Explorations of Holographic Kondo Physics: Quantum Quenches

Jackson Wu

University of Alabama

June, 2016

Based on works:

J. Erdmenger, C. Hoyos, A. O'Bannon, JW JHEP 1312, 086 (2013), arXiv:1310.3271

J. Erdmenger, M. Flory, M. Newrzella, M. Strydom, JW In progress

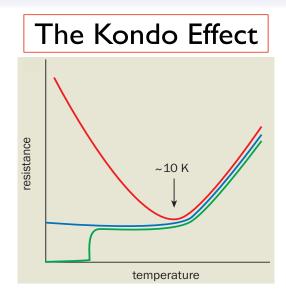
Advertisement

"Quasinormal modes, charged magnetic brane in AdS_5 , and (chiral) transport"

M. Ammon, M. Kaminski, R. Koirala, J. Leiber, JW

Outline

- Introduction
- The holographic Kondo model
- Quantum quenches
- Discussion



The Kondo Effect

A **many-body** state (Kondo resonance) formed when conduction electrons hybridize with the (magnetic) impurity:

- Impurity screened
- IR physics changed

Modern perspective:

- RG flow triggered by a marginally relevant operator
- **Single-impurity problem**: rare example of flow between two trivial fixed points
- Generalised Kondo problem: non-Fermi liquid IR FP!

Motivation

Many techniques developed to study Kondo physics:

- NRG, DMRG, Quantum Monte Carlo
- Bethe ansatz/Integribility
- Large-N
- CFT

Non-equilibrium aspects not easy to access with traditional techniques

Holography provides **new**/alternative method of study

Holographic Description

Essential ingredients of the Kondo problem:

- Chiral fermions: $J^a = \psi_L^{\dagger} \Gamma^a \psi_L$
- Impurity: $S^a = \chi^{\dagger} T^a \chi$ (slave fermion representation)
- Kondo interaction: $J \cdot S = |\mathcal{O}|^2 + O(1/N)$, $\mathcal{O} = \psi_L^{\dagger} \chi$

Holographic Description

Essential ingredients of the Kondo problem:

- Chiral fermions: $J^a = \psi_L^{\dagger} \Gamma^a \psi_L$
- Impurity: $S^a = \chi^{\dagger} T^a \chi$ (slave fermion representation)
- Kondo interaction: $J \cdot S = |\mathcal{O}|^2 + O(1/N)$, $\mathcal{O} = \psi_L^{\dagger} \chi$

Single-impurity problem effectively 1D: CFT approach

- J^a satisfy Kac-Moody algebra
- $\chi^{\dagger}\chi = Q \leftrightarrow R_{imp}$
- $\bullet \ \left< \mathcal{O} \right> \neq 0 \Rightarrow \text{impurity screened}$

Holographic Description

Essential ingredients of the Kondo problem:

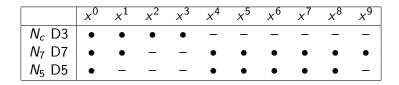
- Chiral fermions: $J^a = \psi_L^{\dagger} \Gamma^a \psi_L$
- Impurity: $S^a = \chi^{\dagger} T^a \chi$ (slave fermion representation)
- Kondo interaction: $J \cdot S = |\mathcal{O}|^2 + O(1/N)$, $\mathcal{O} = \psi_L^{\dagger} \chi$

Single-impurity problem effectively 1D: CFT approach

- J^a satisfy Kac-Moody algebra
- $\chi^{\dagger}\chi = Q \leftrightarrow R_{imp}$
- $\bullet \ \left< \mathcal{O} \right> \neq 0 \Rightarrow \text{impurity screened}$

How to describe these holographically?

Top-Down View



Maldacena limit: $N_c \rightarrow \infty$, $g_s \rightarrow 0$, $\lambda \equiv 4\pi g_s N_c$ fixed; $\lambda \rightarrow \infty$

Probe limit: $\lambda_{5,7} \propto N_{5,7}/N_c \rightarrow 0$

- 3-7 strings: (1+1)-dim. chiral fermions ψ_L
- 3-5 strings: (0+1)-dim. slave fermions χ
- 5-7 strings: tachyon

Gravity Dual

Near horizon limit:

- D3: $AdS_5 \times S^5$ background
- D7 along $AdS_3 \times S^5$: Chern-Simons gauge field A
- D5 along $AdS_2 \times S^4$: gauge field *a*, bifundamental scalar Φ

Duality dictionary:

- AdS_3 CS gauge field $A \leftrightarrow$ chiral fermion current $J = \psi_L^{\dagger} \Gamma \psi_L$
- AdS_2 gauge field $a \leftrightarrow$ impurity spin $S = \chi^{\dagger} T \chi$
- AdS_2 bifundamental scalar $\Phi \leftrightarrow$ Kondo interaction $\mathcal{O} = \psi_L^{\dagger} \chi$

Bottom-Up Model

$$S = S_G + S_{CS} + S_{AdS_2}$$

$$S_G = \frac{1}{2\kappa_N^2} \int d^3x \sqrt{-g} \left(R + \frac{2}{L^2}\right)$$

$$S_{CS} = -\frac{N}{4\pi} \int tr \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$$

$$S_{AdS_2} = -N \int d^3x \,\delta(x) \sqrt{-\gamma} \left[\frac{1}{4}tr \, f^2 + |\mathcal{D}\Phi|^2 + V(\Phi^{\dagger}\Phi)\right]$$

$$\mathcal{D}\Phi \equiv \partial\Phi + i \, q \, A \Phi - i \, q \, a \Phi, \quad \Phi = \phi e^{i\psi}, \quad f = da$$

Bottom-up: Choose $V(\Phi^{\dagger}\Phi) = M^2 \Phi^{\dagger}\Phi$

Bottom-Up Model

$$S = S_G + S_{CS} + S_{AdS_2}$$

$$S_G = \frac{1}{2\kappa_N^2} \int d^3x \sqrt{-g} \left(R + \frac{2}{L^2}\right)$$

$$S_{CS} = -\frac{N}{4\pi} \int tr \left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)$$

$$S_{AdS_2} = -\mathcal{N} \int d^3x \,\delta(x) \sqrt{-\gamma} \left[\frac{1}{4}tr \, f^2 + |\mathcal{D}\Phi|^2 + V(\Phi^{\dagger}\Phi)\right]$$

$$\mathcal{D}\Phi \equiv \partial\Phi + i \, q \, A \Phi - i \, q \, a \Phi, \quad \Phi = \phi e^{i\psi}, \quad f = da$$
Bottom-up: Choose $V(\Phi^{\dagger}\Phi) = M^2 \Phi^{\dagger}\Phi$

Finite temperature: BTZ black hole

$$ds^{2} = \frac{1}{z^{2}} \left(\frac{dz^{2}}{h(z)} - h(z) dt^{2} + dx^{2} \right), \quad h(z) = 1 - \frac{z^{2}}{z_{H}^{2}}$$

Field Equations

The equations of motion (EOMs) are

$$\epsilon^{n\mu\nu}F_{\mu\nu} = -\frac{4\pi}{N}\delta(x)J^n$$

$$\partial_m\left(\sqrt{-g}\,g^{mp}g^{nq}f_{pq}\right) = -J^n$$

$$\partial_m\left(\sqrt{-g}\,g^{mn}\partial_n\phi\right) = \sqrt{-g}\,\Delta^m\Delta_m\phi + \frac{1}{2}\sqrt{-g}\,\frac{\partial V}{\partial\phi}$$

$$\partial_n J^n = 0$$

where we parametrise $\Phi = \phi e^{i\psi}$, and define

$$J^n \equiv 2\sqrt{-g}g^{mn}\Delta_m\phi^2$$
, $\Delta_m \equiv A_m - a_m + \partial_m\psi$

Static Solution

Ansatz ($a_z = 0$ gauge): $a_t(z)$, $\phi(z)$, $A_x(z) \neq 0$ Near the boundary $z \rightarrow 0$:

$$a_t(z) \sim rac{Q}{z} + \mu \,, \quad \phi(z) \sim \sqrt{z} \left[lpha \log(\Lambda z) + eta
ight] \,, \quad A_x(z) o 0$$

 $|\mathcal{O}|^2$ marginal \leftrightarrow $M^2 - Q^2 = -1/4 = AdS_2$ BF bound

Double trace coupling [Witten 01]: $\alpha = \kappa \beta \propto \langle \mathcal{O} \rangle$

- κ Kondo coupling
- κ runs: $\phi(z)$ independent of Λ

Running of Kondo Coupling

$$\mathbf{T} = \mathbf{0}$$
: Under scale change $\Lambda \to \Lambda'$,

$$\kappa(\Lambda') = rac{\kappa(\Lambda)}{1+\kappa(\Lambda)\log(\Lambda/\Lambda')}$$

For $\kappa < 0$:

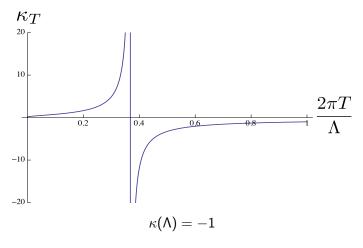
- Asymptotic freedom: $\Lambda'/\Lambda \to \infty$, $\kappa \to 0$
- IR divergence: $\Lambda'/\Lambda \to 0$, $\kappa \to \infty$ at $\Lambda' = \Lambda e^{1/\kappa(\Lambda)}$

 $\mathbf{T} \neq \mathbf{0}$: Under rescaling $x^{\mu} o \tilde{x}^{\mu} z_{H}$, $a_t o \tilde{a}_t/z_{H}$, $z_H = (2\pi T)^{-1}$

$$\Phi(z) \to \tilde{\Phi}(\tilde{z}) \sim \alpha_T \sqrt{\tilde{z}} \log(\tilde{z}) + \beta_T \sqrt{\tilde{z}}$$

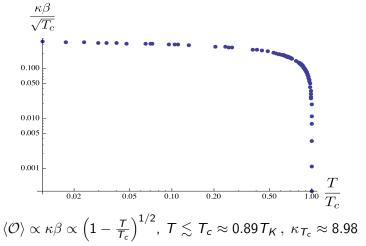
$$\kappa_T \equiv \frac{\alpha_T}{\beta_T} = \frac{\kappa}{1 + \kappa \log(\Lambda z_H)}$$
(RG invar.)

Dynamical Scale Generation



Divergence $\Rightarrow T_{\mathcal{K}} = \frac{1}{2\pi} \Lambda e^{1/\kappa(\Lambda)}, \ T/T_{\mathcal{K}} = e^{-1/\kappa_T}$ (RG invar.)

Phase Transition



Quantum Quenches

Study the response of the holograhic system as the Kondo coupling is varied in time

Quench protocols:

- Gaussian pulse
- Constant slope, erf, tanh

Consider:

- Quench within same phase
- Quench across phases

Eddington-Finkelstein Coordinates

The numerical problem is most conveniently solved in the Eddington-Finkelstein (EF) coordinates where perturbations can travel from the boundary to the horizon in finite coordinate time.

Define EF time coordinate by

$$dv = dt - \frac{dz}{h(z)} \Rightarrow v = t - \operatorname{arctanh} z$$

The background metric becomes

$$ds^{2} = \frac{1}{z^{2}} \left(-h(z)dv^{2} - 2dvdz + dx^{2} \right)$$

EF Coordinate EOMs

Ansatz: $A_x(z, v)$, $a_t(z, v)$, $a_z(z, v)$, $\phi(z, v)$, $\psi(z, v) \neq 0$ $0 = \partial_{\nu}A_{\nu} - 4\pi\delta(x)\phi^2(\partial_{\nu}\psi - h\partial_{\tau}\psi)$ $0 = 4\pi\delta(x)\phi^2\left(\partial_z\psi - \frac{a_v}{h}\right) + \partial_z A_x$ $0 = -\frac{\partial_{v}^{2}a_{v}}{L} + \partial_{z}\partial_{v}a_{v} - \frac{2\phi^{2}(\partial_{v}\psi - h\partial_{z}\psi)}{z^{2}}$ $0 = \frac{(zh'-2h)\partial_{v}a_{v}}{zh^{2}} - \frac{\partial_{z}\partial_{v}a_{v}}{h} + \frac{2\partial_{z}a_{v}}{r}$ $+\partial_z^2 a_v - \frac{2a_v\phi^2}{z^2b} + \frac{2\partial_z\psi\phi^2}{z^2b}$ $0 = \phi \left(-\frac{2a_v \partial_v \psi}{h^2} + \frac{a_v^2}{h^2} + \frac{2\partial_v \psi \partial_z \psi}{h} - \partial_z \psi^2 \right)$ $+\frac{h'\partial_z\phi}{h}-\frac{2\partial_z\partial_v\phi}{h}+\partial_z^2\phi$

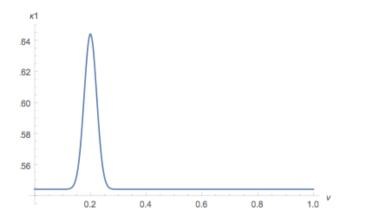
Solving the PDEs

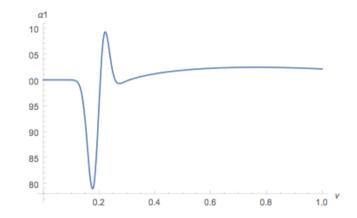
General strategy:

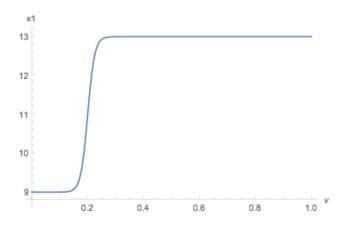
- Solve the initial static problem
 - Find the initial static solution to the EOMs to the specified accuracy using both shooting and pseudospectral methods.
- 2 Time-march
 - Time-evolve the initial solution using the implicit Crank-Nicholson method.

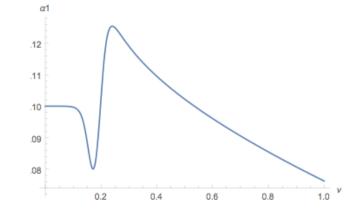
Need to regulate boundary non-analyticities:

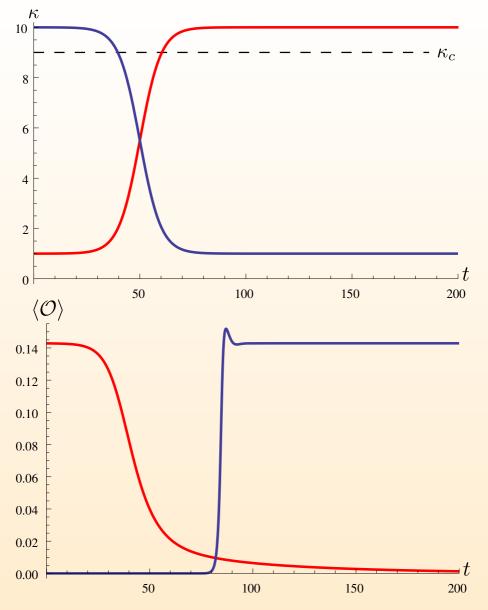
 Use change of variables and field redefinition to remove √z and (log)ⁿ terms so that fields are regular at the boundary up to the second derivatives. Kondo coupling



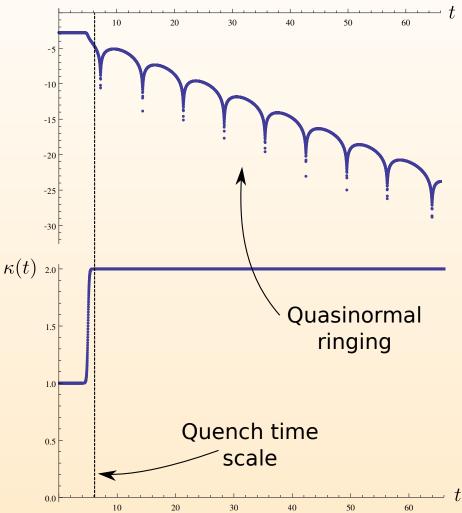








 $\log(|\langle \mathcal{O} \rangle|)$



Discussion

- Holographic Kondo system relaxes back to the equilibrium state characterised by the end value of the Kondo coupling.
- Relaxation time scale depends on the final size of the condensate.
- Quasi-normal modes determine the relaxation behaviour and control the time scales of the equilibration process.

Cf. Bayat, Bose, Johannesson, Sodano, **PRB 92, 155141 (2015)**: Late-time behviour of a two-impurity Kondo spin-chain model after a quantum quench characterised by single-frequency oscillations.