Collisions, quasiparticles and collision dynamics: holographic lessons and puzzles

Laurence Yaffe University of Washington

Numerical Relativity and Holography, Santiago de Compostela, June 29, 2016

Outline

- holographic "heavy ion" collisions
- quasiparticles at strong coupling
- large N_c confinement dynamics

holographic "heavy ion" collisions

Lesson 1: Feasibility

- Characteristic formulation of GR + spectral methods work very well for wide class of problems involving asymptotically AdS spacetime dynamics
- It is possible to study collisions of localized projectiles, off-center, with honest (longitudinal and transverse) dynamics, no dimensionality reducing symmetry assumptions, using only desktop computing resources

L. Yaffe, *NumHolo*, June 2016 6

$$x = y = z = 0$$

 $t_{\rm hydro} \approx 1.25$

hydrodynamic residual

$$\bar{p} \equiv \epsilon/3$$

Lesson 3: early development of substantial radial flow

 $v_{\perp}(x_{\perp}=5) \approx 0.3$ $v_{\parallel}^{\max} \approx 0.64$

t = 4 non-hydro regions excised

with John Fuini and Christoph Uhlemann

L. Yaffe, NumHolo, June 2016 11

definition: quasiparticle

long-lived, weakly coupled excitation (narrow resonance) lifetime \gg 1/energy, mean free path \gg de Broglie wavelength definition: strongly correlated (or strongly coupled) system ex: high T_c , strange metals, quark-gluon plasma, $\mathcal{N}=4$ SYM at $\lambda=\infty$

no useful quasiparticle description of excitations typical

what about rare, atypical excitations?

Kovtun & Starinets

provided $k \preceq O(T)$

Im $\omega_n(k) \gtrsim \text{Re } \omega_n(k)$ (except for $k \rightarrow 0$ sound mode) non-hydrodynamic relaxation times = $O(1/\pi T)$ \therefore no good quasiparticles

what about $k \gg T$?

QNM asymptotics:

• high level, $n \gg 1$:

Kovtun & Starinets

 $\omega_n(k) \sim 2\pi T \, n \, (\pm 1 - i)$

• large wavenumber, $k \gg T$:

Fuini, Uhlemann, LY

$$\omega_n(k) = k \left[\pm 1 - i s_n \, e^{\pm i \pi/6} (\pi T/k)^{-4/3} + O(T^2/k^2) \right]$$

n	$s_n^{\ell=0}$	$s_n^{\ell=1}$	$s_n^{\ell=2}$
1	1.178	$\overline{2.7009}$	4.46404
2	4.774	6.9101	9.15514
3	9.387	11.890	14.4814
4	14.69	17.468	20.3279

large *k* excitations = good quasiparticles, nearly lightlike ($ω^2 \approx k^2$), weakly damped (Im $ω \ll \text{Re } ω$)

- top-down (strong coupling) vs. bottom-up (weak coupling) thermalization?
 - fast relaxation of high level QNMs ≈ fast dephasing of highly virtual fluctuations
 - hard, on-shell modes slowest to thermalize at *both* weak and strong coupling
- narrow planar shocks on thermal background = superposition of high *k* QNMs
 - analogous to signal propagation in dispersive media
 - $dv_g/dk = d^2\omega/dk^2 > 0 \implies$ fine structure outlives coarse

with Alex Buchel and Paul Chesler

L. Yaffe, NumHolo, June 2016 16

SU(N_c) $\mathcal{N}=4$ SYM on S³ × R:

- thermodynamic limit = $N_c \rightarrow \infty$ limit
- $T < T_c$: confined phase, $O(N_c^0)$ free energy

dual description = "thermal" AdS

• $T>T_c$: deconfined phase, $O(N_c^2)$ free energy

dual description = global AdS black hole

• $T=T_c$: first order phase transition (at $N_c=\infty$)

typical first order transition:

- thermodynamic limit = volume $V \rightarrow \infty$
- kink in free energy
- jump in internal energy $E = \frac{\partial(\beta F)}{\partial\beta}$
- latent heat *L* = jump in internal energy
- coexisting equilibrium states at $T=T_c$:

typical first order transition: cooling dynamics

- *E*, *T*, *S* all \searrow
- *T*=*T*_c: enter metastable supercooled phase
- *T*=*T*_s: spinodal decomposition = limit of metastability
- re-equilibrates to phase separated state at $T=T_c$ if $E^+(T_s) > E^-(T_c)$

SU(N_c) $\mathcal{N}=4$ SYM on S³ × R:

• deconfined plasma \Rightarrow dual geometry = AdS₅ x S⁵ black hole

• metric:
$$ds^2 = -g(\rho) dt^2 + \frac{d\rho^2}{g(\rho)} + \rho^2 d\Omega_3^2 + d\Omega_5^2, \qquad g(\rho) \equiv \rho^2 + 1 - (1 + \rho_h^2) \frac{\rho_h^2}{\rho^2}$$

• free energy $F = C (1 - \rho_h^2) \rho_h^2 + (\text{Casimir})$

- "large" BH branch ($\rho_h > 1$): deconfined equilibrium states
- "small" BH branch ($\rho_h < 1$): thermodynamically unstable
 - $\rho_h < \rho^* = 0.44$: dynamically unstable wrt. deformation of S⁵

- $\rho^* < \rho_h < 1$: supercooled plasma, stable at $N_c = \infty$
- $\rho_h = \rho^*$: spinodal decomposition threshold
- $\rho_h < \rho^*$: dynamical instability leads to ???

does system re-equilibrate to new stationary solution with broken $SO(6)_R$ symmetry?

- known "lumpy" S³×S⁵ horizon topology BH solutions have lower entropy
- recent S⁸ horizon topology BH solutions, localized on S⁵, have higher entropy but $T > T_c$ O. Diaz, J. Santos, B. Way

common expectation: BH should undergo Gregory-Laflamme-like instability, develop thin "necks" which break at string scale, settle down to localized S⁸ BH

But: microcanonical description should be consistent with canonical description in thermodynamic $(N_c \rightarrow \infty)$ limit

- what is complete manifold of coexisting equilibrium states at T_c ?
 - do extremal phase separated states exist? no sign, no evidence
- is $T > T_c$ understanding wrong?
 - does broken *R*-symmetry phase exist? no sign, no evidence
- do dynamically unstable supercooled states fail to re-equilibrate (on O(N_c⁰) time-scale)?
 Occam's razor preferred scenario
 - consistent with basic large N_c lore and existence of islands of stability in perturbations of global AdS spacetime

in progress: study time dependent solutions numerically

- 10D GR + self dual 5-form, SO(4) × SO(5) invariant 10D GR \rightarrow 3D PDEs
- multiple towers of scalar condensates
 complex boundary asymptotics, initial value constraints
 more challenging than expected/hoped
- stay tuned...

conclusions

• numerical holography allows exploration of interesting farfrom-equilibrium dynamics.

numerics "easier" than might have been expected AdS asymptotics & dissipative dynamics helps

- phenomenologically relevant insight for heavy ion collisions can be (and has been) obtained.
- many open questions, even on basic thermodynamics!