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m The Cuprates are real life example of strong coupling
m Intriguing phase diagram
m Related to strong coupling?
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m Incoherent transport
m Anomalous scaling of conductivity and Hall angle with T’
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AdS/CMT

To model these systems in holography:

m Consider a CFT in d + 1 dimensions with a U(1)

Finite temperature T’

Deform by chemical potential ;& and magnetic field field B

Deform by relevant operators to model

m Lattices and Momentum dissipation (More on that later...)
m Impurities
m Random Disorder

m Introduce sources to study two point functions (e.g. transport
properties)



AdS/CMT
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The CFT vacuum is modelled by AdSy.o

dr?

d32 = T2 (—dt2 + dXLQi) + 7"_2



AdS/CMT

Schematically the bulk action is

1
L=Rgo+A— 1F2 + matter

m [he vacuum is a solution with trivial matter fields

m Different microscopic theories correspond to different matter
content

Each bulk field corresponds to different boundary operator O

Use the relevant/marginal ones to deform the boundary theory

S = Scrr + /dde o(x) O(x)

m Introduce a black hole (brane) horizon in the bulk to raise
temperature T’



AdS/CMT

Universal deformations are
m T he stress tensor

d 2
ds? = r* (—dt* + dx3 + 5 g, (x)dz*dz") + 7“% SREE

m The chemical potential

A=px)dt+---

m Subleading terms give the VEVs

m The dual action is now

1
S = Scrr +/MJt + §5QMVTHV



AdS/CMT

The bulk spacetime geometrizes the resulting RG flow:

m At finite 7" the geometry the BH horizon serves as an IR cutoff

m At 7' = 0 the bulk geometry becomes an interpolation
between fixed point solutions e.g.

AdS AdS

“ — =

m Each fixed point has its own spectrum: (Oyy, Ayy),
(Or1Rr, AIR)



AdS/CMT

To probe the IR/UV part of the geometry:

m Introduce perturbative source §S = [ d¢(w,k)Oy

m Extract the two point function G(w, k)
m See how it scales, e.g.
m Im G(\w, k) = A\220v—4=11m G(w, k), for A >> 1

B Im Gw, \k) = \22812=4=1 i G(w, k), for A << 1

m The low T horizon describes the ground state of holographic
theories
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Finite chemical potential

Possible (unbroken phase) ground states at finite chemical
potential?

m Preserve time translations 7; and Euclidean group E4

m Semi-local critical ¢t — \ ¢, AdSs x R
ds? = —r? dt* + dx3 + dr*/r?
m Lifshitzt — A\*t, x— Ax
ds? = —r¥ dt? + r? dx? + dr? /r?
m Hyper-scale violating

ds® = 7“*29/51(—7“22 dt® + r? dx?l + drz/r2)



Finite chemical potential

Phase transitions

T = 00| LV T =0
e
T=0IRr T=0 New IR

Theory can develop symmetry breaking instabilities:
m At 7' >> y the normal phase bh's are stable
m At T' < T, there exist tachyonic modes

m Zero mode at 7' = T, gives rise to broken phase black hole
branch

m Dual operator ¢ takes a VEV < ¢ >



Finite chemical potential

Phase transitions

T = oo | v T = oo
I
T=0IRr T=0 New IR
<¢> w(p, T)
T, T T, T



Finite chemical potential

Competing orders

More complicated possibilities lead to “competing orders"”:

T=0o
T.
o AN

m Additional deformations (doping, B, ...

\

) change the diagram

m Holographic theories can lead to intricate phase diagrams

m At T = 0 they provide excellent models for Quantum Phase

Transitions (doping)



Finite chemical potential

S-Superfluidity
Bulk theory with charged scalar under U(1)
[Gubser] [Hartnoll, Herzog, Horowitz]

1
L=R~ F* Dy D"§* — V([ul)
Dy =V — ZqA;ﬂ/’

Broken phase black holes have i # 0

m Spontaneous breaking of U(1)
m Goldstone mode responsible for delta function in conductivity

Ground states have similar symmetries with normal phase but
without the U(1).



Finite chemical potential

Helical order

Bulk Einstein-Maxwell + CS term
[Nakamura, Ooguri, Park] [AD, Gauntlett]

1
L=R+A- ZF2 + AP A Fp s

m Broken phase develops helical current density/magnetisation
e.g. long wavelength helimagnetism in MnSi

< Jy >=¢p sin(kx), < J, >= ¢ cos(kx)

m Spontaneous breaking of translations

m Ground states with broken translations have significant impact
on transport

m Similar story with p-wave order parameter in superfluids



Finite chemical potential

Helical order

Co

k
14
9 0.02 0.04 0.0§ O.OST

/ 13

/
/
/ 12

—0.04} //’
11 P
~006 -
1 _—

-0.08 - (R

-0.02

m Helical black holes come with the period k£ as a modulus
m Fix & by minimising the free energy density

m Preferred k changes with temperature



Finite chemical potential

Simple ground state geometries:
ds? = —r? dt? + dz? + r? (w? + w3) + dr?/r?
w1 + iwy = T (dy + idz)
m Scalingt = \*t, y— Ay, z— Az
m Helical symmetry (Bianchi V1)

m Also hyper-scaling violating version of those



Finite chemical potential

Inhomogeneous phases in D = 4

L =R~ 304" = V($)~12(¢) F*+39(9) €apeaF"F*!

m There terms lead to charge/magnetisation density wave
phases of electric and magnetic branes

m Standard terms of N = 2 SUGRA in D = 4 — appear in
top-down models

For the record:

_ _6eosh [ 2 _ LI
V= 6005h<\/§>, A cosh(s\/§¢>)7 0, Xtanh<\/§¢>)

Choose s =1, x = 3/2



Finite chemical potential

Normal phase ansatz

dsi =% (=g(r)dt® + f(r) dr® + da® + dy?) ,

A:at(r)dt+§($dy—yd$)7 ¢ =9¢(r)

Set deformations of scalar operator to zero

Fix chemical potential a;(0) = p
m For B =0 it is just the electric AdS RN black brane



Finite chemical potential

Examine zero modes of:

0git = gut (1) hye(r) cos(k - x),  dgrr = —gpr(7) hyt(r) cos(k - x) ,
dgyi = 1y hey (r) sin(k - x),
5gij = ((5” — 272’%) hJ_J_(T’) COS(k 0 X) =F ]ACZ];ZJ h””(T) COS(k o X) S
da; = hy(r) cos(k - x), da; = n;hy (r) sin(k - x),
0¢ = h(r) cos(k - x)
k=k/|kll, n-k=0, [a]|=1

Wants to modulate:
m Charge, current/magnetisation
m Momentum /thermal magnetisation
m Energy density

m Involves longitudinal + transverse sector



Finite chemical potential
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Zero modes appear at T'(||k||/u, B/p?)
Plot for B/u? = 0.05

m Combine zero modes of different directions k to construct
periodic ones

m At low temperatures need to do backreaction



Finite chemical potential

Asymptotics:

ks

L
(xl,y/) = (J;/ + — z ny — COtaLyn27y/+Lyn2>
Sin &«

ds3 = —dt® + da'? + dy'?
A=pdt+ Bxdy

A bit unnatural for numerics. .. Change coordinates. . .



Finite chemical potential

Choosing

T

z=L]" (cosay/ T sinaw’) ,

The asymptotics become

ds§ = —dt* + (L3 dz? + L dy?
SlIl o
Ly Ly
A=pdt+B——xdy
sin

Butnowzx ~z+1, y~y+1

y — L;l y/

—2L; Ly cosadr dy)



Finite chemical potential

m Periodic z and y

Regular horizon at z =1

m Conformal boundary at z =0

m Fix Goldstone modes

Chemical potential ;¢ and magnetic field B

m Use DeTurck method to solve
[Headrick, Kitchen, Wiseman], [Figueras, Lucietti, Wiseman]



Finite chemical potential

For fixed T, u and B minimise free energy density
w=—sT —pJ +T%

with respect to L,, L, and «

ow _ = dw - _
_Lxm :’LU—FT)’LB—FTII’ _Lym ZW+mB+Tyy

0 o Ll -

ﬂzcota(w+mB+sz+Tyy)_#Txy

o sin «v

It will look like a perfect fluid on average

w=—(mB+p)
Tij — p,.yij



Finite chemical potential
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m For B = 0 striped structures seem preferred

m Charge density gets modulated

m Spontaneous electric/heat magnetisation current densities
appear



Finite chemical potential
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Density waves

m Switching on magnetic field makes other structures preferred
[AD, Gauntlett]

m Triangular lattice formations seem to win



Finite chemical potential

m Set B = 0.05p?

m Free energy as a function of £k =k, = k, and R = — cot a for
T=0.85T.and T =0.5T.,.

m Global minimum at R = 1/\/§ a=2r/3

m Triangular lattices seem preferred



Finite chemical potential
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m Set B = 0.05p?

m Free energy as a function of k;, k, and R = — cot « for
T=0.5T.,.

m R =1/v/3is actually a minimum



Finite chemical potential

m At lower temperatures translations breaking effects become
stronger

m IR Theory develops point-like defect structure
m New ground states to be found!

m Competing order with superfluidity [AD, Gauntlett, Sonner,
Withers]
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Transport in Holography

Hydro approach to transport
How do strongly coupled systems conduct electricity and heat?

m Assume existence of stress tensor T}, and electric current .J,
m Ward identities imply

Vuy<Tt, >=F,<J!'> V,<J'>=0

m To make progress assume hydro description:

m Express 7),, and J, in terms of fluid velocity v*, 6p and §7T°
(Constitutive relations)

m Assume weak momentum relaxation through:

m Modified Ward identities
m Transport coefficients which explicitly break translations



Transport in Holography

Transport in holography
m Introduce momentum relaxation mechanism

m Use UV relevant operators to introduce periodic sources

S:SCFT-I-//,L(X)Jt-i-Qb(X)O

p=<px) > FE=-Vux)

m Find new deformed black hole backgrounds
m Perturb by 0F and 6VT

0A; = (5E7:67iwt + -, 0gy =0V, T et I oo

m Read off the resulting currents and extract conductivities



Transport in Holography

RG flow picture

wv+H LlV+|1+\/\

1 1 I

| Charge dominated RG flows, translations restored in IR —
Coherent transport [Hartnoll, Hofman]

[l Lattice dominated RG flows, translations broken in IR —
Incoherent transport [AD, Hartnoll] [AD, Gauntlett]



Transport in Holography

Metal/Insulator Transition
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m Model for Metal - Insulator transitions



Transport in Holography

DC is fixed by the horizon geometry: [AD, Gauntlett]

m Solve linearised Navier-Stokes on curved black hole geometry

Vi’l)i =0

5 . - .
QE VZV(“)J‘) — ij5/L = SVj ol = s V.,ﬂl aF ,OL'/
V230u —v! Vip = =V, E!

m Plug answer in “constitutive relations” for currents

. S . . . . .
I lr=rt, = I (alé,u + EZ) +pv*, Q'lr=rp =Tsv"

m Integrate over cycles on horizon to find current fluxes
m At low T ground state geometry fixes DC behaviour of current

m Generalisation with magnetic fields [AD, Gauntlett, Griffin, Melgar]



Transport in Holography

Wiedemann-Franz law from holography

For perturbative lattices

47 p?

ER=MAnsT, a=a=MA4rp, o=M
S

m With M (>> 1) fixed by perturbative modes that break
translations on horizon

m Holographic version of Wiedemann-Franz law

82

ko _
oT

i)

m Not true for non-perturbative lattices!



Transport in Holography

Anomalous scaling of Hall angle
m Introduce magnetic field

m For perturbative lattices similar logic that lead to
Wiedemann-Franz gives

oo T® O ocT®
with a = b

m Allowing for large lattices (incoherent transport) gives that
a # b in general [AD, Blake]

m Charge conjugation even processes dominate o,
m Charge conjugation odd processes dominate o,
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Summary

m Modelling CMT problems in holography leads to interesting
new ground states

m Rich Phase Diagrams - Competing orders

m New ground states have interesting transport properties
m Black hole horizon fluid fixes DC transport

m Physics of new ground states?

m SUSY ground states? Yes, in N =8|

m Non-linear Navier-Stokes? i.e. Membrane Paradigm
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