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Outline

• holographic “heavy ion” collisions

• quasiparticles at strong coupling

• large Nc confinement dynamics
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holographic “heavy ion” 
collisions
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Lesson 1: Feasibility

• Characteristic formulation of GR + spectral methods 
work very well for wide class of problems involving 
asymptotically AdS spacetime dynamics

• It is possible to study collisions of localized projectiles, 
off-center, with honest (longitudinal and transverse) 
dynamics, no dimensionality reducing symmetry 
assumptions, using only desktop computing resources
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Figure 1. The energy density T

00 (top) and energy flux |T 0i| (bottom), at four di↵erent
times, in the plane y = 0. Streamlines in the lower plots denote the direction of energy flux.
Note that the color scaling varies from plot to plot. At the initial time t = �2 the shocks
are at z = ±2. The non-zero impact parameter in the x-direction is apparent. The shocks
move in the ±z direction at the speed of light and collide at t = z = 0. After the collision the
remnants of the initial shocks, which remain close to the lightcone, z = ±t, are significantly
attenuated in amplitude with the extracted energy deposited in the interior region. The
development of transverse flow is apparent at positive times.

fig:snapshots

T xx is nearly ten times larger than T zz. (This latter phenomena has also been seen in

1 + 1 dimensional flow [2–4].)

To quantify the domain in which hydrodynamics is applicable, we define a residual

measure

� ⌘ (1/p̄)
p

�T
µ⌫

�T µ⌫ , (3.2) {eq:deltadef}

– 6 –
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Figure 2. Stress tensor components T

xx and T

zz at the spatial origin, x = y = z = 0, as
a function of time. Dashed lines denote the viscous hydrodynamic approximation. Around
t = 0 the system is highly anisotropic and far from equilibrium. Nevertheless, at this point
in space, the system begins to evolve hydrodynamically at t ⇡ 1.25.

fig:pressures

with �T µ⌫ ⌘ T µ⌫ � T µ⌫

hydro

and p̄ ⌘ ✏/3 the average pressure in the local rest frame.

The quantity � is frame-independent but, when evaluated in the local fluid rest frame,

reduces to the relative di↵erence between the spatial stress in T µ⌫ and T µ⌫

hydro

. Regions

with �⌧ 1 are evolving hydrodynamically.

In Fig. 3 we plot � in the transverse plane at proper times ⌧ = 1, 1.25, and 2,

and rapidities ⇠ = 0 and 1. The color scaling is the same in all plots. Focusing first on

⇠ = 0 (top row), at ⌧ = 1 one sees that � & 0.5 in the central region (x, y ⇡ 0), and

hydrodynamics is not a good description. However, by ⌧ = 1.25 a fluid droplet with � .
0.15 and transverse radius x? ⌘ |x?| . 5.3 has formed, with subsequent evolution well

described by hydrodynamics. At ⌧ = 2 the transverse size of the droplet has increased

and � < 0.15 for x? . 8.6. Turning now to the behavior at rapidity ⇠ = 1 (bottom

row), one sees that for small x? the system is already evolving hydrodynamically at

⌧ = 1. Moreover, the onset of hydrodynamics occurs earlier for x < 0 than for x > 0.

This feature reflects the fact that the receding maxima remain far from equilibrium

and non-hydrodynamic, and (as seen in Fig. 1), the maxima with ⇠ > 0 lies at x > 0.

Interestingly, the inclusion of transverse dynamics seems to hasten the approach

to local equilibrium: the equilibration time t
hydro

⇠ 1.25 is about 30% smaller than

was the case in our previous studies [3, 11] of planar shock collisions. Recent work

[14, 15] has found that equilibration time scales of far-from-equilibrium states can
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t
hydro

⇡ 1.25

Lesson 2: hydro onset ≈ 30% faster than for planar shocks 

transverse and longitudinal pressure

holographic collisions
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Figure 3. The residual � in the transverse plane, at several proper times ⌧ and two values of
rapidity ⇠. Regions with �⌧ 1 are evolving hydrodynamically. At ⇠ = 0 (top row) the central
region becomes hydrodynamic at ⌧ ⇡ 1.25, whereas at ⇠ = 1 (bottom row) hydrodynamic
behavior of the central region has already begun by ⌧ ⇡ 1. At ⇠ = 1, hydrodynamic behavior
first sets in at x < 0. This feature reflects the fact that the receding maxima remain far from
equilibrium and non-hydrodynamic, and the maxima with ⇠ > 0 lies at x > 0.

fig:therm

be understood, at least semi-quantitatively, in terms of the spectrum of quasinormal

modes. Post-collision, a distribution of quasinormal modes will be excited. The decay

of these modes controls the approach to equilibrium, with high (spatial) momentum

modes decaying faster than low momentum modes. With the inclusion of transverse

dynamics, the typical transverse wavevector will be non-zero, presumably leading to a

larger average momentum of excited modes than in planar collisions without transverse

dynamics. Hence, it is natural to expect the inclusion of transverse dynamics to decrease

the relaxation time, just as we observe.

A striking feature of the the post-collision evolution in Fig. 1 is the appearance of

flow in the transverse plane at early times. The early-time acceleration imparted on the

transverse flow can have a significant impact on the subsequent transverse expansion.

In Fig. 4 we plot the fluid 3-velocity v ⌘ u/u0 in the z�x, z�y, and x�y planes at time

t = 4. The color scaling, which indicates |v|, is the same in each plot. The flow lines
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Figure 1. The energy density T

00 (top) and energy flux |T 0i| (bottom), at four di↵erent
times, in the plane y = 0. Streamlines in the lower plots denote the direction of energy flux.
Note that the color scaling varies from plot to plot. At the initial time t = �2 the shocks
are at z = ±2. The non-zero impact parameter in the x-direction is apparent. The shocks
move in the ±z direction at the speed of light and collide at t = z = 0. After the collision the
remnants of the initial shocks, which remain close to the lightcone, z = ±t, are significantly
attenuated in amplitude with the extracted energy deposited in the interior region. The
development of transverse flow is apparent at positive times.

fig:snapshots

T xx is nearly ten times larger than T zz. (This latter phenomena has also been seen in

1 + 1 dimensional flow [2–4].)

To quantify the domain in which hydrodynamics is applicable, we define a residual

measure

� ⌘ (1/p̄)
p

�T
µ⌫

�T µ⌫ , (3.2) {eq:deltadef}
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Figure 2. Stress tensor components T

xx and T

zz at the spatial origin, x = y = z = 0, as
a function of time. Dashed lines denote the viscous hydrodynamic approximation. Around
t = 0 the system is highly anisotropic and far from equilibrium. Nevertheless, at this point
in space, the system begins to evolve hydrodynamically at t ⇡ 1.25.
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⇠ = 0 (top row), at ⌧ = 1 one sees that � & 0.5 in the central region (x, y ⇡ 0), and

hydrodynamics is not a good description. However, by ⌧ = 1.25 a fluid droplet with � .
0.15 and transverse radius x? ⌘ |x?| . 5.3 has formed, with subsequent evolution well

described by hydrodynamics. At ⌧ = 2 the transverse size of the droplet has increased

and � < 0.15 for x? . 8.6. Turning now to the behavior at rapidity ⇠ = 1 (bottom

row), one sees that for small x? the system is already evolving hydrodynamically at

⌧ = 1. Moreover, the onset of hydrodynamics occurs earlier for x < 0 than for x > 0.

This feature reflects the fact that the receding maxima remain far from equilibrium

and non-hydrodynamic, and (as seen in Fig. 1), the maxima with ⇠ > 0 lies at x > 0.

Interestingly, the inclusion of transverse dynamics seems to hasten the approach

to local equilibrium: the equilibration time t
hydro

⇠ 1.25 is about 30% smaller than

was the case in our previous studies [3, 11] of planar shock collisions. Recent work

[14, 15] has found that equilibration time scales of far-from-equilibrium states can
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Figure 4. The fluid 3-velocity |v| at time t = 4, in the z�x, z�y, and x�y planes. Stream-
lines denote the direction of v. Regions in which the residual �, defined in Eq. (3.2),
is greater than 0.15 have been excised; within these regions the system is behaving non-
hydrodynamically. The maximum of |v|, which occurs in the vicinity of the receding maxima,
is 0.64. In contrast, the maximum transverse velocity in the x�y plane is 0.3.

fig:velocities

show the direction of v. Regions in which � > 0.15, and the system is not behaving

hydrodynamically, have been excised. Already at time t = 4 and radius x? ⇡ 5 the

transverse fluid velocity in the x�y plane has magnitude 0.3. In contrast, the maximum

of the longitudinal velocity, which occurs in the neighborhood of the receding maxima,

is 0.64.

One sees from Fig. 4 that the fluid velocity in the x�y plane is nearly radial:

we see no strong signatures of elliptic flow. This should not be too surprising as the

system has not been evolved through the entire hydrodynamic phase of the plasma.

Additionally, in the z�x plane the fluid flow is not symmetric about the z axis and the

longitudinal flow does not vanish at z = 0. The latter observation is a direct violation

of the simplified model of boost invariant flow, in which vz = z/t and vanishes at

z = 0. Nevertheless, at t = 4 and in the region of space where ✏ > 0.6 max(✏), the

longitudinal flow is roughly described by boost invariant flow at the 20% level or better,

with larger deviations appearing at larger rapidities.3 For planar shock collisions, the

deviation of the longitudinal fluid velocity from boost invariant flow decreases as the

shock thickness decreases [4, 11].4 It will be interesting to see if this also holds when

transverse dynamics is included.

We conclude by discussing the early-time transverse flow predicted in ref. [16].

3Specifically, in the region where ✏ > 0.6 max (✏), we find max |vz � z/t| < 0.20 max |vz|.
4However, even in the limit of thin planar shocks the proper energy density has strong rapidity

dependence [4, 11].

– 9 –

vmax

k ⇡ 0.64
v?(x? = 5) ⇡ 0.3

non-hydro regions excisedt = 4

Lesson 3: early development of substantial radial flow

holographic collisions
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Lesson 4: hydrodynamics works unreasonably well.  Onset of 
hydrodynamics when:

• viscous corrections ≈ 100% of pressure, not much smaller than pressure.

• minimal fluid droplet size: RTeff ∼ 0.5-1, not RTeff ≫ 1.

• decay of non-hydro d.o.f. (not gradients) controls hydro applicability.

10
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Figure 4. The hydrodynamic residual � in the x�z and x�y planes at time t = 1.25 t
hydro

= 1.5
for both head-on and o↵-center collisions. Regions with � ⌧ 1 have hydrodynamized. Note that we
have restricted the plot to � < 1 in order to highlight the hydrodynamic behavior. The black curve
in the plots is the surface � = 0.2. For both impact parameters there is a crisply defined region —
whose boundary is well approximated by the � = 0.2 surface — where � ⌧ 1. We identify the matter
in the interior of the � = 0.2 surface as a droplet of liquid. Outside the � = 0.2 surface � rapidly
increases, indicating the presence of nonhydrodynamic modes on the surface of the droplet. Note the
irregularity in the o↵-center collision droplet shape in the x�z plane is due to nonhydrodynamic modes
and not fluid rotation in the x�z plane. For the head-on collision the � = 0.2 surface is circular in the
x�y plane. In contrast, for the o↵-center collision the � = 0.2 surface is elliptical in the x�y plane,
with the the short axis of the ellipse oriented in the same direction as the impact parameter b = 3x̂.
Nevertheless, for both collisions the transverse radius of the � = 0.2 surface is roughly the same and
equal to R ⇠ 3, which is just the radius � of our “protons.”

Over what region of space has the system hydrodynamized? To study the spatial domain

of applicability of hydrodynamics, in Fig. 4 we plot � in the x�z and x�y planes at time

t = 1.25 t
hydro

= 1.5 for both head-on and o↵-center collisions. In order to highlight the

hydrodynamic behavior, we omit regions where � > 1. For both collisions we see a region

where � ⌧ 1. In this region the stress has hydrodynamized and correspondingly, we identify

the matter in the interior as a droplet of liquid. Also included in the figure is the surface

– 11 –

P. Chesler, 1601.01583
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quasiparticles at 
strong coupling?

11
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definition: quasiparticle 

long-lived, weakly coupled excitation (narrow resonance)

lifetime ≫ 1/energy, mean free path ≫ de Broglie wavelength

definition: strongly correlated (or strongly coupled) system

ex: high Tc, strange metals, quark-gluon plasma, N=4 SYM at λ=∞ 

no useful quasiparticle description of excitations

12

quasiparticles at strong coupling

what about rare, atypical excitations?

typical
z }| {
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thermal N=4 SYM: 

temperature T = characteristic scale

quasinormal mode (QNM) frequencies                     
{ωn(k)} characterize spectrum of excitations

Im ωn(k)≿Re ωn(k) (except for k→0 sound mode)

non-hydrodynamic relaxation times = O(1/πT)

∴ no good quasiparticles

13

quasiparticles at strong coupling

provided
k ≾ O(T) }

what about k ≫ T?
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Figure 4: Quasinormal spectrum of gravitational fluctuations in the sound channel, shown in the
plane of complex ≡ ω/2πT , for spatial momentum ≡ q/2πT = 1. The quasinormal frequencies
coincide with the poles of G2(ω, q), as explained in the text. As decreases, all poles stay at a finite
distance away from the real axis, except for the ones marked with large dots, which approach the
origin as → 0 (see Appendix B for the corresponding dispersion curves). Such behavior of the lowest
quasinormal frequencies is a manifestation of oscillatory relaxation of longitudinal momentum density
(as well as energy density) fluctuations in the dual N = 4 SYM theory.

appear as poles of the correlators. Finding the poles is therefore equivalent to solving the

boundary value problem for the gauge invariant variable Z2(u) obeying the incoming wave

boundary condition at the horizon u=1 and Dirichlet condition Z2(u=0) = 0 at the boundary.

For = 0, eqs. (4.18), (4.26), (4.35) all reduce to the equation for a minimally coupled

massless scalar at zero spatial momentum, and consequently all have the same quasinormal

spectrum with the asymptotics (4.23). This is expected, in accord with rotation invariance

in the dual field theory, see Eq. (2.26). For ̸= 0, the spectrum can be found numerically, as

explained in Appendix B; a typical arrangement of quasinormal frequencies is shown in Fig. 4.

However, for small momenta, the lowest quasinormal frequency can be found analytically.

Hydrodynamic approximation

In the hydrodynamic regime ≪ 1, ≪ 1, Eq. (4.35) for Z2(u) can be solved perturbatively

in and . Introducing the book-keeping parameter λ, rescaling → λ , → λ , and

expanding in λ ≪ 1, to first order in λ we find

Z2(u) = C2f(u)−i /2

[ 2(1 + u2) − 3 2

4 2
− i f(u)

2

]

, (4.42)

where C2 is a normalization constant. Imposing Dirichlet boundary condition Z2(u=0) = 0

gives the lowest (| | ≪ 1) overtone of the quasinormal spectrum

= ±√
3
− i 2

3
+ O

(

3
)

. (4.43)

– 21 –
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QNM asymptotics:

• high level, n ≫ 1: 

• large wavenumber, k ≫ T: 

14

quasiparticles at strong coupling

Kovtun & Starinets

Fuini, Uhlemann, LY 

!n(k) ⇠ 2⇡T n (±1� i)

!n(k) = k
h
±1� isn e

±i⇡/6(⇡T/k)�4/3 +O(T 2/k2)
i 7

n s̃1 n s̃1 n s̃1 n s̃1 n s̃1
1 4.46404 5 26.6180 9 55.3151 13 88.4352 17 125.031

2 9.15514 6 33.2980 10 63.2275 14 97.2844 18 134.652

3 14.4814 7 40.3273 11 71.3946 15 106.339 19 144.449

4 20.3279 8 47.6748 12 79.8015 16 115.591 20 154.414

TABLE I. Behavior of the first 20 spin-2 quasinormal frequencies at large q, described by the dispersion
relation (29) and the values of s̃1 given in the table. Remarkably, all the values of s̃1 are real up to O(10�14).

as a working assumption and verify that this indeed produces the correct quasinormal modes a
posteriori. The equation resulting from (27) then has no more small or large parameters, and
has to be solved for y 2 R+. It has an irregular singular point at y = 1 and keeping only the
leading term in y on the right hand side reduces it to an Airy equation. Keeping the first and
the third term on the right hand side still allows for an analytic solution in terms of derivatives of
Airy functions, but with the full right hand side we did not find a closed form solution. What is
beautiful about it is that we only need to solve it once for s1, and get the entire large-q asymptotics.
We spell out some details of how we solved it numerically in app. B, and collect the results in table
I. Remarkably, the first values for s1 all have phase �⇡/3 – up to machine precision. This pattern
continues for higher modes, where cranking up numerical precision brings their phase to �⇡/3 as
well. We therefore write the dispersion relation (6) with (11) and s0 = 1, ↵ = 4/3 as

w = q+
s1
3
p
q
, s1 = s̃1e

� i⇡
3 , (29)

and give the asymptotic eigenvalues for s̃1 at large q in tab. I. The clear results for the phase
clearly suggest that it should be possible to derive it analytically, but we do not have an argument
at the moment. Finally, we restore the temperature dependence and the fact that the quasinormal
frequencies come in pairs that are related by reflection at the imaginary axis. Indicating the mode
number explicitly by n, we then have

!
n

= ±|q|
"
1 +

1

2
s̃1,n

⇣
1⌥ i

p
3
⌘✓

⇡T

|q|
◆4/3

+O �
(T/q)2

�
#

, (30)

where the order of the subleading term is inferred from the WKB analysis. This is the result
refered to in (1).

III. QUASINORMAL FREQUENCIES AT INTERMEDIATE MOMENTUM

In this section we study large but finite momenta. We validate the large-momentum asymptotics
derived in the previous section for spin 2 modes and investigate the quality of the large-momentum
approximation for intermediate values. The spin-1 and spin-0 perturbations behave very similarly
and we will see that they follow the same asymptotic behavior.

A. Spin 2: validating WKB asymptotics

We want to first of all confirm the asypmtotic behavior derived in the previous section, but
also assess the quality of the large-q approximation for intermediate values of q. In other words,
answer the question where the approximation breaks down. To this end we solve (7) directly using
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beautiful about it is that we only need to solve it once for s1, and get the entire large-q asymptotics.
We spell out some details of how we solved it numerically in app. B, and collect the results in table
I. Remarkably, the first values for s1 all have phase �⇡/3 – up to machine precision. This pattern
continues for higher modes, where cranking up numerical precision brings their phase to �⇡/3 as
well. We therefore write the dispersion relation (6) with (11) and s0 = 1, ↵ = 4/3 as

w = q+
s1
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p
q
, s1 = s̃1e

� i⇡
3 , (29)

and give the asymptotic eigenvalues for s̃1 at large q in tab. I. The clear results for the phase
clearly suggest that it should be possible to derive it analytically, but we do not have an argument
at the moment. Finally, we restore the temperature dependence and the fact that the quasinormal
frequencies come in pairs that are related by reflection at the imaginary axis. Indicating the mode
number explicitly by n, we then have
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where the order of the subleading term is inferred from the WKB analysis. This is the result
refered to in (1).

III. QUASINORMAL FREQUENCIES AT INTERMEDIATE MOMENTUM

In this section we study large but finite momenta. We validate the large-momentum asymptotics
derived in the previous section for spin 2 modes and investigate the quality of the large-momentum
approximation for intermediate values. The spin-1 and spin-0 perturbations behave very similarly
and we will see that they follow the same asymptotic behavior.

A. Spin 2: validating WKB asymptotics

We want to first of all confirm the asypmtotic behavior derived in the previous section, but
also assess the quality of the large-q approximation for intermediate values of q. In other words,
answer the question where the approximation breaks down. To this end we solve (7) directly using
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spin-1/shear modes spin-0/sound modes

n |s̃11 | arg(s̃11 ) |s̃11 | arg(s̃11 )

1 2.7009 0.0012 1.178 0.0067

2 6.9101 �0.0007 4.774 0.0017

3 11.890 �0.0040 9.387 0.0026

4 17.468 �0.0089 14.69 0.0059

TABLE II. Behavior of the first 4 quasinormal frequencies for spin 1 and spin 0 at large q, described by the
dispersion relation (29). The superscript 1 on s̃11 indicates that these are values obtained by extrapolation
from the data in tab. III, by fitting to w = q(1+s̃1e�⇡/3q�4/3+s2q�2+s3q�8/3) which is the series expansion
suggested by the WKB analysis in sec. II. [[CU: Redo for spin 0 once the data is there.]] The phases of s̃11
are nicely compatible with 0, the value we found to astonishing precision for the spin-2 mode before. We
expect that the phase of s1 should be exactly �⇡/3, or that of s̃1 exactly zero, which gives an indication for
the accuracy of our results. The values for |s̃11 | are generically smaller than those for the spin-2 mode but
of the same order of magnitude.

where C = dLd�1/(16⇡G) [3] with d = 4 and L = 1. In terms of field theory quantities, C =
N2

c

/(2⇡2), where N
c

is the rank of the SU(N
c

) gauge group of N = 4 SYM. The quasinormal
frequencies discussed in the previous sections can therefore directly be used to study the time
evolution of energy-momentum tensor perturbations in N = 4 SYM. We will draw qualitative
conclusions from the large-q asympotics in the next subsections, and repeat the dispersion relation
found in sec. II here for convenience
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The values for s̃1 can be found in tables I, II, and as discussed in sec. III, this expression gives
an accurate description already for intermediate values of q/T . Since the quasinormal frequencies
correspond to the poles of the retarded Green’s function [4], we can also very directly evaluate the
retarded response to a source, namely
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Since g was already used for the bulk metric we denoted the source for the CFT energy-momentum
tensor, which are changes in the CFT background metric, simply by j. Evaluating the integral
using Cauchy’s theorem, with R

n

denoting the residue of GR at !
n

(q), yields3
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In the following we use these relations and the results of the previous sections to first flesh out a
quasiparticle picture for fine structures and then turn to planar shocks as an application.

A. Fine structures outlive coarse ones

In this subsection we want to clearly articulate the point that metric perturbations with a
Fourier spectrum which is narrowly peaked around a large momentum can e↵ectively be thought

3
The tensor structures appearing in GR can be decomposed in the same way as the perturbations in sec. II for

each fixed momentum. So we could fix the momentum to be in a particular direction (the source to be planar and

depend on one direction only), and decompose the response in the same way.
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large k excitations = good quasiparticles, nearly lightlike (ω2 ≈ k2), 
weakly damped (Im ω ≪ Re ω)
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• top-down (strong coupling) vs. bottom-up (weak 
coupling) thermalization?

• fast relaxation of high level QNMs ≈ fast dephasing of 
highly virtual fluctuations

• hard, on-shell modes slowest to thermalize at both weak and 
strong coupling

• narrow planar shocks on thermal background = 
superposition of high k QNMs

• analogous to signal propagation in dispersive media

• dvg/dk = d2ω/dk2 > 0 ➡ fine structure outlives coarse 
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quasiparticles at strong coupling



L. Yaffe, NumHolo, June 2016

large Nc confinement dynamics
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with Alex Buchel and Paul Chesler
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large Nc confinement dynamics

SU(Nc) N=4 SYM on S3 × R:

• thermodynamic limit = Nc→∞ limit

• T<Tc: confined phase, O(Nc0) free energy

dual description = “thermal” AdS

• T>Tc: deconfined phase, O(Nc2) free energy

dual description = global AdS black hole

• T=Tc: first order phase transition (at Nc=∞)

17
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typical first order transition:

• thermodynamic limit = volume V → ∞

• kink in free energy

• jump in internal energy 

• latent heat L = jump in internal energy

• coexisting equilibrium states at T=Tc:

‣ extremal, homogeneous

‣ non-extremal, mixed

‣ extremal, phase separated
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large Nc confinement dynamics
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typical first order transition: 
cooling dynamics

• E, T, S all ↘

• T=Tc: enter metastable 
supercooled phase

• T=Ts: spinodal decomposition = 
limit of metastability

• re-equilibrates to phase separated 
state at T=Tc if E+(Ts)> E-(Tc)

19
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large Nc confinement dynamics
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SU(Nc) N=4 SYM on S3 × R:

• deconfined plasma ➡ dual geometry = AdS5 x S5 black hole

• metric:

• free energy

• temperature

• “large” BH branch (ρh > 1): deconfined equilibrium states

• “small” BH branch (ρh < 1): thermodynamically unstable

• ρh < ρ* = 0.44: dynamically unstable wrt. deformation of S5

20
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large Nc confinement dynamics
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• ρ* < ρh < 1: supercooled plasma, stable at Nc = ∞

• ρh = ρ*: spinodal decomposition threshold

• ρh < ρ*: dynamical instability leads to ???

does system re-equilibrate to new stationary solution with broken 
SO(6)R symmetry?

• known “lumpy” S3×S5 horizon topology BH solutions have lower 
entropy

• recent S8 horizon topology BH solutions, localized on S5, have higher 
entropy but T > Tc

common expectation: BH should undergo Gregory-Laflamme-like 
instability, develop thin “necks” which break at string scale, settle 
down to localized S8 BH
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large Nc confinement dynamics
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But: microcanonical description should be consistent with 
canonical description in thermodynamic (Nc→∞) limit

• what is complete manifold of coexisting equilibrium states at Tc?

• do extremal phase separated states exist?

• is T>Tc understanding wrong?

• does broken R-symmetry phase exist? 

• do dynamically unstable supercooled states fail to re-equilibrate     
(on O(Nc0) time-scale)?

• consistent with basic large Nc lore and existence of islands of 
stability in perturbations of global AdS spacetime
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large Nc confinement dynamics

no sign, no evidence 

no sign, no evidence 

Occam’s razor preferred scenario
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large Nc confinement dynamics

in progress: study time dependent solutions numerically

• 10D GR + self dual 5-form, SO(4) × SO(5) invariant

10D GR → 3D PDEs

• multiple towers of scalar condensates

complex boundary asymptotics, initial value constraints

more challenging than expected/hoped

• stay tuned...
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conclusions

• numerical holography allows exploration of interesting far-
from-equilibrium dynamics.

numerics “easier” than might have been expected

AdS asymptotics & dissipative dynamics helps

• phenomenologically relevant insight for heavy ion collisions 
can be (and has been) obtained.

• many open questions, even on basic thermodynamics!
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