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Spatially modulated phases

Spatially modulated phases are phases with spontaneously broken
translational invariance. Realised in various configurations, e.g. stripes,
checkerboards and helices.

• Spin Density Wave

• Charge Density Wave

• Current density wave

The modulation is fixed by an operator with non-zero momentum
that spontaneously gets an expectation value, < O(k) >6= 0.



Spatially modulated phases

Why should we care about SM?
→ Very common in CM: more the rule than the exception.
→ Connections with QCD at high density? “chiral density wave”
[Deryagin, Grigoriev,Rubakov]

→ Involved in understanding the pseudogap region of the high-Tc
superconductor phase diagram. [Sachdev]

Holographically, SM phases are dual to black hole that break spon-
taneously translation invariance. Many such examples exist.



We are interested in spatially modulated phases in the presence of
external magnetic field, with no charge density. Instabilities found:

• in D=4,5 with mixing term φ ∗ F ∧ G [Donos,Gauntlett,CP]

• in U(1)3 and U(1)4 sugra. Interesting interplay with susy solu-
tions. [Almheiri,Polchinski] [Donos,Gauntlett,CP]

In this talk, we construct the fully backreacted SM back holes
related to the instabilities of [Donos,Gauntlett,CP].

• Is there a phase transition?

• Proterties of these solutions?

• Ground state?



The theory

Consider D = 4 Einstein Maxwell theory coupled to a scalar and an
additional gauge field: F = dA,G = dB

L =1
2R ∗ 1− V (φ) ∗ 1− 1

2 ∗ dφ ∧ dφ− 1
2 t (φ) ∗ F ∧ F

− 1
2v (φ) ∗ G ∧ G − u (φ) ∗ F ∧ G

where
V (φ) = −6 + 1

2m
2
sφ

2 + · · · , t(φ) = 1− nφ2 + · · · ,
u(φ) = sφ+ · · · , v(φ) = 1 + · · · .

Direct connection with top-down theories, eg (m2
s , n, s) = (−4,−1,

√
2)

corresponds to SU(3) ⊂ SO(8) D = 4 gauged sugra.



Solutions:

• Unit radius AdS4 vacuum solution, with φ,A,B = 0, which is
dual to a d = 3 CFT with two conserved U(1) currents.

• Magnetically charged AdS-RN black brane, φ,B = 0,
A = βxdy : [D’Hoker,Kraus]

This corresponds to the high temperature, spatially homogeneous
and isotropic (diamagnetic) phase of the dual CFTs when held in a
uniform magnetic field.



Instabilities

Step 1: [Donos,Gauntlett,CP]

Search for instabilities in the near-horizon, AdS2 × R2.

φ = δφ (t, r) cos (kx) ,

B = δB (t, r) sin (kx) dy ,

The equations of motion take the form: v = (δφ, δB)

�AdS2v − L2M2v = 0, M2 =

(
m2

s − 12n + k2
√

12s k√
12s k k2

)
.



Comments:

• For s = 0 (no mixing term −u (φ) ∗ F ∧G ), the most unstable
mode has k = 0. The finite temprature instability sets in
along a “bell curve” with maximum at k = 0. Thus, SM is
surpressed.

• For s 6= 0 (non-zero mixing), minimise the mass eigenvalues
as functions of k and compare them with the BF bound:
possible violation depending on choice of parameters, centered
at k 6= 0.

• No instabilities of the RN detected in top-down theories using
this method.



Step 2: [Donos,Gauntlett,CP]

Construct zero modes for m2
s = −4, n = −1 and various s:

→ Enough to consider the same perturbations as before. Solve
eom subject to boundary conditions.
→ They appear along a bell curve Tc(k): at Tmax

c there will be
new BHs dual to

< Oφ >∼ cos (kx) , < JB >∼ sin (kx) dy

dual to CFTs with current density wave, but no charge density
wave.



Step 3: [Donos,CP]

Construction of back-reacted solutions by solving PDEs. Expect to
find a two-parameter family of solutions labeled by (T , k), compat-
ible with the bell curve.

To proceed, one needs to identify the non-linear terms in the la-
grangian: s = 2, n = −1,m2

s = −4

V (φ) = −6− 2φ2 + φ4,

t(φ) = 1 + φ2 , u(φ) = 2 (φ− φ3) , v(φ) = 1 .

Disclaimer: Final conclusions do depend highly on the non-linear
terms. Results only valid for this model.



Back-reacted black branes

Consider the following ansatz: zε[0, 1] and xε[0, 1).

ds2 =
1

z2hz
2

[
−f Qtt dt

2 +
z2h Qzz

f
dz2 + Qxx (L dx + z2Qzxdz)2 + Qyy dy

2

]
A = (βL x + ay )dy , B = bydy , φ = z h ,

• Eight unknown functions: Qtt ,Qzz ,Qxx ,Qyy ,Qzx , ay , by , h

• β is the magnetic field, L = 2π/k is the modulation period, zh
horizon radius.

• General enough to contain the normal phase and zero modes.



Back-reacted black branes

DeTurck trick:

• The nature of these PDEs is weakly elliptic: not suitable for
numerics.

• Use the DeTurck trick to dynamically fix the gauge: promote
the constraint to an eom [Headrick, Kitchen,Wiseman].

Rµν → Rµν +∇µξν , ξµ = gνλ(Γµνλ(g)− Γ̄µνλ(ḡ))

• Check apostriori that ξµ = 0.

Boundary conditions:

• In the UV, we impose AdS asymptotics compatible with
spontaneous symmetry breaking: no sources

• In the IR, impose regularity of the solution at the horizon



Numerics:
We proceed by discretising our domain to form a lattice:
→ Chebyshev lattice in z , equispaced in x .
→ Approximate derivatives using pseudospectral methods.
→ Use the Newton-Raphson to iteratively improve your intitial
seed until you hit a solution.

Plot of the scalar field for (T , k) = (0.5Tc , kc), β = 1.



• Study the whole two dimensional mod-
uli of solutions, specified by (T , k).

• All the solutions have a lower free en-
ergy than AdS-RN: the CFT under-
goes a second order transition to a SM
phase.

• The thermodynamic ensemble is domi-
nated by the red locus: k is increasing
for T > 0.3Tc .

• Along the preferred branch, the the
stress tensor is that of a perfect fluid.
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• The magnetisation, MB , is now non-
zero: order parameter.

• Following the preferred branch to low
temperature: hints of a ground state
with non-zero k, magnetisation and en-
tropy: AdS2? Model dependent?
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Further remarks

• Backreacted SM phases in top-down models?

• Repeat the analysis allowing for modulation in two dimensions:
computationally more demanding.

- Preferred lattice? Triangular lattice?

• Phase diagram of CFTs in external magnetic field?
-Competing phases? eg superconducting Vs SM

• Long standing problem: identify the ground states.
- What are the possible ground states? classification.

• Using linear response, analyse transport properties, fermion
spectral functions etc



Thank you!



Convergence

Convergence is power law and not exponential as expect for
pseudospectral calculations!!! This is due to non-analytic terms in
the UV expansion: log z , z(3+

√
33)/2 (manifestation of De Truck

trick). [Donos,Gauntlett]
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Other tests: first law, ward itentity,. . .


