric fields
 Large electric fields

Small electric fields

- Instantaneous response (cf. neutral case)
- Approaches linear steady state

Small electric fields

- Longest lived vector QNM governs approach to linear steady state (set by momentum relaxation parameter α more later)
- Heating rate determined by specific heat & Ward identity at equilibrium $\Gamma_{\text{Joule}} = \frac{1}{\sqrt{\rho}} \frac{\partial T}{\partial t} \Big|_{\rho} = \frac{1}{\sqrt{\rho}} \frac{1}{c_{\rho}} \sigma E^{2}$

- Longest lived vector QNM governs approach to linear steady state (set by momentum relaxation parameter α more later)
- Heating rate determined by specific heat & Ward identity at equilibrium $\Gamma_{\text{Joule}} = \frac{1}{\sqrt{\rho}} \frac{\partial T}{\partial t} \Big|_{t=0}^{t=0} = \frac{1}{\sqrt{\rho}} \frac{1}{\sigma} \sigma E^{2}$

Large electric fields

- How can we model the current response when there is a large electric field?
- Assume some transient regime governed by $\,\alpha$ (just as in linear response)
- Then describe time dependence by

$$\sigma(t) = \sigma\left(\frac{\alpha}{\sqrt{\rho}}, \frac{T_E(t)}{\sqrt{\rho}}, \frac{E_f}{\rho}\right)$$

• Recall in linear response at equilibrium:

$$\sigma = \sigma\left(\frac{\alpha}{\sqrt{\rho}}, \frac{T}{\sqrt{\rho}}\right)$$

 Remarkably, a good approximation is achieved by using the linear response result and promoting

$$T \to T_E(t)$$

Varying T_i $E_f/\rho = 1$

Varying E_f $T_i/\sqrt{\rho} = 1/10$

$\rho \neq 0$ Returning to equilibrium

• Apply top hat

$$E(t) = (\Theta(t) - \Theta(t - t_*)) E_c$$
$$\Theta(t) \equiv \frac{1}{2} \left(\tanh\left(\frac{t}{w}\right) + 1 \right)$$

- What happens to the black hole?
- Return to equilibrium

Vector quasi-normal modes

- Two sectors of vector perturbations (+) / (-)
- Small α use matching calculation

$$\Gamma_{\rm rel} = \tau_{\rm rel}^{-1} = \frac{s\alpha^2}{6\pi\epsilon} \text{ [Davison]}$$

• Otherwise construct numerically:

Vector quasi-normal modes

- In general Q, J relaxation involve a mixture of both sectors
- But, the qualitative changes appear in shorter lived modes... (not the case at $\rho=0$)
- So why are these features relevant?
- As $\alpha \to \infty$, Q only involves (-)-sector modes
- At large α there is a parametric enhancement of amplitude

Summary of key points and outlook

Studied far-from-equilibrium holographic metals, using an electric field quench

1. Joule heating

- At $\rho=0$ Vaidya-like solutions capture Joule heating together with an instantaneous electrical current response
- also, govern the initial response for a rapid quench when $\,\rho
 eq 0$
- Linear steady states (DC linear response)
- Otherwise, $\rho \neq 0$ studied numerically
- How can we get nonlinear steady states? Heat bath? Insulators?

2. Nonlinear conductivity

- Electric conductivity well approximated by DC linear response result after promoting $T \to T_E(t)$
- Includes cases where $E_f\gtrsim T_E^2, \quad E_f\gtrsim \rho, \quad E_f\gtrsim \alpha^2$
- Generalises E_f -independence of ho=0 result, $\sigma=1$
- Why is σ E_f -independent?

3. Current relaxation

- QNMs display qualitative changes as a function of inhomogeneity
- Naively subdominant QNM gets parametrically enhanced
- Oscillatory decay of heat current as a signature of sufficiently incoherent metals
- Is it a generic phenomenon? compute QNM spectrum for other inhomogeneous models

2. Nonlinear conductivity

- Electric conductivity well approximated by DC linear response result after promoting $T \to T_E(t)$
- Includes cases where $E_f\gtrsim T_E^2, \quad E_f\gtrsim \rho, \quad E_f\gtrsim \alpha^2$
- Generalises E_f -independence of $\rho=0$ result, $\sigma=1$
- Why is σ E_f -independent?

3. Current relaxation

- QNMs display qualitative changes as a function of inhomogeneity
- Naively subdominant QNM gets parametrically enhanced
- Oscillatory decay of heat current as a signature of sufficiently incoherent metals
- Is it a generic phenomenon? compute QNM spectrum for other inhomogeneous models

