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The Cuprates

The Cuprates are real life example of strong coupling

Intriguing phase diagram

Related to strong coupling?



The Cuprates

Incoherent transport

Anomalous scaling of conductivity and Hall angle with T

σB=0
DC ∝ T−1, θH ∝ T−2



AdS/CMT

To model these systems in holography:

Consider a CFT in d+ 1 dimensions with a U(1)

Finite temperature T

Deform by chemical potential µ and magnetic field field B

Deform by relevant operators to model

Lattices and Momentum dissipation (More on that later...)
Impurities
Random Disorder

Introduce sources to study two point functions (e.g. transport
properties)



AdS/CMT

The CFT vacuum is modelled by AdSd+2

ds2 = r2 (−dt2 + dx2
d) +

dr2

r2



AdS/CMT

Schematically the bulk action is

L = Rd+2 + Λ− 1

4
F 2 + matter

The vacuum is a solution with trivial matter fields

Different microscopic theories correspond to different matter
content

Each bulk field corresponds to different boundary operator O

Use the relevant/marginal ones to deform the boundary theory

S = SCFT +

∫
dd+1xφ(x)O(x)

Introduce a black hole (brane) horizon in the bulk to raise
temperature T



AdS/CMT

Universal deformations are

The stress tensor

ds2 = r2 (−dt2 + dx2
d + δgµν(x)dxµdxν) +

dr2

r2
+ · · ·

The chemical potential

A = µ(x) dt+ · · ·

Subleading terms give the VEVs

The dual action is now

S = SCFT +

∫
µJ t +

1

2
δgµνT

µν



AdS/CMT

The bulk spacetime geometrizes the resulting RG flow:

At finite T the geometry the BH horizon serves as an IR cutoff

At T = 0 the bulk geometry becomes an interpolation
between fixed point solutions e.g.

UVIR

Each fixed point has its own spectrum: (OUV , ∆UV ),
(OIR, ∆IR)



AdS/CMT

To probe the IR/UV part of the geometry:

Introduce perturbative source δS =
∫
δφ(ω,k)Oφ

Extract the two point function G(ω,k)

See how it scales, e.g.

ImG(λω, λk) = λ2∆UV −d−1 ImG(ω,k), for λ >> 1

ImG(λω, λk) = λ2∆IR−d−1 ImG(ω,k), for λ << 1

The low T horizon describes the ground state of holographic
theories
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Finite chemical potential

Possible (unbroken phase) ground states at finite chemical
potential?

Preserve time translations Tt and Euclidean group Ed

Semi-local critical t→ λ t, AdS2 × Rd

ds2 = −r2 dt2 + dx2
d + dr2/r2

Lifshitz t→ λz t, x→ λx

ds2 = −r2z dt2 + r2 dx2
d + dr2/r2

Hyper-scale violating

ds2 = r−2θ/d(−r2z dt2 + r2 dx2
d + dr2/r2)



Finite chemical potential

Phase transitions

New IR

UV

IR

Theory can develop symmetry breaking instabilities:

At T >> µ the normal phase bh’s are stable

At T < Tc there exist tachyonic modes

Zero mode at T = Tc gives rise to broken phase black hole
branch

Dual operator φ takes a VEV < φ >



Finite chemical potential

Phase transitions

New IR

UV

IR



Finite chemical potential

Competing orders

More complicated possibilities lead to “competing orders”:

Additional deformations (doping, B, ...) change the diagram

Holographic theories can lead to intricate phase diagrams

At T = 0 they provide excellent models for Quantum Phase
Transitions (doping)



Finite chemical potential

S-Superfluidity

Bulk theory with charged scalar under U(1)
[Gubser] [Hartnoll, Herzog, Horowitz]

L = R− 1

4
F 2 −DµψD

µψ∗ − V (|ψ|2)

Dµψ = ∇µψ − ıqAµψ

Broken phase black holes have ψ 6= 0

Spontaneous breaking of U(1)

Goldstone mode responsible for delta function in conductivity

Ground states have similar symmetries with normal phase but
without the U(1).



Finite chemical potential

Helical order

Bulk Einstein-Maxwell + CS term
[Nakamura, Ooguri, Park] [AD, Gauntlett]

L = R+ Λ− 1

4
F 2 + λ εαβγδεAαFβγFδε

Broken phase develops helical current density/magnetisation
e.g. long wavelength helimagnetism in MnSi

< Jy >= cb sin(kx), < Jz >= cb cos(kx)

Spontaneous breaking of translations

Ground states with broken translations have significant impact
on transport

Similar story with p-wave order parameter in superfluids



Finite chemical potential

Helical order
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Helical black holes come with the period k as a modulus

Fix k by minimising the free energy density

Preferred k changes with temperature



Finite chemical potential

Simple ground state geometries:

ds2 = −r2z dt2 + dx2 + r2 (ω2
1 + ω2

2) + dr2/r2

ω1 + iω2 = eikx (dy + idz)

Scaling t→ λz t, y → λ y, z → λ z

Helical symmetry (Bianchi V II0)

Also hyper-scaling violating version of those



Finite chemical potential

Inhomogeneous phases in D = 4

L = R− 1
2∂φ

2 − V (φ)−1
4Z(φ)F 2+1

4ϑ(φ) εabcdF
abF cd

There terms lead to charge/magnetisation density wave
phases of electric and magnetic branes

Standard terms of N = 2 SUGRA in D = 4 → appear in
top-down models

For the record:

V = −6 cosh

(
φ√
3

)
, Z =

1

cosh
(
s
√

3φ
) , ϑ = χ tanh

(√
3φ
)

Choose s = 1, χ = 3/2



Finite chemical potential

Normal phase ansatz

ds24 = r−2
(
−g(r)dt2 + f(r) dr2 + dx2 + dy2

)
,

A = at(r) dt+
B

2
(x dy − y dx) , φ = φ(r)

Set deformations of scalar operator to zero

Fix chemical potential at(0) = µ

For B = 0 it is just the electric AdS RN black brane



Finite chemical potential

Examine zero modes of:

δgtt = gtt(r)htt(r) cos(k · x), δgrr = −grr(r)htt(r) cos(k · x) ,

δgti = n̂i ht⊥(r) sin(k · x),

δgij =
(
δij − k̂ik̂j

)
h⊥⊥(r) cos(k · x) + k̂ik̂j h‖‖(r) cos(k · x) ,

δat = ht(r) cos(k · x), δai = n̂i h⊥(r) sin(k · x),

δφ = h(r) cos(k · x)

k̂ = k/‖k‖, n̂ · k̂ = 0, ‖n̂‖ = 1

Wants to modulate:

Charge, current/magnetisation

Momentum/thermal magnetisation

Energy density

Involves longitudinal + transverse sector



Finite chemical potential
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Zero modes appear at T (‖k‖/µ,B/µ2)
Plot for B/µ2 = 0.05

Combine zero modes of different directions k̂ to construct
periodic ones

At low temperatures need to do backreaction



Finite chemical potential

Asymptotics:

(
x′, y′

)
≡
(
x′ +

Lx
sinα

n1 − cotαLy n2, y
′ + Ly n2

)

ds23 = −dt2 + dx′2 + dy′2

A = µdt+B xdy

A bit unnatural for numerics. . . Change coordinates. . .



Finite chemical potential

Choosing

x = L−1x
(
cosα y′ + sinαx′

)
, y = L−1y y′

The asymptotics become

ds23 = −dt2 +
1

sin2 α

(
L2
x dx

2 + L2
y dy

2 − 2Lx Ly cosαdx dy
)

A = µdt+B
Lx Ly
sinα

xdy

But now x ∼ x+ 1, y ∼ y + 1



Finite chemical potential

Periodic x and y

Regular horizon at z = 1

Conformal boundary at z = 0

Fix Goldstone modes

Chemical potential µ and magnetic field B

Use DeTurck method to solve
[Headrick, Kitchen, Wiseman], [Figueras, Lucietti, Wiseman]



Finite chemical potential

For fixed T , µ and B minimise free energy density

w = −sT − µ J̄ t + T̄ tt

with respect to Lx, Ly and α

−Lx
δw

δLx
= w + m̄B + T̄ xx, −Ly

δw

δLy
= w + m̄B + T̄ yy

δw

δα
= cotα(w + m̄B + T̄ xx + T̄ yy)−

LxLy
sinα

T̄ xy

It will look like a perfect fluid on average

w = − (m̄B + p)

T̄ ij = p γij



Finite chemical potential

For B = 0 striped structures seem preferred

Charge density gets modulated

Spontaneous electric/heat magnetisation current densities
appear



Finite chemical potential

Density waves

Switching on magnetic field makes other structures preferred
[AD, Gauntlett]

Triangular lattice formations seem to win



Finite chemical potential

Set B = 0.05µ2

Free energy as a function of k = kx = ky and R = − cotα for
T = 0.85Tc and T = 0.5Tc.

Global minimum at R = 1/
√

3, α = 2π/3

Triangular lattices seem preferred



Finite chemical potential

Set B = 0.05µ2

Free energy as a function of kx, ky and R = − cotα for
T = 0.5Tc.

R = 1/
√

3 is actually a minimum



Finite chemical potential

Density waves

At lower temperatures translations breaking effects become
stronger

IR Theory develops point-like defect structure

New ground states to be found!

Competing order with superfluidity [AD, Gauntlett, Sonner,

Withers]
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Transport in Holography

Hydro approach to transport

How do strongly coupled systems conduct electricity and heat?

Assume existence of stress tensor Tµν and electric current Jµ

Ward identities imply

∇µ < Tµν >= Fνµ < Jµ >, ∇µ < Jµ >= 0

To make progress assume hydro description:

Express Tµν and Jµ in terms of fluid velocity vµ, δµ and δT
(Constitutive relations)

Assume weak momentum relaxation through:

Modified Ward identities
Transport coefficients which explicitly break translations



Transport in Holography

Transport in holography

Introduce momentum relaxation mechanism

Use UV relevant operators to introduce periodic sources

S =SCFT +

∫
µ(x)J t + φ(x)O

µ = < µ(x) >, E = −∇µ(x)

Find new deformed black hole backgrounds

Perturb by δE and δ∇T

δAi = δEie
−iωt + · · · , δgti = δ∇iT e−iωt + · · ·

Read off the resulting currents and extract conductivities



Transport in Holography

RG flow picture

, HSV, ... ?

I Charge dominated RG flows, translations restored in IR →
Coherent transport [Hartnoll, Hofman]

II Lattice dominated RG flows, translations broken in IR →
Incoherent transport [AD, Hartnoll] [AD, Gauntlett]



Transport in Holography

Metal/Insulator Transition
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Transport in Holography

DC is fixed by the horizon geometry: [AD, Gauntlett]

Solve linearised Navier-Stokes on curved black hole geometry

∇ivi = 0

2
s

4π
∇i∇(i vj) − ρ∇jδµ− s∇j δT = s∇jT + ρEj

∇2δµ− vi∇iρ = −∇iEi

Plug answer in “constitutive relations” for currents

J i|r=rh =
s

4π

(
∂iδµ+ Ei

)
+ ρ vi, Qi|r=rh = Ts vi

Integrate over cycles on horizon to find current fluxes

At low T ground state geometry fixes DC behaviour of current

Generalisation with magnetic fields [AD, Gauntlett, Griffin, Melgar]



Transport in Holography

Wiedemann-Franz law from holography

For perturbative lattices

κ̄ = M 4πsT, α = ᾱ = M 4πρ, σ = M
4πρ2

s

With M (>> 1) fixed by perturbative modes that break
translations on horizon

Holographic version of Wiedemann-Franz law

κ̄

σ T
=
s2

ρ2

Not true for non-perturbative lattices!



Transport in Holography

Anomalous scaling of Hall angle

Introduce magnetic field

For perturbative lattices similar logic that lead to
Wiedemann-Franz gives

σ ∝ T a θH ∝ T b

with a = b

Allowing for large lattices (incoherent transport) gives that
a 6= b in general [AD, Blake]

Charge conjugation even processes dominate σxx
Charge conjugation odd processes dominate σxy
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Summary

Modelling CMT problems in holography leads to interesting
new ground states

Rich Phase Diagrams - Competing orders

New ground states have interesting transport properties

Black hole horizon fluid fixes DC transport

Physics of new ground states?

SUSY ground states? Yes, in N = 8 !

Non-linear Navier-Stokes? i.e. Membrane Paradigm
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