Black hole instabilities and weak cosmic censorship in higher dimensions

Markus Kunesch

DAMTP, University of Cambridge

with Pau Figueras and Saran Tunyasuvunakool Phys. Rev. Lett. 116, 071102

> Thursday, 30th of June, 2016 Numerical Relativity and Holography Santiago de Compostela

This is a PDF version of the slides without the videos. Some of the videos are available online at the **GRChombo** youtube channel or at:

http://grchombo.github.io/movies.html.

Outline

- Background
 - Weak cosmic censorship
 - Black strings and the Gregory-Laflamme instability
 - Black rings
- Numerical methods
- The endpoint of black ring instabilities
- Summary
- Work in progress

Why are we interested?

- Theories with more than four dimensions
 - String theory/M-theory
 - AdS/CFT
- Mathematical interest
 - weak cosmic censorship
 - rich mathematical structure
- Advance numerical relativity
 - Techniques for AdS evolution
 - More robust gauge choices, algorithms,...

Weak cosmic censorship

- Context: initial value problem
- Mathematically:
 - Related to global existence of solutions
 - No naked singularities
- Physically:
 - "GR cannot evolve to a regime where quantum gravity is important (outside of event horizon)"
 - "CFT side: in large N_c strong coupling limit $1/N_c$ corrections do not become important"
- Counterexamples: black strings in 5D, ...

Gregory-Laflamme instability

[Lehner&Pretorius,2010]

Gregory-Laflamme instability

[Lehner&Pretorius,2010]

- Gregory-Laflamme instability
- Fractal structure of bulges and necks.
- Pinch-off in finite asymptotic time.
- Weak Cosmic Censorship may be violated in spacetimes with compact extra dimensions.

[Lehner&Pretorius,2010]

[Lehner&Pretorius,2010]

- Explicit 5D black hole solution with horizon topology $S^1 \times S^2$.
- Asymptotically flat or asymptotically AdS [Emparan&Reall] [Figueras&Tunyasuvunakool]
- Free parameters: $0 < R < \infty$ $0 < \nu < 1$

Numerical methods

Numerical methods

d+1 numerical relativity

d+1 split:

$$ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

- Evolve γ_{ij} and $K_{ij} = -\frac{1}{2}\mathcal{L}_n\gamma_{ij}$.
- Specify gauge conditions for α and β^i .

d+1 numerical relativity

d+1 split:

$$ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

• Evolve γ_{ij} and $K_{ij} = -\frac{1}{2}\mathcal{L}_n\gamma_{ij}$.

 $n = \frac{1}{\alpha} \left(\partial_t - \beta^i \partial_i \right)$

• Specify gauge conditions for α and β^i .

 γ_{ij}

[Arnowitt,Deser&Misner]

const.

d+1 numerical relativity

d+1 split:

$$ds^2 = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$$

- Evolve γ_{ij} and $K_{ij} = -\frac{1}{2}\mathcal{L}_n\gamma_{ij}$.
- Specify gauge conditions for α and β^i .

- Reorganise evolution variables
 - Separate out conformal factor and trace.
 - Evolve contracted connection separately.

$$(\gamma_{ij}, K_{ij}) \to (\chi, \tilde{\gamma}_{ij}, A_{ij}, K, \Gamma^{i})$$

$$\chi = \gamma^{-1/d} \quad \tilde{\gamma}_{ij} = \chi \gamma_{ij} \quad \tilde{A}_{ij} = \chi K_{ij}^{\mathrm{TF}} \quad \tilde{\Gamma}^{i} = \tilde{\gamma}^{jk} \tilde{\Gamma}_{jk}^{i}$$

Constraint damping terms:

Con

$$R_{ab} + 2\nabla_{(a}Z_{b)} - \kappa_1 \left[2n_{(a}Z_{b)} - (1 + \kappa_2)g_{ab} n^c Z_c \right] = 0$$
straints propagate Constraints are damped

14

[Gundlach et al.]

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

- Finding distorted non-spherical AH
- Very expensive

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

- Finding distorted non-spherical AH
- Very expensive

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

- Finding distorted non-spherical AH
- Very expensive

Adaptive mesh refinement

17

Adaptive mesh refinement

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

- Finding distorted non-spherical AH
- Very expensive

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

- Finding distorted non-spherical AH
- Very expensive

Separation of scales

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

Finding distorted non-spherical AH

Very expensive

- Problems with singularity:
 - Extended, dynamic
 - Far from conformally flat

- Finding distorted non-spherical AH
 tricks
- Very expensive

The results

Results

Very fat rings ($\nu \gtrsim 0.7$)

Know that fat rings are unstable radially.

[Elvang, Emparan& Virmani; Figueras, Murata& Reall]

• Endpoint?

Video not available in PDF version.

Very fat rings ($\nu \gtrsim 0.7$)

Know that fat rings are unstable radially.

[Elvang, Emparan& Virmani; Figueras, Murata& Reall]

• Endpoint?

Video not available in PDF version.

Very fat rings ($\nu \gtrsim 0.7$)

Know that fat rings are unstable radially.

[Elvang, Emparan& Virmani; Figueras, Murata& Reall]

 Endpoint?
 Myers-Perry black hole (change of topology)

Video not available in PDF version.

- Unstable radially for $\nu \geq 0.5$. [Elvang,Emparan&Virmani; Figueras,Murata&Reall]
- GL mode starts to kick in. [Santos&Way]

- Unstable radially for $\nu \geq 0.5$. [Elvang,Emparan&Virmani; Figueras,Murata&Reall]
- GL mode starts to kick in. [Santos&Way]

 Generic behaviour incompatible with radial instability and GL

 Generic behaviour incompatible with radial instability and GL

 Generic behaviour incompatible with radial instability and GL

Found a new "elastic" instability.

- Gravitational wave emission very efficient
- End-state: Myers-Perry black hole

Rather thin rings ($0.2 \lesssim \nu \lesssim 0.35$)

 $\nu = 0.3$

Rather thin rings ($0.2 \lesssim \nu \lesssim 0.35$)

 $\nu = 0.3$

Rather thin rings ($0.2 \lesssim \nu \lesssim 0.35$)

- Competition of GL and "elastic" mode.
- Endpoint: Myers-Perry black hole

Wave signal

- Numerical results
- $--A_1\sin(\Re \varpi_1 t + \varphi_1)e^{\Im \varpi_1 t} + A_2\sin(\Re \varpi_2 t + \varphi_2)e^{\Im \varpi_2 t}$

Linear analysis - results

- Growth rates suggest: GL should dominate
- Have to consider $m = 4 \mod as$ we cannot suppress its perturbation sufficiently.

- Growth rates suggest: GL should dominate
- Have to consider $m = 4 \mod as$ we cannot suppress its perturbation sufficiently.

- · Location of singularity no longer a star-domain.
- Apparent horizon finding becomes very fiddly or even impossible for us

- Location of singularity no longer a star-domain.
- Apparent horizon finding becomes very fiddly or even impossible for us

- From now have black string dynamics.
- Want smoking gun evidence: secondary bulges.
- \cdot Add m=2 mode to stretch the necks further.

- From now have black string dynamics.
- Want smoking gun evidence: secondary bulges.
- \cdot Add m=2 mode to stretch the necks further.

- From now have black string dynamics.
- Want smoking gun evidence: secondary bulges.
- \cdot Add m=2 mode to stretch the necks further.

- From now have black string dynamics.
- Want smoking gun evidence: secondary bulges.
- \cdot Add m=2 mode to stretch the necks further.

- Fat rings collapse to Myers-Perry black holes
 - Change of horizon topology
- Thin rings collapse to Myers-Perry due to a new "elastic" mode.
- For very thin rings GL dominates

- Fat rings collapse to Myers-Perry black holes
 - Change of horizon topology
- Thin rings collapse to Myers-Perry due to a new "elastic" mode.
- For very thin rings GL dominates

- Fat rings collapse to Myers-Perry black holes
 - Change of horizon topology
- Thin rings collapse to Myers-Perry due to a new "elastic" mode.
- For very thin rings GL dominates

- Fat rings collapse to Myers-Perry black holes
 - Change of horizon topology
- Thin rings collapse to Myers-Perry due to a new "elastic" mode.
- For very thin rings GL dominates

- Fat rings collapse to Myers-Perry black holes
 - Change of horizon topology
- Thin rings collapse to Myers-Perry due to a new "elastic" mode.
- For very thin rings GL dominates

- Fat rings collapse to Myers-Perry black holes
 - Change of horizon topology
- Thin rings collapse to Myers-Perry due to a new "elastic" mode.
- For very thin rings GL dominates

Numerical evidence that weak cosmic censorship around very thin black rings is false.

Work in progress

Work in progress

Work in progress

Thank you very much for your attention!

Extra slides

- Features that cannot be resolved
- Automatically triggered artificial viscosity

- Features that cannot be resolved
- Automatically triggered artificial viscosity

- Features that cannot be resolved
- Automatically triggered artificial viscosity

- Features that cannot be resolved
- Automatically triggered artificial viscosity

Question: physical distances

Question: puncture method

- Absorb (some) coordinate singularities in $\chi = \gamma^{-1/d}$
- Must not have physical singularities

Question: puncture method

- Absorb (some) coordinate singularities in $\chi = \gamma^{-1/d}$
- Must not have physical singularities

Question: puncture method

- Absorb (some) coordinate singularities in $\chi = \gamma^{-1/d}$
- Must not have physical singularities

