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The Kondo Effect
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below TK emerged in the late 1960s from Phil Anderson’s idea
of “scaling” in the Kondo problem. Scaling assumes that the
low-temperature properties of a real system are adequately
represented by a coarse-grained model. As the temperature 
is lowered, the model becomes coarser and the number of
degrees of freedom it contains is reduced. This approach can
be used to predict the properties of a real system close to
absolute zero.

Later, in 1974, Kenneth Wilson, who was then at Cornell
University in the US, devised a method known as “numerical
renormalization” that overcame the shortcomings of conven-
tional perturbation theory, and confirmed the scaling hypo-
thesis. His work proved that at temperatures well below TK,
the magnetic moment of the impurity ion is screened entirely
by the spins of the electrons in the metal. Roughly speaking,
this spin-screening is analogous to the screening of an electric
charge inside a metal, although the microscopic processes are
very different.

The role of spin
The Kondo effect only arises when the defects are magnetic –
in other words, when the total spin of all the electrons in the
impurity atom is non-zero. These electrons coexist with the
mobile electrons in the host metal, which behave like a sea
that fills the entire sample. In such a Fermi sea, all the states
with energies below the so-called Fermi level are occupied,
while the higher-energy states are empty.

The simplest model of a magnetic impurity, which was
introduced by Anderson in 1961, has only one electron level
with energy εo. In this case, the electron can quantum-
mechanically tunnel from the impurity and escape provided
its energy lies above the Fermi level, otherwise it remains
trapped. In this picture, the defect has a spin of 1/2 and its 
z-component is fixed as either “spin up” or “spin down”.

However, so-called exchange processes can take place that
effectively flip the spin of the impurity from spin up to spin
down, or vice versa, while simultaneously creating a spin ex-
citation in the Fermi sea. Figure 2 illustrates what happens
when an electron is taken from the localized impurity state
and put into an unoccupied energy state at the surface of the

Fermi sea. The energy needed for such a process is large,
between about 1 and 10 electronvolts for magnetic impur-
ities. Classically, it is forbidden to take an electron from the
defect without putting energy into the system. In quantum
mechanics, however, the Heisenberg uncertainty principle
allows such a configuration to exist for a very short time –
around h/|εo|, where h is the Planck constant. Within this
timescale, another electron must tunnel from the Fermi sea
back towards the impurity. However, the spin of this electron
may point in the opposite direction. In other words, the initial
and final states of the impurity can have different spins.

This spin exchange qualitatively changes the energy spec-
trum of the system (figure 2c). When many such processes are
taken together, one finds that a new state – known as the
Kondo resonance – is generated with exactly the same energy
as the Fermi level.

The low-temperature increase in resistance was the first
hint of the existence of the new state. Such a resonance is
very effective at scattering electrons with energies close to the
Fermi level. Since the same electrons are responsible for the
low-temperature conductivity of a metal, the strong scatter-
ing contributes greatly to the resistance.

The Kondo resonance is unusual. Energy eigenstates usu-
ally correspond to waves for which an integer number of half
wavelengths fits precisely inside a quantum box, or around
the orbital of an atom. In contrast, the Kondo state is gener-
ated by exchange processes between a localized electron and
free-electron states. Since many electrons need to be involved,
the Kondo effect is a many-body phenomenon.

It is important to note that that the Kondo state is always “on
resonance” since it is fixed to the Fermi energy. Even though
the system may start with an energy, εo, that is very far away
from the Fermi energy, the Kondo effect alters the energy of
the system so that it is always on resonance. The only require-
ment for the effect to occur is that the metal is cooled to suffi-
ciently low temperatures below the Kondo temperature TK.

Back in 1978 Duncan Haldane, now at Princeton University
in the US, showed that TK was related to the parameters of
the Anderson model by TK = 1/2(ΓU )1/2exp[πεo(εo +U )/ΓU ],
where Γ is the width of the impurity’s energy level, which 

1 The Kondo effect in metals and in quantum dots
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(a) As the temperature of a metal is lowered, its resistance decreases until it saturates at some residual value (blue). Some metals become superconducting at a
critical temperature (green). However, in metals that contain a small fraction of magnetic impurities, such as cobalt-in-copper systems, the resistance increases
at low temperatures due to the Kondo effect (red). (b) A system that has a localized spin embedded between metal leads can be created artificially in a
semiconductor quantum-dot device containing a controllable number of electrons. If the number of electrons confined in the dot is odd, then the conductance
measured between the two leads increases due to the Kondo effect at low temperature (red). In contrast, the Kondo effect does not occur when the dot contains
an even number of electrons and the total spin adds up to zero. In this case, the conductance continuously decreases with temperature (blue).
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The Kondo Effect

A many-body state (Kondo resonance) formed when conduction
electrons hybridize with the (magnetic) impurity:

Impurity screened
IR physics changed

Modern perspective:
RG flow triggered by a marginally relevant operator
Single-impurity problem: rare example of flow between two
trivial fixed points
Generalised Kondo problem: non-Fermi liquid IR FP!



Motivation

Many techniques developed to study Kondo physics:
NRG, DMRG, Quantum Monte Carlo
Bethe ansatz/Integribility
Large-N
CFT

Non-equilibrium aspects not easy to access with traditional
techniques

Holography provides new/alternative method of study



Holographic Description

Essential ingredients of the Kondo problem:
Chiral fermions: Ja = ψ†LΓaψL

Impurity: Sa = χ†T aχ (slave fermion representation)
Kondo interaction: J · S = |O|2 + O(1/N), O = ψ†Lχ

Single-impurity problem effectively 1D: CFT approach
Ja satisfy Kac-Moody algebra
χ†χ = Q ↔ Rimp

〈O〉 6= 0⇒ impurity screened

How to describe these holographically?
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Top-Down View

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Nc D3 • • • • – – – – – –
N7 D7 • • – – • • • • • •
N5 D5 • – – – • • • • • –

Maldacena limit: Nc →∞, gs → 0, λ ≡ 4πgsNc fixed; λ→∞

Probe limit: λ5,7 ∝ N5,7/Nc → 0

3-7 strings: (1+1)-dim. chiral fermions ψL

3-5 strings: (0+1)-dim. slave fermions χ
5-7 strings: tachyon



Gravity Dual

Near horizon limit:
D3: AdS5 × S5 background
D7 along AdS3 × S5: Chern-Simons gauge field A
D5 along AdS2 × S4: gauge field a, bifundamental scalar Φ

Duality dictionary:
AdS3 CS gauge field A↔ chiral fermion current J = ψ†LΓψL

AdS2 gauge field a↔ impurity spin S = χ†Tχ
AdS2 bifundamental scalar Φ↔ Kondo interaction O = ψ†Lχ



Bottom-Up Model
S = SG + SCS + SAdS2

SG =
1

2κ2
N

∫
d3x
√
−g

(
R +

2
L2

)
SCS = −N4π

∫
tr
(

A ∧ dA +
2
3A ∧ A ∧ A

)
SAdS2 = −N

∫
d3x δ(x)

√
−γ

[1
4 tr f 2 + |DΦ|2 + V (Φ†Φ)

]
DΦ ≡ ∂Φ + i q A Φ− i q a Φ , Φ = φeiψ , f = da

Bottom-up: Choose V (Φ†Φ) = M2Φ†Φ

Finite temperature: BTZ black hole

ds2 =
1
z2

(
dz2

h(z)
− h(z) dt2 + dx2

)
, h(z) = 1− z2

z2
H
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Field Equations

The equations of motion (EOMs) are

εnµνFµν = −4π
N δ(x)Jn

∂m
(√
−g gmpgnqfpq

)
= −Jn

∂m
(√
−g gmn∂nφ

)
=
√
−g ∆m∆mφ+

1
2
√
−g ∂V

∂φ

∂nJn = 0

where we parametrise Φ = φeiψ, and define

Jn ≡ 2
√
−ggmn∆mφ

2 , ∆m ≡ Am − am + ∂mψ



Static Solution

Ansatz (az = 0 gauge): at(z), φ(z), Ax (z) 6= 0

Near the boundary z → 0:

at(z) ∼ Q
z + µ , φ(z) ∼

√
z [α log(Λz) + β] , Ax (z)→ 0

|O|2 marginal ↔ M2 − Q2 = −1/4 = AdS2 BF bound

Double trace coupling [Witten 01]: α = κβ ∝ 〈O〉
κ Kondo coupling
κ runs: φ(z) independent of Λ



Running of Kondo Coupling

T = 0: Under scale change Λ→ Λ′,

κ(Λ′) =
κ(Λ)

1 + κ(Λ) log(Λ/Λ′)

For κ < 0:
Asymptotic freedom: Λ′/Λ→∞, κ→ 0
IR divergence: Λ′/Λ→ 0, κ→∞ at Λ′ = Λe1/κ(Λ)

T 6= 0: Under rescaling xµ → x̃µzH , at → ãt/zH , zH = (2πT )−1

Φ(z)→ Φ̃(z̃) ∼ αT
√

z̃ log(z̃) + βT
√

z̃

κT ≡
αT
βT

=
κ

1 + κ log(ΛzH)
(RG invar.)



Dynamical Scale Generation

κ(Λ) = −1

Divergence ⇒ TK = 1
2πΛe1/κ(Λ), T/TK = e−1/κT (RG invar.)



Phase Transition
Large-N Kondo effect

〈O〉 ∝ κβ ∝
(

1− T
Tc

)1/2
, T . Tc ≈ 0.89TK , κTc ≈ 8.98



Quantum Quenches

Study the response of the holograhic system as the Kondo coupling
is varied in time

Quench protocols:
Gaussian pulse
Constant slope, erf, tanh

Consider:
Quench within same phase
Quench across phases



Eddington-Finkelstein Coordinates

The numerical problem is most conveniently solved in the
Eddington-Finkelstein (EF) coordinates where perturbations can
travel from the boundary to the horizon in finite coordinate time.

Define EF time coordinate by

dv = dt − dz
h(z)

⇒ v = t − arctanh z

The background metric becomes

ds2 =
1
z2

(
−h(z)dv2 − 2dvdz + dx2

)



EF Coordinate EOMs
Ansatz: Ax (z , v), at(z , v), az(z , v), φ(z , v), ψ(z , v) 6= 0

0 = ∂v Ax − 4πδ(x)φ2 (∂vψ − h∂zψ)

0 = 4πδ(x)φ2
(
∂zψ −

av
h

)
+ ∂zAx

0 = −∂
2
v av
h + ∂z∂v av −

2φ2 (∂vψ − h∂zψ)

z2

0 =
(zh′ − 2h) ∂v av

zh2 − ∂z∂v av
h +

2∂zav
z

+ ∂2
z av −

2avφ
2

z2h +
2∂zψφ

2

z2

0 = φ

(
−2av∂vψ

h2 +
a2

v
h2 +

2∂vψ∂zψ

h − ∂zψ
2
)

+
h′∂zφ

h − 2∂z∂vφ

h + ∂2
zφ



Solving the PDEs

General strategy:
1 Solve the initial static problem

Find the initial static solution to the EOMs to the specified
accuracy using both shooting and pseudospectral methods.

2 Time-march
Time-evolve the initial solution using the implicit
Crank-Nicholson method.

Need to regulate boundary non-analyticities:
Use change of variables and field redefinition to remove

√
z

and (log)n terms so that fields are regular at the boundary up
to the second derivatives.
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J.E., Flory, Newrzella, Strydom, Wu
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Timescales in quantum quench
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Discussion

Holographic Kondo system relaxes back to the equilibrium
state characterised by the end value of the Kondo coupling.

Relaxation time scale depends on the final size of the
condensate.

Quasi-normal modes determine the relaxation behaviour and
control the time scales of the equilibration process.

Cf. Bayat, Bose, Johannesson, Sodano, PRB 92, 155141 (2015):
Late-time behviour of a two-impurity Kondo spin-chain model after
a quantum quench characterised by single-frequency oscillations.


