Cold Holographic matter in top-down models

A.V. Ramallo Univ. Santiago

NumHol2016, Santiago de Compostela

June 30, 2016

Based on 1503.04327, 1602.06106, 1604.03665

with

Y. Bea, G. Itsios and N. Jokela

Motivation

We want to explore new phases of matter at finite density by using the holographic gauge/gravity duality

Holography allows to study strongly interacting systems with no quasiparticle description

Physical examples:

Quark-gluon plasma Strange metals Heavy electron systems They are non-Fermi liquids

(Top-down) Holographic model

There is a 10d metric associated Fields in the adjoint rep.

Charge carriers — Flavor Dq-branes

They add fields in the fundamental rep. (quarks) living in the intersection

mass of the quarks _____ distance between the Dp and Dq branes

Brane setup

Dp-Dq brane intersection of the type $(n \mid p \perp q)$

 $Dp \rightarrow N_c$ color branes (p + 1-dimensional gauge theory on the bulk) $Dq \rightarrow N_f$ flavor branes (fundamental hypermultiplets)

Probe approximation $(N_f << N_c)$

 $\mathrm{Dp} \to \mathrm{represented}$ by a gravity solution

 $\mathrm{Dq} \to \mathrm{a}$ probe in the Dp-brane background

Coordinates transverse to both branes

 $\vec{z} = (z^1, \cdots, z^{9+n-p-q}) \to \text{embedding functions} \quad (z = 0 \to \text{massless quarks})$

Probe action

$$S = T_{Dq} \int d^{q+1}\xi \, e^{-\phi} \sqrt{-\det(g+F)}$$

No WZ term

$$g \rightarrow \text{induced metric} \qquad \phi \rightarrow \text{dilaton}$$

 $F \rightarrow$ worldvolume gauge field

For the Dp-brane background (massless quarks)

$$ds_{q+1}^2 = \rho^{\frac{7-p}{2}} \left[-f_p(\rho)dt^2 + (dx^1)^2 + \dots (dx^n)^2 \right] + \rho^{\frac{p-7}{2}} \left[\frac{d\rho^2}{f_p(\rho)} + \rho^2 d\Omega_{q-n-1}^2 \right]$$
$$f_p = 1 - \left(\frac{r_h}{\rho}\right)^{7-p} \qquad e^{-2\phi} = \left(\frac{R}{\rho}\right)^{\frac{(7-p)(p-3)}{2}}$$

 r_h is related to the temperature $\longrightarrow T = \frac{7-p}{4\pi} r_h^{\frac{5-p}{2}}$

Baryonic charge density \rightarrow dual the DBI gauge field A^t

$$\langle J^t \rangle = \frac{\delta S}{\delta A'_t} \qquad \qquad A'_t \equiv \partial_\rho A_t$$

The dynamics of the probe depends on p and λ

$$\lambda = 2n + \frac{1}{2}(p-3)(p+q-2n-8)$$

Ansatz for F
$$\longrightarrow$$
 $F = A'_t d\rho \wedge dt + B dx^1 \wedge dx^2$

Action
$$\longrightarrow$$
 $S_{Dq} = -\mathcal{N} V_{\mathbb{R}^{(n,1)}} \int d\rho \sqrt{\rho^{\lambda} + B^2 \rho^{\lambda+p-7}} \sqrt{1 - A_t'^2}$

 A_t is a cyclic variable

$$\frac{\sqrt{\rho^{\lambda} + B^2 \rho^{\lambda + p - 7}}}{\sqrt{1 - A_t'^2}} A_t' = d \quad \Longrightarrow \quad A_t' = \frac{d}{\sqrt{\rho^{\lambda} + B^2 \rho^{\lambda + p - 7} + d^2}} \quad \langle J^t \rangle = \mathcal{N} d$$

Thermodynamics at zero T

Chemical potential (for B = 0)

$$\mu = A_t(\infty) = \int_0^\infty \, d\rho \, A'_t = \gamma \, d^{\frac{2}{\lambda}}$$

$$\gamma = \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2} - \frac{1}{\lambda}\right) \Gamma\left(1 + \frac{1}{\lambda}\right)$$

Grand Canonical potential

$$\Omega = -S_{on-shell}^{reg} = \mathcal{N} \int_{0}^{\infty} \rho^{\frac{\lambda}{2}} \left[\frac{\rho^{\frac{\lambda}{2}}}{\sqrt{\rho^{\lambda} + d^{2}}} - 1 \right] d\rho$$
$$\Omega = -\frac{2}{\lambda + 2} \mathcal{N} \gamma d^{1 + \frac{2}{\lambda}} = -\frac{2}{\lambda + 2} \mathcal{N} \gamma^{-\frac{\lambda}{2}} \mu^{1 + \frac{\lambda}{2}} \longrightarrow \rho = -\frac{\partial\Omega}{\partial\mu} = \mathcal{N} d$$

Energy density

$$\epsilon = \Omega + \mu \rho = \frac{\lambda}{\lambda + 2} \,\mathcal{N} \,\gamma \, d^{1 + \frac{2}{\lambda}}$$

Pressure

$$p = -\Omega = \frac{2}{\lambda} \epsilon$$

Speed of sound

Values of λ

SUSY intersections

(
$$n \mid p \perp q$$
) with $n = \frac{p+q-4}{2} \rightarrow \lambda = q-p+2$
 $Dp - D(p+4) \rightarrow (p \mid p \perp (p+4)) \rightarrow \lambda = 6$
Examples $D3 - D7$, $D2 - D6$
 $Dp - D(p+2) \rightarrow (p-1 \mid p \perp (p+2)) \rightarrow \lambda = 4$
Examples $D3 - D5$, $D4 - D6$
 $Dp - Dp \rightarrow (p-2 \mid p \perp p)) \rightarrow \lambda = 2$
Example $D3 - D3$

Non-Susy examples

Model	λ	p	q	n
Sakai-Sugimoto D4-D $8/\overline{D8}$	5	4	8	3
D3-D7'	4	3	7	2
D2-D8'	5	2	8	2

Notice that for $p = 3 \rightarrow \lambda = 2n$

Scaling behavior

Energy-radius relation $\mathcal{E} \sim \rho^{\frac{5-p}{2}}$

Energy rescaling

$$\mathcal{E} \to \Lambda \mathcal{E} \qquad \rho \to \Lambda^{\Delta_{\rho}} \rho \qquad \Delta_{\rho} = \frac{2}{5-p}$$

Density&magnetic field

$$d \to \Lambda^{\Delta_d} d \qquad B \to \Lambda^{\Delta_B} B \qquad \Delta_d = \frac{\lambda}{5-p} \qquad \Delta_B = \frac{7-p}{5-p}$$

 $\lambda \to \text{related to the scaling dimension of } d$

$$p = 3 \rightarrow \lambda = 2n$$
 \longrightarrow $\Delta_d = n$ $\Delta_B = 2$ canonical dimensions

SUSY intersections

$$\Delta_d^{SUSY} = \frac{q - p + 2}{5 - p} = \frac{2}{5 - p} \left(n + 3 - p \right)$$

Excitations — Poles of the retarded Green's functions — quasinormal modes — density waves in the dual field theory

Perturb as $A_{\nu} = A_{\nu}^{(0)} + a_{\nu}(\rho, x^{\mu})$

Define \mathcal{G} and \mathcal{J} as $\left(g^{(0)} + F^{(0)}\right)^{-1} = \mathcal{G}^{-1} + \mathcal{J}$

 $\mathcal{G} \to \text{open string metric (symmetric part)}$ $\mathcal{J} \to \text{antisymmetric part}$

Lagrangian 4

$$\mathcal{L} \sim \frac{\rho^{\lambda} + B^2 \, \rho^{\lambda + p - 7}}{\sqrt{\rho^{\lambda} + B^2 \, \rho^{\lambda + p - 7} + d^2}} \Big(\mathcal{G}^{ac} \mathcal{G}^{bd} - \mathcal{J}^{ac} \mathcal{J}^{bd} + \frac{1}{2} \mathcal{J}^{cd} \mathcal{J}^{ab} \Big) f_{cd} f_{ab}$$

Take $a_{\nu} = a_{\nu}(\rho, t, x)$ and Fourier transform

$$a_{\nu}(\rho, t, x) = \int \frac{d\omega dk}{(2\pi)^2} a_{\nu}(\rho, \omega, k) e^{-i\omega t + ikx}$$

Solve the equations with the conditions:

•In-falling boundary conditions at the horizon •No sources at the UV boundary •Low ω, k

For
$$T = 0$$
, $B = 0$ \longrightarrow Holographic zero sound

Take ω, k small and of the same order $\omega \sim \mathcal{O}(\epsilon), k \sim \mathcal{O}(\epsilon)$

$$\omega(k) = \omega_R(k) - i\Gamma(k)$$

 $\omega_R(k) \rightarrow \text{real part}$

 $\Gamma(k) \rightarrow$ attenuation (decay rate)

Same speed as the first sound

$$\Gamma = \frac{\pi}{2\mu} \frac{(5-p)^{\frac{p-3}{5-p}}}{\left[\Gamma\left(\frac{1}{5-p}\right)\right]^2} \left(\frac{2}{\lambda}\right)^{\frac{7-p}{2(5-p)}} k^{\frac{7-p}{5-p}}$$

Zero sound for D3-D7 ($\lambda = 6, p = 3$) $\longrightarrow \omega = \pm \frac{k}{\sqrt{3}} - \frac{i}{6} \frac{k^2}{\mu}$ Karch, Son, Starinets

Zero sound for D3-D5 (
$$\lambda = 4, p = 3$$
) $\longrightarrow \omega = \pm \frac{k}{\sqrt{2}} - \frac{i}{4} \frac{k^2}{\mu}$

Different cases considered in Brattan et al., Kulaxizi & Parnachev, Goykhman et al,

domingo 26 de junio de 16

Speed of zero sound for different λ and p

 $\frac{1}{2.0}$ \hat{k}

1.0

— D4-D6 — D4-D8

1.5

0.5

 $D3 - D5 \rightarrow p = 3, \lambda = 4$ $D2 - D6 \rightarrow p = 2, \lambda = 6$

$$D4 - D6 \rightarrow p = 4, \lambda = 4$$

 $D4 - D8 \rightarrow p = 4, \lambda = 6$

Same curves for the same λ

For
$$T \neq 0, B = 0$$

Hydrodynamic charge diffusion mode

Purely imaginary pole with $\omega \sim \mathcal{O}(\epsilon^2), k \sim \mathcal{O}(\epsilon)$

$$\omega = -i D k^2$$
 — Fick's law

 $D \rightarrow \text{diffusion constant}$

$$D = \frac{7-p}{2\pi(\lambda-2)} \frac{\left(1+\hat{d}^{\,2}\right)^{\frac{1}{2}}}{T} F\left(\frac{3}{2}, \frac{1}{2} - \frac{1}{\lambda}; \frac{3}{2} - \frac{1}{\lambda}; -\hat{d}^{2}\right) \qquad \hat{d} = \frac{d}{r_{h}^{\frac{\lambda}{2}}} = \left(\frac{7-p}{4\pi T}\right)^{\frac{\lambda}{5-p}} d$$

$$D \sim T^{-1}$$
 T large
 $D \sim T^{-\frac{7-p}{5-p}}$ T small

Diffusion constant for D2-D6

domingo 26 de junio de 16

Lowest excitations in D1-D5

$$T = 0$$
 and $B \neq 0$ \longrightarrow Zero sound with B field

Gapped dispersion relation

$$\omega_R = \pm \sqrt{\frac{2}{\lambda} k^2 + \frac{B^2}{\mu^2}}$$

$$\Gamma = \frac{\pi}{\mu} \frac{(5-p)^{\frac{p-3}{5-p}}}{\left[\Gamma\left(\frac{1}{5-p}\right)\right]^2} \left(\frac{2}{\lambda}k^2 + \frac{B^2}{\mu^2}\right)^{\frac{p-3}{2(5-p)}} \left[\frac{k^2}{\lambda} + \frac{B^2}{\mu^2}\right]$$

ω_R for D2-D6 with B field

Massive quarks in SUSY intersections

The speed&attenuation of the zero sound depends on the reduced mass **m**

$$\omega_R^2 = \frac{2}{\lambda} \frac{1 - \mathbf{m}^2}{1 - \frac{2\,\mathbf{m}^2}{\lambda}} k^2$$

$$\Gamma = \frac{\pi}{2\mu} \frac{(5-p)^{\frac{p-3}{5-p}}}{\left[\Gamma\left(\frac{1}{5-p}\right)\right]^2} \left(\frac{2}{\lambda}\right)^{\frac{7-p}{2(5-p)}} \frac{(1-\mathbf{m}^2)^{\frac{6-p}{5-p}-\frac{1}{\lambda}}}{(1-\frac{2\mathbf{m}^2}{\lambda})^{\frac{7-p}{2(5-p)}+1}} k^{\frac{7-p}{5-p}}$$

m

 $\mathbf{m} = \frac{-}{\mu}$

Kulaxizi & Parnachev, Davison & Starinets

• Speed of the zero sound=speed of the first sound

• The speed of the zero-sound vanishes at $m = \mu$

Dispersion relation for D3-D7

Speed of sound&attenuation for D3-D5

Massive embeddings at different densities

zero density limit $(m = \mu) \longrightarrow z = m \rightarrow Minkowski embedding$

There is a quantum phase transition when $m \to \mu$ (Ammon et al.)

Non-relativistic energy density \longrightarrow $e = \epsilon - d_{phys} m = \epsilon - \mathcal{N} dm$

near the quantum critical point

$$e = \frac{n-\theta}{z} P$$

 $z \rightarrow$ dynamical critical exponent $\theta \rightarrow$ hyperscaling violating exponent

In our case near $m = \mu$

$$e = \frac{\lambda - 2}{4} P$$

Exponents
$$\longrightarrow$$
 $z=2$ $\theta=p-2$

Non-relativistic free energy at $T \neq 0$

 $f_{non-rel}(\mu, m, T) = f(\mu, m, T) - d_{phys} m = e + \pi d_{phys} T + \mathcal{O}(T^2)$

Near the critical point it should scale as

$$f_{non-rel} \sim \left(\bar{\mu}\right)^{2-\alpha} g\left(\frac{T}{\bar{\mu}^{\nu z}}\right) \qquad \bar{\mu} = \mu - m$$

For our system we get

$$\alpha = \frac{6-\lambda}{4} = 1 - \frac{q-p}{4} \qquad \qquad \nu = \frac{1}{2}$$

The exponents satisfy the hyperscaling violating relation

$$(n+z-\theta)\nu = 2-\alpha$$

Anyonic excitations in 2+1 d

Anyons — Charges with a magnetic flux attached in 2+1d

Fractional statistics by Aharonov-Bohm effect

$$\lim_{\rho \to \infty} E = -in \lim_{\rho \to \infty} \left[\rho^{\frac{\lambda}{2}} a'_y \right] \qquad \qquad \lim_{\rho \to \infty} a_y = i \frac{n}{\omega^2 - k^2} \lim_{\rho \to \infty} \left[\rho^{\frac{\lambda}{2}} E' \right]$$

Zero sound spectrum

$$\omega_0^2 = 2 \frac{1 - \mathbf{m}^2}{\lambda - 2 \mathbf{m}^2} k^2 + \frac{1}{\mu^2} (d n - B)^2$$

The alternative quantization is like an internal magnetic field

gappless spectrum
$$\Longrightarrow$$
 $n_{crit} \equiv \frac{B}{d}$

Comparison with numerics for D3-D5

How universal are our results? Let us consider cold flavors in the ABJM model

ABJM Field Theory Chern-Simons-matter theories in 2+1 dimensions gauge group: $U(N)_k \times U(N)_{-k}$

The ABJM model has $\mathcal{N} = 6$ SUSY in 3d

It has two parameters

 $N \rightarrow \text{rank of the gauge groups}$ $k \rightarrow \text{CS level } (1/k \sim \text{gauge coupling})$

't Hooft coupling $\lambda \sim \frac{N}{k}$

It is a CFT in 3d with very nice properties It is the 3d analogue of N=4 SYM

Sugra description in type IIA

 $AdS_4 \times \mathbb{CP}^3 +$ fluxes

$$ds^{2} = L^{2} ds^{2}_{AdS_{4}} + 4 L^{2} ds^{2}_{\mathbb{CP}^{3}} \qquad \qquad L^{4} = 2\pi^{2} \frac{N}{k}$$

$$F_{2} = 2k J \qquad F_{4} = \frac{3\pi}{\sqrt{2}} (kN)^{\frac{1}{2}} \Omega_{AdS_{4}}$$
$$e^{\phi} = \frac{2L}{k} = 2\sqrt{\pi} \left(\frac{2N}{k^{5}}\right)^{\frac{1}{4}}$$

Effective description for $N^{\frac{1}{5}} << k << N$

Flavor branes

D6-branes extended in AdS_4 and wrapping $\mathbb{RP}^3 \subset \mathbb{CP}^3$

Hohenegger&Kirsch 0903.1730 Gaiotto&Jafferis 0903.2175

Worldvolume action of flavor D6-branes in ABJM

$$S = S_{DBI} + S_{WZ}$$

$$S_{DBI} = -T_{D6} \int_{\mathcal{M}_7} d^7 \zeta \, e^{-\phi} \, \sqrt{-\det(g+F)}$$

$$S_{WZ} = T_{D6} \int_{\mathcal{M}_7} \left(\hat{C}_7 + \hat{C}_5 \wedge F + \frac{1}{2} \hat{C}_3 \wedge F \wedge F + \frac{1}{6} \hat{C}_1 \wedge F \wedge F \wedge F \right)$$

Now the WZ term contributes and produces non-trivial effects when the quarks are massive

Grand canonical potential at T=0

Black hole embedd.
Minkowski embedd.
Brane-antibrane embedd.

m = 1

Speed of first&zero sound

Both curves are the same if m = 0They differ if m > 0 Quantum critical behavior

$$\bar{\mu} = \mu - m \longrightarrow \Omega \approx -C \bar{\mu}^{\frac{n+z-\theta}{z}} \left(\left| \log \frac{\bar{\mu}}{m} \right| \right)^{-\zeta}$$
 near $\bar{\mu} = 0$

 $\zeta \rightarrow \text{new exponent} \qquad n = 2 \text{ in ABJM}$

Charge density near $\bar{\mu} = 0$

$$\rho_{ch} \approx C \,\bar{\mu}^{\frac{n-\theta}{z}} \,\left(\left|\log\frac{\bar{\mu}}{m}\right| \right)^{-\zeta} \left[1 + \frac{n-\theta}{z} + \frac{\zeta}{\left|\log\frac{\bar{\mu}}{m}\right|} \right]$$

$$e/P$$
 ratio $\frac{e}{P} \approx \frac{n-\theta}{z} + \frac{\zeta}{\left|\log \frac{\bar{\mu}}{m}\right|}$

The numerical results show that $e/P \to 0$ near $\bar{\mu} = 0$ \longrightarrow $\theta = n = 2$

 $\zeta \neq 0$ since $\rho_{ch} = 0$ at the critical point

$$\zeta = 0.65 - 0.75$$

Other critical exponents

$$z = 2 \qquad \qquad \alpha = 1 \qquad \nu = \frac{1}{2}$$

Including the backreaction

The backreaction is a very mild deformation which does not include the effects of the charge density

Grand canonical potential with unquenched flavor

Black hole embedd.
Minkowski embedd.
Brane-antibrane embedd.

$$m = 1$$

The transition occurs at $\mu < m_q$ with $\rho_{ch} \neq 0$

Phase diagram at $T \neq 0$

Collective excitations in other probe brane systems

Higgs branch for Dp-D(p+2) intersections with flux
 (G. Itsios, N. Jokela, AVR, 1505.02629)

 Anyons and magnetic fields in non-relativistic Lifshitz systems (J. Järvelä, N. Jokela, AVR, 1605.09156)

 Anisotropic backgrounds (in progress)

• Collective excitations with full backreaction at non-zero density

