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Holography from string theory: AdS/CFT

ZCFT [J ] = ZAdS [φ̄(= J)] =⇒ ZcCFT [J ] ≈ IosAdS [φ̄]
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Facts about (applied) AdS/CFT

• Finite temperature field theory with finite chemical potential
is dual to a charged black hole in the bulk AdS:

Temperature ←→ Hawking temperature

Chemical potential ←→ Potential

• Motivation of applied AdS/CFT: understanding difficult
physics (on the boundary) by AdS (classical) gravity

• Two ways of applied AdS/CFT: top-down and bottom-up
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Why is applied AdS/CFT needed?

• Controllable manipulations of various quantum many-body
systems (BEC, QGP, ...)

• Lack of (even phenomenological) theories for the dissipative,
far-from-equilibrium and strongly coupled systems
Example: Gross-Pitaevskii equation (for BEC)

(i− η)~∂tϕ = (−∇
2

2m
+ V (t,x) + g|ϕ|2 − µ)ϕ
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Applied AdS/CFT: subjects

• AdS/QCD
Hadron spectrum, thermalization of QGP, hydrodynamics of
QGP, ...

• AdS/CMT (condensed matter theory)
Superfluids and superconductors, charge density waves,
entanglement entropy, many-body localization, ...

• AdS/???
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Applied AdS/CFT: trends

• Towards less symmetric configurations:

Isotropic −→ Anisotropic

Homogeneous −→ Inhomogeneous

• Towards fully numerical relativity regimes:

Without backreaction −→With backreaction

Figure: Computational Holography!
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• Action of the simplest holographic model
[Hartnoll, Herzog and Horowitz, arXiv:0803.3295]

I =

∫
M
d4x
√−g 1

q2
(−1

4
FABF

AB − |DΨ|2 −m2|Ψ|2).

• Background metric

ds2 =
L2

z2
[−f(z)dt2 − 2dtdz + dx2 + dy2], f(z) = 1− z3

z3h
.

• Heat bath temperature

T =
3

4πzh
.

• Equations of motion

DAD
AΨ−m2Ψ = 0, ∇AFAB = i(Ψ∗DBΨ− C.C.).
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• The radial gauge Az = 0

• Asymptotic behavior at the AdS boundary

Aν = aν + bνz + o(z),

Ψ = L−1[ψ−z + ψ+z
2 + o(z2)], m2 = −2L−2.

• AdS/CFT dictionary

〈Jν〉 =
δIren
δaν

= lim
z→0

√−g
q2

F zν ,

〈O〉 =
δIren
δψ−

=
1

q2
(ψ∗+ − ψ̇∗− − iatψ∗−),

where

Iren = I − 1

Lq2

∫
B

√−γ|Ψ|2

is the renormalized bulk action.
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• Charge density (q = 1)

ρ ≡ 〈J t〉 = − lim
z→0

∂zAt = −bt.

• Chemical potential (in equilibrium)

µ = lim
z→0

At = at

with At(zh) = 0 required by regularity at the horizon.

• Pseudo-spectral methods to solve differential equations
Expanding unknown functions by polynomials or Fourier
modes, or (almost) equivalently, sampling the unknown
functions by collocation points, which turns the differential
equations into (systems of) algebraic equations.
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Thermodynamic stability and phase transition

• Grand canonical ensemble (with µ fixed)
Minimize the grand potential

Ω = T lnZ(µ) = TIosAdS(at)

• Canonical ensemble (with ρ fixed)
Minimize the Helmholtz free energy

F = T lnZ(ρ) = TIosAdS(−bt)

• Turn off the source (ψ− = 0) and compare the trivial solution
and the hairy ones (ψ+ 6= 0, 〈O〉 = ψ∗+)

• The metal-superconductor phase transition in the HHH model
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Figure: The condensate 〈O〉 and chemical potential µ as a function of
charge density with the critical charge density ρc = 4.06 (µc = 4.06).
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Figure: The profile of amplitude of scalar field and electromagnetic
potential for the superconducting phase at the charge density ρ = 4.7.
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Multiple orders: the BHMRS model
[Basu, He, Mukherjee, Rozali and Shieh, arXiv:1007.3480]

The action is

I =

∫
dx4
√−g(−1

4
FABFAB − |D1ψ1|2 − |D2ψ2|2 −m2

2|ψ2|2)

with
D1 = ∇− iq1A, D2 = ∇− iq2A,

under the same bulk metric as in the HHH model. Particularly,
choose

m2
2 = −2L−2, q1 = 1.95, q2 = 1.

The two orders corresponding to the two scalars tend to compete.
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The condensates and phase structure

• Generically, the two orders expel each other, which makes the
window of coexistence very narrow.

Figure: The condensates with respect to the charge density ρ in the
BHMRS model.

• In the back-reacted case, whenever the coexisting phase
appears, it is thermodynamically more favorable under the
grand canonical ensemble [Cai et al, arXiv:1307.2768].
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Time evolution and dynamic (in)stability of the BHMRS model

• Coordinate choices for time-dependent problems in
holography: Schwarzschild vs Eddington

Figure: Work in the infalling Eddington coordinates

Yu Tian Stability and non-equilibrium physics in holography



Motivation and introduction Holographic superfluids/superconductors: the homogeneous case Holographic superfluids/superconductors: the inhomogeneous case Conclusion and discussion

[Y.-Q. Du, YT, H. Zhang and S. Lan, arXiv:1511.07179]

• Dynamic (in)stability under linear perturbations, described by
the quasi-normal modes (QNM) δΦ ∼ e−iωt

• In the fully coupled case and under the infalling Eddington
coordinates, our efficient strategy for QNM (ψ ≡ ψ2/z):

δψ1 = p(z)e−iωt + p̄(z)eiω
∗t,

δψ = q(z)e−iωt + q̄(z)eiω
∗t,

δAt =
1

i
[a(z)e−iωt − a∗(z)eiω∗t].

The gauge redundancy can be removed by the boundary
condition a|z=0 = 0.
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Focusing on the e−iωt terms, there are simple rules for obtaining
the “static” linear perturbation equation from the linearized
equations of motion for (δψ1, δψ, δAt):

δψ1 → p, δψ∗1 → p̄∗

δψ → q, δψ∗ → q̄∗

δAt → −iat, ∂t → −iω

Importantly, it can be generally shown that (p∗, p̄, q∗, q̄, a∗t )
decouples from (p, p̄∗, q, q̄∗, at), with the final equations for both
sets of variables being complex conjugate to each other.
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Anyway, substitution of the above expressions into the equations of
motion (and the appropriate boundary conditions) yields the
“static” linear perturbation equation

L(ω)


p
p̄∗

q
q̄∗

a

 = 0,

which under numerical methods is just a system of homogeneous
linear algebraic equations. That the above system has nontrivial
solutions means

det[L(ω)] = 0,

which is the nonlinear equation that determines ω (QNM).
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Comments on different strategies for QNM (in holography):

• Schwarzschild vs Eddington
[Leaver, 1990; ...]

• gauge invariant vs gauge dependent
[Amado, Kaminski and Landsteiner, 2009; Bhaseen, Gauntlett, Simons, Sonner

and Wiseman, 2012; ...]

• separation of real and imaginary parts ψ = a+ ib
versus
introduction of complex conjugate ψ → (ψ,ψ∗)
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• Dynamic evolution of holographic systems (real time
holography for non-equilibrium physics)
The HHH model as an example (ψ ≡ Ψ/z, L = 1 = zh):

∂t∂zAt = −i(ψ∗∂tψ − ψ∂tψ∗)− 2Atψ
∗ψ + if(ψ∗∂zψ − ψ∂zψ∗)

(1)

∂2zAt = i(ψ∗∂zψ − ψ∂zψ∗) (2)

2(∂t − iAt)∂zψ − i∂zAtψ − f∂2zψ − f ′∂zψ + zψ = 0 (3)

• Constraint equations in the bulk from the U(1) gauge
symmetries of the holographic models
In the above case: three equations for two functions (At, ψ)

(1) + (3) =⇒ ∂t(2)

(2) + (3) =⇒ ∂z(1)
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• Choices of the constraint equation: (2) vs (1)
• (2): ∂2zAt = i(ψ∗∂zψ − ψ∂zψ∗) holds on the initial surface
t = 0. Evolve the system using (1) and (3) to the final surface
t = tf .

Pros: The violation of (2) at t = tf can be checked as
an indication of numerical errors (and even
coding mistakes).

Cons: The time accumulated error of (2) is inevitable.
Totally untrusted for long time evolution.

• (1): ∂tρ = 0 holds on the boundary surface z = 0. Prepare the
initial value of ψ and then use (3) to evolve the system while
using (2) to obtain At on every time slice with the boundary
conditions ∂zAt|z=0 = −ρ and At|z=0 = µ (gauge fixing).

Reminder: holographic dictionary

ρ ≡ 〈J t〉 = − limz→0 ∂zAt

Accumulated error along the z direction. Relatively better for
long time evolution.
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• The extensively adopted numerical scheme of dynamic
evolution:

• Spectral expansion in the spatial directions (e.g. Chebyshev
expansion in the z direction)

• The 4th order Runge-Kutta method for the time evolution

• For the HHH model, we have used the nonlinear dynamic
evolution to study

• Periodic driving and dynamic phase transition of the
holographic superconductor
[W.-J. Li, YT and H. Zhang, arXiv:1305.1600]

• Nonlinear charge transport in the holographic superconductor
[H. Zeng, YT, Z. Fan and C.-M. Chen, arXiv:1604.08422]

• Consistency of the thermodynamic stability and nonlinear
dynamic stability in the BHMRS model
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Inhomogeneous configurations of the holographic superfluids

• Dark soliton (1d for the boundary system)
[Keranen, Keski-Vakkuri, Nowling and Yogendran, 2009; ...]

Figure: Bulk profile (ψ ≡ Ψ/z) of the holographic dark soliton at
the chemical potential µ = 6
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• Vortex (2d for the boundary system)
[Keranen, Keski-Vakkuri, Nowling and Yogendran, 2009; ...]

Figure: The bottom and top view of |〈O〉| for the holographic
superfluid with vortices at µ = 6.25. The vortex cores are located at
the position where the condensate vanishes. [Y. Du, C. Niu, YT and H.

Zhang, arXiv:1412.8417]
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Dynamics of inhomogeneous holographic superfluids
[Chesler, Liu and Adams, 2012; Ewerz, Gasenzer, Karl and Samberg, 2014; Du, Niu,

YT and Zhang, 2014]

• Equations of motion in the inhomogeneous case:

∂t(∂zAt + ∂ ·A)− (∂2At + f∂z∂ ·A) (4)

= −i(ψ∗∂tψ − ψ∂tψ∗)− 2Atψ
∗ψ + if(ψ∗∂zψ − ψ∂zψ∗)

∂z(∂At + f∂zA)− 2∂t∂zA + ∂2A− ∂(∂ ·A)

= i(ψ∗∂ψ − ψ∂ψ∗) + 2Aψ∗ψ (5)

∂z(∂zAt − ∂ ·A) = i(ψ∗∂zψ − ψ∂zψ∗) (6)

2(∂t−iAt)∂zψ−i∂zAtψ−f∂2zψ−f ′∂zψ−(∂−iA)2ψ+zψ = 0
(7)

Here A ≡ (Ax, Ay), ∂ ≡ (∂x, ∂y).
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• Five equations for four unknown functions (At,A, ψ)

(4) + (5) + (7) =⇒ ∂t(6)

(5) + (6) + (7) =⇒ ∂z(4)

• Choice of the constraint equation: (6)

∂z(∂zAt − ∂ ·A) = i(ψ∗∂zψ − ψ∂zψ∗)

holds on the initial surface t = 0. Evolve the system using (4),
(5) and (7) to the final surface t = tf .
[A. Adams, P. Chesler and H. Liu, arXiv:1212.0281]
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• Choice of the constraint equation: (4)

(4)|z=0 =⇒

∂tρ+ ∂ · J = 0 (8)

holds on the boundary surface z = 0. Prepare the initial value
of (A, ψ, ρ) and then use (5), (7) and (8) to evolve the
system while using (6) to obtain At on every time slice with
the boundary conditions ∂zAt|z=0 = −ρ and At|z=0 = µ
(gauge fixing).

Reminder: holographic dictionary

〈Jν〉 = limz→0
√−gF zν

[Y. Du, C. Niu, YT and H. Zhang, arXiv:1412.8417]
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Kolmogorov scaling law and energy cascade in superfluid
turbulence

• Superfluid velocity for the order parameter ϕ(x):

u =
j

|ϕ|2 , j =
i

2
[ϕ∗(∂ − ia)ϕ− ϕ(∂ + ia)ϕ∗]

• Quantization of circulation of the velocity field:∮
C
dx · u = 2πw

with the winding number w an integer.

• Kinetic energy density and its spectra:

εkin(t,x) =
|ϕ|2

2
u∗ · u

Ekin(t) =

∫
εkin(t,x)d2x =

∫ ∞
0

εkin(t, k)dk,
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[A. Adams, P. Chesler and H. Liu, arXiv:1212.0281]

x1

x2x2

x1

condensate at time 0 and 
time 300

Tuesday, November 27, 12

Figure: The superfluid condensate |〈O〉|2 at time t = 0 (left) and t = 300
(right). The superfluid current circulates around the core of each vortex,
where the condensate vanishes. The winding number ±6 vortices (left)
rapidly decay into the winding number ±1 vortices (right), and then
vortices of opposite winding number collide and annihilate.
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Figure: The energy spectrum εkin(t, k) at time t = 300 (quantum
turbulence). The red dashed line is the Kolmogorov scaling k−5/3 valid in
an assumed inertial range, which also appears in the classical turbulence,
suggestive of a universal property of turbulence.
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Figure: Energy injection and energy cascade. The blue curve is the
energy spectrum with no driving while red curve is that with driving in
the IR. Drive adds energy in the IR between times 210 < t < 260. As
time progresses the added energy propagates from the IR to the UV
(direct energy cascade) where it is dissipated.
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Comments on the energy cascade in classical and quantum
turbulence in two spatial dimensions:

• There are indications that the classical turbulence has an
inverse energy cascade (from the UV to the IR).

• Phenomenological methods give conflicting conclusions
regarding the direction of cascade in superfluid turbulence.
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Towards the BEC-BCS crossover in holographic superfluids

• BEC-type and BCS-type superfluidity viewed from the dark
solitons in cold atom systems (at zero temperature)

BEC-type: condensation of interacting bosonic degrees of
freedom (molecules of bound fermions)
density depletion > 80%, tending to 1 in the
BEC limit

Crossover: smooth transition between the BEC side and the
BCS side
density depletion ≈ 80%

BCS-type: condensation of Cooper pairs formed by
interacting fermions
density depletion < 80%, tending to 0 in the
BCS limit

[Pitaevskii et al, arXiv:0706.0601]
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Figure: (a) Order parameter ∆ and
(b) density n for a dark soliton on
the BCS side (dashed line), at the
crossover (solid) and on the BEC
side (dot-dashed), respectively. Both
∆ and n are normalized to their
asymptotic values far away from the
soliton. [Pitaevskii et al, 2007]

• The density depletion is
defined as

1− n

n0

at the center of the soliton,
where the order parameter
vanishes.
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• Quantizations in holography: standard vs alternative

Ψ = zψ− + z2ψ+ + o(z2)

J− = ψ− = 0 −→ 〈O+〉 = ψ∗+
J+ = ψ+ = 0 −→ 〈O−〉 = ψ∗−

(static case)

• Density depletion of holographic solitons [Keranen et al, 2009]
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Figure: Left: density depletion for µ/µc = 1.9: 〈O−〉 is blue
(BEC-like). Right: density depletion as a function of the
temperature: 〈O−〉 on the top and 〈O+〉 on the bottom.
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Universality of the Kolmogorov scaling law and direct energy
cascade in (holographic) superfluid turbulence

• Realization of the alternative quantization in the dynamic case
[Guo, Lan, Niu, YT and Zhang; Lan, YT and Zhang, 2016]

Under the Eddington coordinates

〈O+〉 = δI+
δψ−

= ψ∗+ − ψ̇∗− − iatψ∗−, I+ ≡ Iren
ψ̃+ ≡ 〈O+〉∗ =⇒ 〈O−〉 = δI−

δψ̃+
= −ψ∗−

I− = I + (
∫
B
√−γnaΨ∗DaΨ + C.C.) +

∫
B
√−γ|Ψ|2

I+ and I− are related by a Legendre transformation.
So the proper boundary condition for a holographic superfluid
under the alternative quantization is at z = 0

ψ̃+ = ψ+ − ψ̇− + iatψ− = 0

The gauge field sector is the same in both quantizations.
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Figure: The initial configuration of the BEC-like superfluid at the
chemical potential µ = 2 > µc ≈ 1.12. (Anti-)vortices are placed in the
periodic box. The first two panels are 3D plots of |〈O−〉|2. The rightmost
panel is the density plot of |〈O−〉|2 with the red points denoting vortices
(w = 6) and the blue points denoting anti-vortices (w = −6).
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Figure: The later time (t = 400) configuration of the turbulent BEC-like
superfluid. The first two panels are 3D plots of |〈O−〉|2. The rightmost
panel is the density plot of |〈O−〉|2 with the red points denoting vortices
(w = 1) and the blue points denoting anti-vortices (w = −1). [S. Lan,
YT and H. Zhang, arXiv:1605.01193]
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Figure: The temporal evolution of averaged vortex number N(t) (left)
and its inverse (right) in the turbulent superfluid over 18 groups of data
at the chemical potential µ = 2. The latter was fitted by the behavior
d
dt

1
N(t) = Γ(t), with two constant Γ regions found. Among them the late

time (t > 240) linear region is believed to be universal, since it is also
observed under the standard quantization in different initial conditions
[Ewerz, Gasenzer, Karl and Samberg; Du, Niu, YT and Zhang, 2014] and
in cold atom experiments [Kwon et al, 2014].

Yu Tian Stability and non-equilibrium physics in holography



Motivation and introduction Holographic superfluids/superconductors: the homogeneous case Holographic superfluids/superconductors: the inhomogeneous case Conclusion and discussion

Figure: The kinetic energy spectra εkin(t, k) at various times for an
arbitrarily chosen evolution process at µ = 2. The blue lines are fitting
results of the spectra, which are close to the Kolmogorov scaling k−5/3.
It is noteworthy that the inertial range keeps creeping into the IR as time
progresses.
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Time Inertial range in k & x space Averaged vortex spacing

150 0.33∼1.74, 3.6∼19.0 11.8

200 0.28∼1.74, 3.6∼22.4 15.35

300 0.20∼1.66, 3.8∼31.4 21.32

450 0.16∼1.45, 4.3∼39.3 28.86

Table: The inertial range and averaged vortex spacing at different times,
where the averaged vortex spacing is estimated by the formula 100√

N(t)
.
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Figure: The comparison of the kinetic energy spectra εkin(t, k) at various
times between the driven and undriven systems. The external sources are
turned on at t = 150 and turned off at t = 210. The blue curve is the
kinetic energy spectrum for the undriven BEC-like superfluid while the
red one is that for the driven BEC-like superfluid. The direct energy
cascade is also observed.

Yu Tian Stability and non-equilibrium physics in holography



Motivation and introduction Holographic superfluids/superconductors: the homogeneous case Holographic superfluids/superconductors: the inhomogeneous case Conclusion and discussion

Figure: In contrast, the energy injected at the UV is dissipated away
rapidly, having no effect on elsewhere of the kinetic energy spectrum.
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Conclusion

• We have proposed an efficient method to obtain the QNM of
holographic systems in the coupled case.

• By the fully nonlinear dynamic evolution of holographic
systems, we have found that the dynamic stability of the
BHMRS model is consistent with its thermodynamics stability.

• Quantum turbulence has been studied within the framework
of a BEC-like holographic superfluid, with the following
(possibly) universal features found:

• Late time linearly decaying law for the inverse vortex number
N(t)−1

• The Kolmogorov −5/3 scaling for the kinetic energy spectrum
in the inertial range

• The direct energy cascade in the inertial range
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Discussion

• Snake instability of the superfluid soliton (with M. Guo, E.
Keski-Vakkuri and H. Zhang, in finalizing)

• Striped configuration, optical lattice, ...

• The zero temperature (or low temperature) limit?

• Take into account back-reaction?

Remarks

• Holography offers a very important method for one to
understand dynamics of strongly coupled quantum many-body
systems, especially at finite temperature (with dissipation).

• There are still many theoretical problems as well as technical
difficulties to overcome in holographic approaches.
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Thanks for your attention!
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