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• Transport properties of strongly coupled systems of interest both 
experimentally and theoretically. 

• Holography furnishes us with tractable examples of theories dual 
to classical gravity 

• Transport properties can be straightforwardly extracted by 
perturbing black branes describing equilibrium states 

• Here, electric (   ) thermoelectric (        ) and thermal (   ) 
• Turn on sources 
• Measure electric (     ) and heat (                              ) currents
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• e.g. RN-AdS4 

• In DC limit, 

• Translationally invariant, momentum conserved,             
             vector mode in the bulk 

• Desirable to explicitly break translations, introduces a momentum 
relaxation timescale  

• For long        transport governed by `modified’ hydro modes due 
to only approximately conserved momentum, coherent 

• For short        no long lived momentum and no hydro, incoherent
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• A variety of stationary black branes which realise momentum 
relaxation 
• Holographic lattices [Horowitz, Santos, Tong][Chesler, Lucas, 

Sachdev][Balasubramanian, Herzog][Rangamani, Rozali, Smyth][…] 

• Holographic disorder [Hartnoll, Santos][…] 

• Helical black branes [Donos, Hartnoll][Donos, Gouteraux, Kiritsis][…] 

• Q-lattices, Axion models [Donos, Gauntlett] [Andrade, B.W.][…] 

• …
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• Here we take an inhomogeneous model and do a time 
dependent quench of an applied electric field 

• From boundary perspective we’ll see:  
• bounded momentum due to inhomogeneities 
• unbounded energy response due to Joule heating 
• relaxation of currents 

• From bulk point of view expect qualitatively different 
dynamics (momentum not conserved), e.g. in approach to 
equilibrium. 

• QNM spectrum governing current relaxation can depend 
qualitatively on inhomogeneity, we will see this imprint in the 
dynamics

This talk: electric field quench



This talk: electric field quench

• Time dependent, need numerics (characteristic 
formulation) 

• Usually a 2+1 problem, but with an axion-like model can 
reduce to 1+1 

• Exception for no net charge density: current but no 
momentum, generalises results of [Horowitz, Iqbal, Santos] 
— nonlinear response encoded by a Vaidya spacetime 

• Here we don’t find any nonlinear steady states, due to 
Joule heating. Contrast with probe limit e.g. [Karch][Sonner, 
Green][Baggioli, Pujolas], where one effectively has a heat 
bath.



Outline

• Model 
• Exact solutions at 
• Numerics at 

• Holding E constant 
• linear E and steady states, 
• nonlinear E and Joule heating 

• Returning to equilibrium 
• event horizon,  
• QNMs 
• relaxation of currents

� = 0
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Model and equilibrium



• Model of choice: Einstein-Maxwell + axions 

• Ward identities 

• Giving the axions linear sources                 
turns on the RHS and relaxes momentum 

• In linear response get a steady state with balance on RHS 
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� �Jµ�

�µ �Jµ� = 0

�(0)
I � xI

⇢ = 0 we can go beyond linear response analytically for any Ef , finding

� = 1, � = 0. (1.10)

In fact, these expressions apply for any choice E(t), showing that J(t) responds

instantaneously to E(t). This generalises the results of [10,13] to include a momentum

relaxation parameter.3 In the absence of net charge, the added feature of momentum

relaxation may be somewhat redundant, nevertheless these solutions serve as a useful

reference point since we will see this instantaneous electric current as the first response

in the more general examples that follow.

Away from these two limits the responses of J and Q are subject to the non-

linearities of the full evolution of the Einstein-Maxwell-axion system and we resort

to numerical integration of the bulk equations. Remarkably, we find that the ex-

pression for � in (1.9) provides an excellent accounting of the evolution of J far

from linear response, simply by assuming that the thermodynamic relations of the

equilibrium black brane apply locally at each point in time, and that � gives the cor-

responding conductivity. This applies even when Joule heating introduces significant

time-dependence of the black brane. On the other hand � does not appear amenable

to the same treatment, exhibiting nonlinear dependence on Ef .

The paper is organised as follows. In section 2, for completeness and for setting

out conventions we present the equilibrium axion black branes. In section 3 we present

the analytic time dependent solutions in the neutral setting, in the presence of an

arbitrary E(t), leading to results (1.10). We then turn to the nonlinear response for

finite charge density in section 5. We conclude in section 6. In appendix A we detail

the numerical setup used, with convergence tests presented in Appendix ??.

2 Gravitational model and equilibrium black branes

Let us briefly recap the model and present the black brane solutions of [9], but pre-

sented in ingoing Eddington-Finkelstein coordinates and in a generalised coordinate

frame on the boundary. These give the equilibrium, finite temperature, charged

metallic state which we will later force out of equilibrium using E(t). We employ the

action specialised to D = 4,
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3There is a di↵erence of convention of electric charge to [13], as can be seen by examining the

action, which accounts for the factor of 4 di↵erence.

4

[Andrade, B.W.]

Bulk model



� = 1 +
µ2

�2

•                      at low temperatures, even for  
• For some parameters have negative energy density 
• Curious special point: 
• Finite DC electric and thermoelectric conductivities

• For isotropic configurations of axions,   
there are analytic stationary black brane solutions
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Bulk model - equilibrium



• Throughout this talk sources are: 

• Insert in Ward identities: 

• Joule heating unavoidable — time dependent black branes 
• In general there will also be a time dependent energy current, but 

cancellations can occur

F (0) = E(t)dx � dt�(0)
I = �xI

�t� = EJ

�tJE = � �O1� + E�

Bulk model - driving with sources



Exact results at � = 0



• Joule heating 
• Instantaneous response 
• Electric current but no energy currents: 
• Here     is surplus to requirements

ds2 =
1
r2

(�f(v, r)dv2 � 2dvdr + dx2 + dy2)

A = E(v)x dv, �I = �xI

f(v, r) = 1� 1
2
�2r2 �m(v)r3.

�v(2m(v)) = E(v)2

• For no net charge there is electric current but no momentum. 
• Vaidya solution in 4D Einstein-Maxwell [Horowitz, Iqbal, Santos] 

• With axions:

J = E

�

� = 1, �̄ = 0



Numerical evolution
� �= 0



ds2 =
1
r2

�
� F (v, r)dv2 � 2dvdr + 2eB(v,r)Fx(v, r)dvdx

+S(v, r)(e2B(v,r)dx2 + e�2B(v,r)dy2)
�

A = (E(v)x + av(v, r))dv + ax(v, r)dx

�1 = � x + �(v, r)
�2 = � y

• Characteristic evolution:

• x,y inhomogeneity doesn’t appear in the equations of motion 
• Crank-Nicolson for stepping in v 
• Chebyschev collocation in r 
• For large injections of energy we adapt the radial coordinate so 

AH sits at r=1



Holding E constant
� �= 0



• Initial temperature      , charge density     , relaxation param.      

• Quench an applied electric field to a constant value  

• Read off electric and thermoelectric conductivities 

• Consider two cases:

expressions into (1.1) we find,

@t✏ = EJ (1.4)

@tJE = ↵ hO
1

i+ E⇢ (1.5)

where ✏ = hT tti is the energy density, ⇢ = hJ ti is the charge density, J = hJxi is

the electrical current, JE = hT txi is the energy current.2 The first equation (1.4)

shows that energy is injected by the electric field, resulting in Joule heating. The

second, (1.5), accounts for the momentum, and because of the axion sources there is

the possibility of a steady state where the terms on the hand side cancel, balancing

momentum loss with the driving electric field. Finally we note that (1.2) gives @t⇢ = 0.

The specific experiment we perform is to quench the system away from equilibrium

with a profile,

E(t) =
1

2

✓
tanh

✓
t

w

◆
+ 1

◆
Ef (1.6)

where w is taken to be some short timescale compared to the intrinsic dynamical

response time of the system. At su�ciently late times, transient behaviour due to

the quench dies down and we enter a regime where the system is responding to a

constant E = Ef . In this late phase, we choose to characterise the response of

the system using electrical (�) and thermoelectric (�) DC conductivities, defined as

follows,

J = �Ef , (1.7)

Q ⌘ JE � µJ = � TEf (1.8)

where Q is the heat current in the absence of thermal gradients [14]. The thermal

conductivity will not play a role since no temperature gradient is sourced. Note that

� and � will be time dependent in general due to the e↵ect of heating, and they may

also depend explicitly on Ef .

We can gain analytic control over �, � in two limits of parameter space. For

su�ciently small Ef , linear response can be used, finding [9, 14]

� = 1 +
µ2

↵2

, � =
4⇡⇢

↵2

. (1.9)

In this regime hO
1

i = �Ef⇢/↵ and the right hand sides of (1.4) and (1.5) vanish at

linear order in Ef , corresponding to a steady state. In this paper we show that for

2The y-component of (1.1) is trivially satisfied for the solutions here, since the electric field is

taken in the x-direction and O2 does not acquire a nonzero vev.
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Ti � �

Small electric fields
Large electric fields

where Tµ⌫ is the QFT stress tensor, Jµ the U(1) current and F (0) = dA(0) is a classical,

boundary field strength. Throughout this paper the sources are taken to be,

�
(0)

I = ↵xI , F (0) = E(t)dx ^ dt (1.3)

where I = 1, 2 labels the two spatial boundary directions, x = x1, y = x2. With the

exception of �(0)

I and A(0) all quantities here are independent of xI . Inserting these

expressions into (1.1) we find,

@t✏ = EJ (1.4)

@tJE = ↵ hO
1

i+ E⇢ (1.5)

where ✏ = hT tti is the energy density, ⇢ = hJ ti is the charge density, J = hJxi is

the electrical current, JE = hT txi is the energy current.3 The first equation (1.4)

shows that energy is injected by the electric field, resulting in Joule heating. The

second, (1.5), accounts for the momentum, and because of the axion sources there is

the possibility of a steady state where the terms on the hand side cancel, balancing

momentum loss with the driving electric field. Finally we note that (1.2) gives @t⇢ = 0.

We will study two di↵erent cases for the profiles of E(t). In the first case, we turn

on E(t) hold it at some constant value, and then turn it o↵ again. This will allow us

to get a full picture of the gravitational dynamics, allowing the construction of the

black hole event horizon and a check that the solution returns to a member of the

family of equilibrium solutions at a rate consistent with its QNMs.

For the second case, we turn on E(t) and hold it at a constant value Ef . At

su�ciently late times, transient behaviour due to the quench dies down and we en-

ter a regime where the system is responding to a constant E = Ef . In this late

phase, we choose to characterise the response of the system using electrical (�) and

thermoelectric (�̄) DC conductivities, defined as follows,

J = �Ef , (1.6)

Q ⌘ JE � µJ = �̄T Ef (1.7)

where Q is the heat current in the absence of thermal gradients [16]. Here we have

restricted to the xx-entries in each conductivity matrix, with the yx-entries vanishing.

The thermal conductivity will not play a role since there is no temperature gradient.

Note that � and �̄ will be time dependent in general due to the e↵ect of heating, and

they may also depend explicitly on Ef .

3The y-component of (1.1) is trivially satisfied for the solutions here, since the electric field is

taken in the x-direction and O2 does not acquire a nonzero vev.
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Figure 3: Linear response regime. Here we begin at Ti/
p
⇢ = 1/10 with ↵/

p
⇢ = 1/2

and Ef/⇢ = 10�3. The blue lines show the DC linear response conductivities (1.9)

which are approached at late times. The timescale of the approach is set by the

longest lived QNM of the equilibrium black brane.
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Figure 4: Approach to the steady state for the evolution presented in figure 3 in the

linear response regime. The steady state is characterised by hO
1

i = �Ef⇢/↵. The

red line shows the expected slope given by the momentum relaxation rate computed

in section 4.1, given by the longest lived QNM at equilibrium.

1. conductivity with an e↵ective temperature dependence,

2. conductivity which explicitly and nonlinearly depends on Ef .

We shall demonstrate that it is the former factor that appears to dominate the non-

linear evolution of �. Specifically, excellent agreement is achieved by modelling the

current at each point in time by the linear response result for the static black brane

background of the same energy density. In other words, first we eliminate µ from �

9
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• Instantaneous response (cf. neutral case) 
• Approaches linear steady state
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�t� = EJ

�tJE = � �O1� + E�

• Longest lived vector QNM governs approach to linear steady  
state (set by momentum relaxation parameter     - more later)  

• Heating rate determined by specific heat & Ward identity  
at equilibrium
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Figure 4: Approach to the steady state for the evolution presented in figure 3 in the

linear response regime. The steady state is characterised by hO
1

i = �Ef⇢/↵. The

red line shows the expected slope given by the momentum relaxation rate computed

in section 5.1, given by the longest lived QNM at equilibrium.

Note that the possible distinct e↵ect of explicit dependence on the applied electric

field has been included. We shall demonstrate that it is TE dependence and not Ef

dependence that dominates the nonlinear evolution of �. Moreover, the TE depen-

dence is remarkably simple – excellent agreement is achieved by taking the DC linear

response result in the form,

� = �

✓
↵
p
⇢
,
T
p
⇢

◆
(5.4)

and promoting T ! TE(t). Specifically, a practical short-cut for this is to first we

eliminate µ from � (1.9) using the thermodynamic relations (2.9) and (2.10) to obtain,

� = 1 +
µ(↵, ⇢, ✏)2

↵2

. (5.5)

Since ⇢ is conserved and ↵ is fixed, it is only the energy density, ✏, which we update

during the evolution. Note that the linear response result for �̄ (1.9) is constant since

⇢ is conserved.

We begin with a single parameter choice, ↵/
p
⇢ = 2, Ef/⇢ = 1 and an initial

temperature Ti/
p
⇢ = 1/10. The e↵ect of Joule heating is shown in figure 5, where

we plot the e↵ective temperature, TE(t). In figure 5 we also show the time dependence

of the scalar vev, which suggests that a steady energy current is reached at su�ciently

late times.

Next, for a selection of parameter choices we analyse the electric and thermo-

electric conductivities, by plotting J(t)/Ef and Q(t)/Ef/TE in figure 6, alongside

the linear response approximations for J,Q described above. As before, the initial

10

Small electric fields
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Figure 1: Momentum relaxation rates, �
rel

, from left to right T/
p
⇢ = 10�1, 1, given

by the frequency of the longest lived QNM, ⌧�1

rel

= �Im(!). The grey lines shows the

corresponding small ↵2 approximation (5.1).

the equilibrium black brane,

�
Joule

=
1
p
⇢

@T

@t

����
⇢

=
1
p
⇢

1

c⇢
�E2 (5.2)

where c⇢ is the specific heat, to be evaluated for the equilibrium black brane. Devia-

tions will occur for strong electric fields, or after significant heating, but nevertheless

it will roughly give a handle on the timescales we need to make parameter choices for

the evolutions presented below. Numerical values for �
Joule

is presented in figure 2.

log
10

�

Joulep
⇢

⇢2

E2

log
10

↵/
p
⇢

Figure 2: Heating rates normalised by E2, from top to bottom T/
p
⇢ =

10�2, 10�1, 1, 10, 102, given by (5.2).
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�t� = EJ

�tJE = � �O1� + E�

• Longest lived vector QNM governs approach to linear steady  
state (set by momentum relaxation parameter     - more later)  

• Heating rate determined by specific heat & Ward identity  
at equilibrium
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Figure 4: Approach to the steady state for the evolution presented in figure 3 in the

linear response regime. The steady state is characterised by hO
1

i = �Ef⇢/↵. The

red line shows the expected slope given by the momentum relaxation rate computed

in section 5.1, given by the longest lived QNM at equilibrium.

Note that the possible distinct e↵ect of explicit dependence on the applied electric

field has been included. We shall demonstrate that it is TE dependence and not Ef

dependence that dominates the nonlinear evolution of �. Moreover, the TE depen-

dence is remarkably simple – excellent agreement is achieved by taking the DC linear

response result in the form,
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(5.4)

and promoting T ! TE(t). Specifically, a practical short-cut for this is to first we

eliminate µ from � (1.9) using the thermodynamic relations (2.9) and (2.10) to obtain,

� = 1 +
µ(↵, ⇢, ✏)2

↵2

. (5.5)

Since ⇢ is conserved and ↵ is fixed, it is only the energy density, ✏, which we update

during the evolution. Note that the linear response result for �̄ (1.9) is constant since

⇢ is conserved.

We begin with a single parameter choice, ↵/
p
⇢ = 2, Ef/⇢ = 1 and an initial

temperature Ti/
p
⇢ = 1/10. The e↵ect of Joule heating is shown in figure 5, where

we plot the e↵ective temperature, TE(t). In figure 5 we also show the time dependence

of the scalar vev, which suggests that a steady energy current is reached at su�ciently

late times.

Next, for a selection of parameter choices we analyse the electric and thermo-

electric conductivities, by plotting J(t)/Ef and Q(t)/Ef/TE in figure 6, alongside

the linear response approximations for J,Q described above. As before, the initial
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where c⇢ is the specific heat, to be evaluated for the equilibrium black brane. Devia-

tions will occur for strong electric fields, or after significant heating, but nevertheless

it will roughly give a handle on the timescales we need to make parameter choices for

the evolutions presented below. Numerical values for �
Joule

is presented in figure 2.
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• How can we model the current response when there is a large 
electric field? 

• Assume some transient regime governed by      (just as in 
linear response) 

• Then describe time dependence by 

• Recall in linear response at equilibrium: 

• Remarkably, a good approximation is achieved by using the 
linear response result and promoting

�

�
�
�

�
,
TE(t)
�

�
,
Ef

�

�

�

�(t) =

� = �

�
�
�

�
,

T
�

�

�

T � TE(t)

Large electric fields



Varying
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Figure 7: Nonlinear electrical current response at Ef/⇢ = 1, as a function of e↵ective

temperature TE (defined in section 5.1). Under the applied electric field TE increases

and the system evolves from left to right along the solid curves shown, which represent

runs of di↵ering initial temperatures Ti/
p
⇢ = 10�2, 10�1, 1/4, 1/2, 3/4, 1 as labelled.

Constant E is reached after the open circles shown, at which point (E � Ef )/Ef '
10�5. After some time the attractor behaviour is reached, marked by the black dashed

line, which is the DC linear response conductivity after the equilibrium temperature is

promoted to TE, as described in the text. The blue dashed curve shows the behaviour

J = E for the run Ti/
p
⇢ = 10�2. Here ↵/

p
⇢ = 2.

6 Final comments

We have presented the time evolution of a holographic metal under the influence

of an applied electric field at finite temperature. At ⇢ = 0 the system responds

instantaneously to the applied electric field, encoded by a Vaidya-like geometry. There

is Joule heating but no momentum and no heat current. Such solutions may be useful

reference points for the construction of steady states, or as we have investigated here

the addition of charge, where they govern the initial response of the system.

At ⇢ 6= 0 we analysed the response of the system using a nonlinear, numerical

evolution of the bulk Einstein-Maxwell-axion system of equations. First we studied

finite-time quenches after which which the system is allowed to return to equilibrium.
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Varying
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Figure 8: Nonlinear electrical current response for various Ef/⇢, as a function of

e↵ective temperature TE starting from a temperature Ti/
p
⇢ = 1/10. Under the

applied electric field TE increases and the system evolves from left to right along

the solid curves shown, which represent runs of di↵ering Ef/⇢ = 1/10, 1/2, 1, 3, 10

as labelled. Constant E is reached roughly after the open circles shown, at which

point (E � Ef )/Ef ' 10�5. After some time the attractor behaviour is reached,

marked by the black dashed line, which is the DC linear response conductivity after

the equilibrium temperature is promoted to TE, as described in the text. The amount

of heating before the linear response regime is reached increases with Ef , leading to

a higher TE value when they eventually agree. Here ↵/
p
⇢ = 2.

In particular no instabilities were encountered and the system behaved as expected,

returning to equilibrium with the approach governed by the vector QNMs associated

to momentum relaxation.

As previously noted, the vector QNM spectrum can exhibit qualitatively di↵erent

behaviour depending on ↵. We showed the imprint of these features on the relaxation

of J and Q. Most notably in a large ↵ incoherent regime, Q receives contributions

from a sector of QNMs which oscillate and decay, readily identifiable in the relaxation

of Q following an electric field quench. We note that at fixed ↵/
p
⇢ a transition from

exponential decay to oscillatory decay of Q following a quench can also be obtained

by varying T/
p
⇢. These oscillatory QNMs generalise those studied at ⇢ = 0 where
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Returning to equilibrium
� �= 0



• Apply top hat 

• What happens to the black hole? 
• Return to equilibrium

electric and heat currents are J = E and Q = 0 – specialising to a constant electric

field E(v) = Ef we see that the nonlinear electric and thermoelectric conductivities

are given by (1.9). Note that this does not straightforwardly extend to D 6= 4; the

conductivity is no longer dimensionless and is influenced by heating, as was explored

in the Einstein-Maxwell context in [36]. The analytical results presented here have

been used as a test case for the numerical evolution described in the remainder of

this paper.

Finally we note that the time dependent solution in this section can be used to

quench the system from an initial equilibrium state with ✏ < 0 to a final equilibrium

state with exactly ✏ = 0, which occurs at ↵ =
p
2/r

0

. Despite the remarkable

behaviour of the perturbations of this state [26, 28] there appears to be nothing

remarkable about a quench so designed.

4 Current relaxation

In this section we drive the system out of equilibrium and then let the energy and

electrical currents return to their equilibrium value – zero, in the laboratory frame

defined by the axion sources. We take the electric field profile

E(t) = (⇥(t)�⇥(t� t⇤))Ec (4.1)

where ⇥(t) ⌘ 1

2

�
tanh

�
t
w

�
+ 1

�
where w is taken to be some short timescale compared

to the intrinsic dynamical response time of the system.

The return to equilibrium of the currents is governed by the QNM spectrum in

the vector sector of perturbations, which changes qualitatively with varying ↵/
p
⇢

and T/
p
⇢.

4.1 Vector QNMs at ⇢ 6= 0

One universal statement is that for su�ciently small values of ↵2 there is a long lived

QNM with a purely imaginary frequency, well separated from the other QNMs. In

this regime the metal is coherent, with a Drude-peak appearing in the conductivity

at low frequency. One can then associate a momentum relaxation rate �
rel

with the

decay rate of this QNM, which has been computed using a matching calculation [24],

�
rel

= ⌧�1

rel

=
s↵2

6⇡✏
. (4.2)

For larger values of ↵2 one must examine the QNM spectrum in detail.
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Figure 2: Evolution for the top hat electric field profile (4.1). Top panel: The electric

current. The red dashed curve gives E(t)/⇢. The blue dashed curve gives the approx-

imation to � discussed later in section 5.3. Middle panel: Energy current. Bottom

panel: Black brane event horizon (EH, black) together with the apparent horizon for

the evolution described in appendix A (AH, blue). The colour illustrates the bulk

distribution of the axion field with the linear x-dependence subtracted, �
1

� ↵x.

5.1 Defining an e↵ective temperature

In the numerical sections that follow it will be useful to have a notion of e↵ective

temperature, TE(t), during time evolution. We define TE(t) as the temperature of

the equilibrium state to which the system eventually settles down if we stop driving

the system at time t. This definition has the benefit of carrying a clear physical inter-

pretation at any time, even far from equilibrium, and it is precisely the temperature

when the system is in a stable equilibrium. It also extends beyond the use of just

the local energy density, ✏(t), accounting for the possibility of other time dependent

charges. In the presence of an instability, determining TE(t) clearly can become an
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• Two sectors of vector perturbations (+) / (-) 
• Small    use matching calculation                                     [Davison] 
• Otherwise construct numerically:

�rel = ��1
rel =

s�2

6��
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Figure 1: A subset of vector QNMs, including dominant QNMs in each (±)-sector,

at T/
p
⇢ = 7/10. The solid black curve is the (+)-sector of perturbations, these have

Re(!) = 0. The red curve shows Re(!) = 0 modes in the (�)-sector of perturbations,

whilst the blue curve gives o↵-axis modes in the (�)-sector– these curves are joined

by a pole collision. The black dashed line is the analytic small ↵ approximation

(4.2). The QNMs detailed here govern the relaxation of currents to equilibrium (or

to linear steady states). In particular at large ↵/
p
⇢ the (�)-sector modes govern Q,

whilst the (+)-sector modes govern J , meaning that the structural changes in the

(�)-sector spectrum become observable in the relaxation of Q. This is shown using

explicit quench examples in section 4.2 at the parameters labelled by the dashed grey

lines.

closest approach, giving the behaviour observed in [26, 28] where the Drude pole

continuously connects to the pole collision. At lower T/
p
⇢ the oscillatory mode

remains but the dominant Re(!) = 0 piece of the (�)-sector disappears, along with

the pole collision.

In the next subsection we examine the far from equilibrium dynamics of J and Q

for quenches which return to equilibrium in the two qualitatively di↵erent regimes of

the QNM spectrum shown in figure 1.
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• But, the qualitative changes appear in shorter lived modes… 
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• At large     there is a parametric enhancement of amplitude 
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Figure 3: Exponential decay of J (left panel) and Q (right panel) at ↵/
p
⇢ = 2

following a quench to T/
p
⇢ ' 0.690. The QNM portrait near this temperature is

shown in figure 1. The longest lived QNM belongs to the (+)-sector and is purely

decaying, dominating both J and Q at this value of ↵. The red curves show a fit to

this QNM.
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Figure 4: Exponential decay of J (left panel) and ringdown of Q (right panel) in an

incoherent regime at ↵/
p
⇢ = 10 following a quench to T/

p
⇢ ' 0.695. The QNM

portrait near this temperature is shown in figure 1. The longest lived QNM belongs to

the (+)-sector and is purely decaying, dominating J and the very late time behaviour

of Q. Crucially, at large ↵ a shorter-lived contribution from the (�)-sector governs Q

for some time, which is both oscillating and decaying, making an incoherent regime

easily recognisable. The red curves show a fit to these QNMs.
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Summary of key points and outlook

• Studied far-from-equilibrium holographic metals, using an electric 
field quench 

• At            Vaidya-like solutions capture Joule heating together with 
an instantaneous electrical current response 

• also, govern the initial response for a rapid quench when 
• Linear steady states (DC linear response) 
• Otherwise,            studied numerically  
• How can we get nonlinear steady states? Heat bath? Insulators?

� = 0

� �= 0

� �= 0

1. Joule heating



• Electric conductivity well approximated by DC linear response 
result after promoting 

• Includes cases where 
• Generalises        -independence of             result,  
• Why is            - independent? 

• QNMs display qualitative changes as a function of inhomogeneity 
• Naively subdominant QNM gets parametrically enhanced 
• Oscillatory decay of heat current as a signature of sufficiently 

incoherent metals 
• Is it a generic phenomenon? compute QNM spectrum for other 

inhomogeneous models

T � TE(t)
Ef � T 2

E , Ef � �, Ef � �2

� = 0Ef � = 1
� Ef

2. Nonlinear conductivity

3. Current relaxation
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—  Thank you  —


