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holographic “heavy 1on”

collisions

with Paul Chesler, arXiv:1501.04644
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holographic collisions

Lesson 1: Feasibility

e Characteristic formulation of GR + spectral methods

work very well for wide class of problems involving
asymptotically AdS spacetime dynamics

e [t s possible to study collisions of localized projectiles,
off-center, with honest (longitudinal and transverse)
dynamics, no dimensionality reducing symmetry

assumptions, using only desktop computing resources
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holographic collisions
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holographic collisions
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holographic collisions

Lesson 2: hydro onset = 30% faster than for planar shocks

transverse and longitudinal pressure
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holographic collisions
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holographic collisions

Lesson 3: early development of substantial radial flow
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holographic collisions

Lesson 4: hydrodynamics works unreasonably well. Onset of

hydrodynamics when:

® viscous corrections =~ 100% of pressure, not much smaller than pressure.

¢ minimal fluid droplet size: R7er ~ 0.5-1, not R7 e > 1.

® decay of non-hydro d.o.f. (not gradients) controls hydro applicability.
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quasiparticles at
strong coupling?

ﬂfw o

with John Fuini and Christoph Uhlemann
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quasiparticles at strong coupling

definition: quasiparticle

long-lived, weakly coupled excitation (narrow resonance)

lifetime » 1/energy, mean free path » de Broglie wavelength
definition: strongly correlated (or strongly coupled) system
ex: high 7., strange metals, quark-gluon plasma, N=4 SYM at A=c

no useful quasiparticle description of excitations

“typical

what about rare, atypical excitations?
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quasiparticles at strong coupling

thermal N=4 SYM: -

temperature 7" = characteristic scale

quasinormal mode (QNM) frequencies
{w.(k)} characterize spectrum of excitations

Ret

=57 Imw

Kovtun & Starinets

Im w.(k)zRe w.(k) (except for £&—0 sound mode)

provided
k = O(T)

. no good quasiparticles

what about £ > 77

non-hydrodynamic relaxation times = O(1/n7)
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quasiparticles at strong coupling

ONM asymptotics:

® high level, n » 1:

Kovtun & Starinets wn(k) ~ 27 l'n (Z:]. — Z)

® large wavenumber, £ > T

Fuini, Uhlemann, LY wn (k) = k [ﬂ s, eTT/O (2T /)Y 1 O(T? /k2)]
n sffo sfifl sleQ
1 1.178 2.7009 4.46404
9 4.774 6.9101 9.15514
3 9.387 11.890 14.4814
4 14.69 17.468 20.3279

large k£ excitations = good quasiparticles, nearly lightlike (w? = £?),
weakly damped (Im w « Re w)
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quasiparticles at strong coupling

e top-down (strong coupling) vs. bottom-up (weak
coupling) thermalization?

e fast relaxation of high level QINMs = fast dephasing of
highly virtual fluctuations

® hard, on-shell modes slowest to thermalize at both weak and
strong coupling

® narrow planar Sl’lOCkS on thermal background -

superposition of high £ QNMs

e analogous to signal propagation in dispersive media

® dv,/dk = d*w/dk? > 0 = fine structure outlives coarse
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large V. confinement dynamics

with Alex Buchel and Paul Chesler
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large N. confinement dynamics

SUWV.) N=4 SYM on S? x R:

e thermodynamic limit = N.—> limit

® 7<7.: confined phase, O(V.') free energy
dual description = “thermal” AdS

® 7>7.: deconfined phase, O(/V.?) free energy

dual description = global AdS black hole

e 7=7.: first order phase transition (at N.=x)
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large N. confinement dynamics

typlcal first order transition:
Coe T
e thermodynamic limit = volume IV — s
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large N. confinement dynamics

typical first order transition:
cooling dynamics

o I/, 7, S all

e 7-7.: enter metastable
supercooled phase

e 7=7i: spinodal decomposition =
[imit of metastability

e re-equilibrates to phadse separated

state at T=T. 1t £*(15)> E- (1)
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large N. confinement dynamics

SUWV.) N=4 SYM on S? x R:

deconfined plasma = dual geometry = AdSs x S° black hole

. dp? 2
metric; A5 = —g(p)di* + 5+ 97 A +d% . glp) =7 1= (14 0h) o
free energy p_— (¢ (1— p?) p? + (Casimir)

2
temperature 7T — 20p 1 4 "
27Tph “small”
0 /*\ = \/arge”
oo\ o > ph
P

“large” BH branch (on > 1): deconfined equilibrium states
“small” BH branch (o1 < 1): thermodynamically unstable

o ph<p” =0.44: dynamically unstable wrt. deformation of S°
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large N. confinement dynamics

e p" <ph< l: supercooled plasma, stable at V. = ®

e ph=p*: spinodal decomposition threshold

e ph < p*: dynamical instability leads to 777

does system re-equilibrate to new stationary solution with broken

SO(6)r symmetry?

e known “lumpy” SxS° horizon topology BH solutions have lower
entropy

e recent S8horizon topology BH solutions, localized on S°, have higher
entropy but 7' > 1: O. Diaz, J. Santos, B. Way

common expectation: BH should undergo Gregory-Laflamme-like

instability, develop thin “necks” which break at string scale, settle
down to localized S® BH
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large N. confinement dynamics

But: microcanonical description should be consistent with
canonical description 1n thermodynamic (V.—>) limit

e what i1s complete manifold of coexisting equilibrium states at 7.7
® do extremal phase separated states exist? no sign, no evidence
® 1s 7>7. understanding wrong?
® does broken R-symmetry phase exist? no sign, no evidence

® do dynamically unstable supercooled states fail to re-equilibrate

(on OVY) time-scale)?

Occam'’s razor preferred scenario

e consistent with basic large N, lore and existence of 1slands of

stability in perturbations of global AdS spacetime
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large N. confinement dynamics

in progress: study time dependent solutions numerically

e 10D GR + self dual 5-form, SO(4) x SO(5) invariant

10D GR — 3D PDZEs

e multiple towers of scalar condensates
complex boundary asymptotics, initial value constraints

more challenging than expected/hoped

® stay tuned...
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conclusions

e numerical holography allows exploration of interesting far-
from-equilibrium dynamics.

numerics “easler than might have been expected

AdS asymptotics & dissipative dynamics helps

® phenomenologically relevant insight for heavy 1on collisions
can be (and has been) obtained.

® many open questions, even on basic thermodynamics!
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