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Why are we interested?

• Theories with more than four dimensions
- String theory/M-theory 
- AdS/CFT 

• Mathematical interest
- weak cosmic censorship 
- rich mathematical structure 

• Advance numerical relativity
- Techniques for AdS evolution 
- More robust gauge choices, algorithms,…
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Weak cosmic censorship
• Context: initial value problem

• Mathematically:
- Related to global existence of solutions 
- No naked singularities 

• Physically:
- “GR cannot evolve to a regime where quantum 

gravity is important (outside of event horizon)” 
- “CFT side: in large      strong coupling limit  

corrections do not become important” 

• Counterexamples: black strings in 5D, … 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Black strings
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Black strings

• Fractal structure of bulges  
and necks.

• Pinch-off in finite asymptotic time.

• Weak Cosmic Censorship may be 
violated in spacetimes with 
compact extra dimensions.
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Black rings
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Black rings
• Explicit 5D black hole solution with horizon 

topology             . 

• Asymptotically flat or asymptotically AdS 
[Emparan&Reall]                                                [Figueras&Tunyasuvunakool]
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S1 ⇥ S2

• Free parameters: 0 < R < 1 0 < ⌫ < 1

R

rS2



Black rings
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Black rings
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Black rings
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Black rings
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Black rings
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Black rings
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Numerical methods
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d+1 numerical relativity
• d+1 split:

• Evolve       and                          .

• Specify gauge conditions for     and    .  
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CCZ4
• Reorganise evolution variables

- Separate out conformal factor and trace. 
- Evolve contracted connection separately. 

• Constraint damping terms:
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� = ��1/d �̃ij = ��ij Ãij = �KTF
ij

(�, �̃ij , Ãij ,K, �̃i)

�̃i = �̃jk�̃i
jk

[Baumgarte&Shapiro;Shibata&Nakamura; Bona et al.; 
Hilditch et al.; Alic et al.; Gundlach et al.]

Rab + 2r(aZb) � 1

⇥
2n(aZb) � (1 + 2)gab n

cZc

⇤
= 0

Constraints propagate Constraints are damped
[Gundlach et al.]

(�ij ,Kij) ! (�, �̃ij , Ãij ,K)



Why simulating rings is hard
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• Separation of scales

• Problems with singularity:
- Extended, dynamic 
- Far from conformally flat 

• Finding distorted non-spherical AH

• Very expensive



Why simulating rings is hard

15

R

rS2

• Separation of scales

• Problems with singularity:
- Extended, dynamic 
- Far from conformally flat 

• Finding distorted non-spherical AH

• Very expensive



• Separation of scales

• Problems with singularity:
- Extended, dynamic 
- Far from conformally flat 

• Finding distorted non-spherical AH

• Very expensive

Why simulating rings is hard

16

New gauge,
Adaptive mesh refinement



Adaptive mesh refinement
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• Problems with singularity:
- Extended, dynamic 
- Far from conformally flat 

• Finding distorted non-spherical AH
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New gauge and  
shock capturing

New gauge,
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coordinate
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Supercomputers



The results

Results
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Very fat rings (            )
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• Know that fat rings are unstable radially. 
[Elvang,Emparan&Virmani; Figueras,Murata&Reall]

• Endpoint?

⌫ & 0.7

Video not available in PDF version.



Very fat rings (            )

20

• Know that fat rings are unstable radially. 
[Elvang,Emparan&Virmani; Figueras,Murata&Reall]

• Endpoint?

⌫ & 0.7

Video not available in PDF version.



Very fat rings (            )

20

• Know that fat rings are unstable radially. 
[Elvang,Emparan&Virmani; Figueras,Murata&Reall]

• Endpoint? Myers-Perry black hole  
(change of topology)

⌫ & 0.7

Video not available in PDF version.



Intermediate rings (                      )             
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• Generic behaviour incompatible with radial 
instability and GL

0.35 . ⌫ . 0.7

Found a new “elastic” instability.

• Gravitational wave emission very efficient

• End-state: Myers-Perry black hole



Rather thin rings (                    )
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Rather thin rings (                    )
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• Competition of GL and “elastic” mode.

• Endpoint: Myers-Perry black hole

Rather thin rings (                    )
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Wave signal
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Linear analysis - results
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Very thin rings (            )
• Growth rates suggest: GL should dominate

• Have to consider                mode as we cannot 
suppress its perturbation sufficiently. 
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Very thin rings (            )
• Location of singularity no longer a star-domain.

• Apparent horizon finding becomes very fiddly or 
even impossible for us
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⌫ . 0.15

Black strings

Spherical black holes



Very thin rings (            )
• From now have black string dynamics.
• Want smoking gun evidence: secondary bulges.
• Add               mode to stretch the necks further. 

29
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Summary
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• Thin rings collapse to Myers-Perry due to a new 
“elastic” mode.
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Summary
• Fat rings collapse to Myers-Perry black holes

- Change of horizon topology 

• Thin rings collapse to Myers-Perry due to a new 
“elastic” mode.

• For very thin rings GL dominates
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Numerical evidence that weak 
cosmic censorship around very thin 

black rings is false.



Work in progress

32

Myers-Perry: a=1.7

Video not available in PDF version.
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Myers-Perry: a=1.7

Video not available in PDF version.



Work in progress
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Thank you very much  
for your attention!
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Extra slides
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• Features that cannot be resolved

• Automatically triggered artificial viscosity

Question: artificial viscosity
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Question: physical distances
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Question: puncture method
• Absorb (some) coordinate singularities in 

• Must not have physical singularities
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