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Disorder rocks!
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Anderson Localization (1958): 
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FIG. 2: Resistivity of thin films of bismuth versus temperature. The di↵erent curves correspond to di↵erent
thicknesses, varying from a 4.36 Å film that becomes insulating at low temperatures, to a thicker 74.27 Å
film that becomes superconducting. The figure is reproduced from ref. [11].

x > x
o

, the compound is referred to as over doped, while when x < x
o

, the compound is called
under doped.

Over doped high T
c

superconductors are better understood than their under doped counterparts.
For temperatures T > T

c

, the material behaves like a Fermi liquid where quasiparticle, electron-like
degrees of freedom are e↵ectively weakly coupled. Moreover, the phase transition seems to follow
the BCS paradigm where the electrons form Cooper pairs as we lower the temperature below T

c

.
In contrast, in the under doped region, the e↵ective degrees of freedom are believed to be strongly
interacting. In one paradigm, the superconducting to normal phase transition involves disordering
the phase of the condensate rather than breaking Cooper pairs, if it indeed makes sense to talk
about quasiparticles at all in this regime. Because the electrons may remain in bound states in the
normal, under doped region of the phase diagram, this region is sometimes called the pseudogap.
For more details about these issues, the reader might try ref. [12].

Speculations about the relevance of a quantum phase transition are related to the dip in T
c

at
a doping of x

c

= 1/8 and a possible connection between this dip in T
c

and experimental evidence
for so-called striped phases where spin and charge density waves break translational invariance at
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Anderson Localization (1958).

[Billy et al, Nature 453(2008)]

which extends 4 mm along the z direction. The three-dimensional
autocorrelation of the disordered potential—that is, of the light
intensity—is determined by diffraction from the diffusive plate onto
the atoms’ location22.

Transversely, the correlation function (an ellipse with semi-axis
lengths of 97 mm and 10 mm) is much wider than the atomic matter
wave, and we can therefore consider the disorder as being
one-dimensional for the BEC expanding along the z direction.
Along this direction, the correlation function of the disordered
potential is V 2

R(sin(z/sR)/(z/sR))2, where the correlation length
sR 5 0.26 6 0.03 mm (61 s.e.m.) is calculated knowing the numer-
ical aperture of the optics, and VR is the amplitude of the disorder.
The corresponding speckle grain size is psR 5 0.82 mm. The power
spectrum of this speckle potential is non-zero only for k-vectors
lower in magnitude than a cutoff of 2/sR. The amplitude of the
disorder is directly proportional to the laser intensity22. The cal-
ibration factor is calculated knowing the geometry of the optical
system and the properties of the rubidium-87 atoms.

When we switch off the longitudinal trapping in the presence of
weak disorder, the BEC starts expanding, but the expansion rapidly
stops, in stark contrast with the free expansion case (Fig. 1d inset,
showing the evolution of the root-mean-square width of the
observed profiles). Plots of the density profile in linear (Fig. 1c)
and semi-log (Fig. 1d) coordinates then show clear exponential
wings, a signature of Anderson localization. Our observations are
made in a regime allowing Anderson localization, unlike in the
experiments in refs 19 and 20. First, the disorder is weak enough
(VR/min 5 0.12) that the initial interaction energy per atom is rapidly
converted into a kinetic energy of the order of min for atoms in the
wings. This value is much greater than the amplitude of the disor-
dered potential, so there is no possibility of a classical reflection from
a potential barrier. Second, the atomic density in the wings is low
enough (two orders of magnitude less than in the initial BEC) that the
interaction energy is negligible in comparison with the atom kinetic
energy. Last, we fulfil the criterion, emphasized in ref. 13, that the
atomic matter wave k-vector distribution be bounded, with a max-
imum magnitude kmax of less than half the cutoff in the power spec-
trum of the speckle disordered potential used here, that is,
kmaxsR , 1. The value of kmax is measured directly by observing the
free expansion of the BEC in the waveguide in the absence of disorder
(see Methods). For the runs corresponding to Figs 1c, 1d, 2, and 3, we
have kmaxsR 5 0.65 6 0.09 (62 s.e.m.).

An exponential fit to the wings of the density profiles yields the
localization length Lloc, which we can compare to the theoretical
value13

Lloc~
2B4k2

max

pm2V 2
RsR (1{kmaxsR)

ð1Þ

valid only for kmaxsR , 1 (m is the atomic mass). To ensure that the
comparison is meaningful, we first check that we have reached a
stationary situation, in which the fitted value of Lloc no longer
evolves, as shown in Fig. 2. In Fig. 3, we plot the variation of Lloc

with the disorder amplitude VR, for the same number of atoms, that
is, the same kmax. The dash–dot line is a plot of equation (1) for the
values of kmax and sR determined as explained above. It shows quite a
good agreement between our measurements and the theoretical pre-
dictions: with no adjustable parameters we obtain the correct mag-
nitude and general shape. The shaded area reflects the envelope of the
dash–dot line when we take into account the uncertainties in sR and
kmax. The uncertainty in the calibration of VR does not appear in
Fig. 3. We estimate it to be no greater than 30%, which does not
affect the agreement between theory and experiment.

An intriguing result of ref. 13 is the prediction of density profiles
with algebraic wings when kmaxsR . 1, that is, when the initial inter-
action energy is great enough that a fraction of the atoms have a
k-vector greater in magnitude than 1/sR, which plays the role of an
effective mobility edge. We investigate this regime by repeating the
experiment with a BEC containing more atoms (1.7 3 105 atoms, min/
h 5 519 Hz), for VR/min 5 0.15. Figure 4a shows the observed density
profile in such a situation (kmaxsR 5 1.16 6 0.14 (62 s.e.m.)), and a
log–log plot suggests a power-law decrease in the wings, with an
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Figure 1 | Observation of exponential localization. a, A small BEC
(1.7 3 104 atoms) is formed in a hybrid trap that is the combination of a
horizontal optical waveguide, ensuring a strong transverse confinement, and
a loose magnetic longitudinal trap. A weak disordered optical potential,
transversely invariant over the atomic cloud, is superimposed (disorder
amplitude VR low in comparison with the chemical potential min of the initial
BEC). b, When the longitudinal trap is switched off, the BEC starts
expanding and then localizes, as observed by direct imaging of the
fluorescence of the atoms irradiated by a resonant probe. In a and b, false-
colour images and sketched profiles are for illustration purposes; they are
not exactly to scale. c, d, Density profiles (red) of the localized BEC one
second after release, in linear (c) and semi-log (d) coordinates. In the inset in
d we display the root-mean-square (rms) width of the profile versus time t,
with (VR ? 0) and without (VR 5 0) disordered potential. This shows that
the stationary regime is reached after 0.5 s. The diamond at t 5 1 s
corresponds to the data shown in c and the main panel of d. Blue lines in c are
exponential fits to the wings, and correspond to the straight blue lines in
d. The narrow central profiles (pink) represent the trapped condensate
before release (t 5 0 s).
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which extends 4 mm along the z direction. The three-dimensional
autocorrelation of the disordered potential—that is, of the light
intensity—is determined by diffraction from the diffusive plate onto
the atoms’ location22.

Transversely, the correlation function (an ellipse with semi-axis
lengths of 97 mm and 10 mm) is much wider than the atomic matter
wave, and we can therefore consider the disorder as being
one-dimensional for the BEC expanding along the z direction.
Along this direction, the correlation function of the disordered
potential is V 2

R(sin(z/sR)/(z/sR))2, where the correlation length
sR 5 0.26 6 0.03 mm (61 s.e.m.) is calculated knowing the numer-
ical aperture of the optics, and VR is the amplitude of the disorder.
The corresponding speckle grain size is psR 5 0.82 mm. The power
spectrum of this speckle potential is non-zero only for k-vectors
lower in magnitude than a cutoff of 2/sR. The amplitude of the
disorder is directly proportional to the laser intensity22. The cal-
ibration factor is calculated knowing the geometry of the optical
system and the properties of the rubidium-87 atoms.

When we switch off the longitudinal trapping in the presence of
weak disorder, the BEC starts expanding, but the expansion rapidly
stops, in stark contrast with the free expansion case (Fig. 1d inset,
showing the evolution of the root-mean-square width of the
observed profiles). Plots of the density profile in linear (Fig. 1c)
and semi-log (Fig. 1d) coordinates then show clear exponential
wings, a signature of Anderson localization. Our observations are
made in a regime allowing Anderson localization, unlike in the
experiments in refs 19 and 20. First, the disorder is weak enough
(VR/min 5 0.12) that the initial interaction energy per atom is rapidly
converted into a kinetic energy of the order of min for atoms in the
wings. This value is much greater than the amplitude of the disor-
dered potential, so there is no possibility of a classical reflection from
a potential barrier. Second, the atomic density in the wings is low
enough (two orders of magnitude less than in the initial BEC) that the
interaction energy is negligible in comparison with the atom kinetic
energy. Last, we fulfil the criterion, emphasized in ref. 13, that the
atomic matter wave k-vector distribution be bounded, with a max-
imum magnitude kmax of less than half the cutoff in the power spec-
trum of the speckle disordered potential used here, that is,
kmaxsR , 1. The value of kmax is measured directly by observing the
free expansion of the BEC in the waveguide in the absence of disorder
(see Methods). For the runs corresponding to Figs 1c, 1d, 2, and 3, we
have kmaxsR 5 0.65 6 0.09 (62 s.e.m.).

An exponential fit to the wings of the density profiles yields the
localization length Lloc, which we can compare to the theoretical
value13

Lloc~
2B4k2

max
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RsR (1{kmaxsR)

ð1Þ

valid only for kmaxsR , 1 (m is the atomic mass). To ensure that the
comparison is meaningful, we first check that we have reached a
stationary situation, in which the fitted value of Lloc no longer
evolves, as shown in Fig. 2. In Fig. 3, we plot the variation of Lloc

with the disorder amplitude VR, for the same number of atoms, that
is, the same kmax. The dash–dot line is a plot of equation (1) for the
values of kmax and sR determined as explained above. It shows quite a
good agreement between our measurements and the theoretical pre-
dictions: with no adjustable parameters we obtain the correct mag-
nitude and general shape. The shaded area reflects the envelope of the
dash–dot line when we take into account the uncertainties in sR and
kmax. The uncertainty in the calibration of VR does not appear in
Fig. 3. We estimate it to be no greater than 30%, which does not
affect the agreement between theory and experiment.

An intriguing result of ref. 13 is the prediction of density profiles
with algebraic wings when kmaxsR . 1, that is, when the initial inter-
action energy is great enough that a fraction of the atoms have a
k-vector greater in magnitude than 1/sR, which plays the role of an
effective mobility edge. We investigate this regime by repeating the
experiment with a BEC containing more atoms (1.7 3 105 atoms, min/
h 5 519 Hz), for VR/min 5 0.15. Figure 4a shows the observed density
profile in such a situation (kmaxsR 5 1.16 6 0.14 (62 s.e.m.)), and a
log–log plot suggests a power-law decrease in the wings, with an
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Figure 1 | Observation of exponential localization. a, A small BEC
(1.7 3 104 atoms) is formed in a hybrid trap that is the combination of a
horizontal optical waveguide, ensuring a strong transverse confinement, and
a loose magnetic longitudinal trap. A weak disordered optical potential,
transversely invariant over the atomic cloud, is superimposed (disorder
amplitude VR low in comparison with the chemical potential min of the initial
BEC). b, When the longitudinal trap is switched off, the BEC starts
expanding and then localizes, as observed by direct imaging of the
fluorescence of the atoms irradiated by a resonant probe. In a and b, false-
colour images and sketched profiles are for illustration purposes; they are
not exactly to scale. c, d, Density profiles (red) of the localized BEC one
second after release, in linear (c) and semi-log (d) coordinates. In the inset in
d we display the root-mean-square (rms) width of the profile versus time t,
with (VR ? 0) and without (VR 5 0) disordered potential. This shows that
the stationary regime is reached after 0.5 s. The diamond at t 5 1 s
corresponds to the data shown in c and the main panel of d. Blue lines in c are
exponential fits to the wings, and correspond to the straight blue lines in
d. The narrow central profiles (pink) represent the trapped condensate
before release (t 5 0 s).
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Figure 3 | Higgs conductivity and spectral weight. a, Experimental and theoretical results for the Higgs conductivity � H
1 , as a function of energy for three

NbN films of di�erent disorder. The numerical results25 were obtained for a fixed value of EC/EJ, whereas the degree of disorder, reflecting breaking bonds
between the superconducting islands, is denoted by p. Qualitative and quantitative features are shared by both experiment and theory. The sharp lines in
the experimental data are due to interpolation between measured data points. b, Charge carrier density N in the normal state obtained from Hall
measurements (red squares) and superfluid density, ⇢s, measured by optical spectroscopy as functions of Tc/Tclean

c (reflecting the degree of disorder).
Note the faster decrease of ⇢s with increasing disorder, indicating the vanishing contribution of the superfluid condensate to the spectral weight.
c, Redistribution of the ‘missing’ spectral weight s between the normal and superconducting states versus the superfluid density ⇢s, as defined in equation
(4). The observed linear relation indicates that the redistribution of the spectral weight occurs within our measured energy spectrum.

sum rule26 for the ‘missing’ spectral weight s between normal and
superconducting states,

s=
Z 1

0+
d![� n

1 (!)�� s
1(!)]⇠⇢s (4)

a reduced superfluid density ⇢s on increasing disorder leads to
a reduced value of s. As the quasiparticle gap remains fairly
unchanged with disorder, this necessarily causes the spectral weight
contribution of the Higgs mode,

R
d!�H

1 (!), to become more
pronounced. Figure 3c shows the detected linear relationship
between the missing spectral weight, s, and the superfluid density,
⇢s, for several filmswith di�erent degrees of disorder, thus providing
the self consistency of the above argument and eliminating the
possibility of a redistributed spectral weight to higher frequencies
(due to a sudden change in the scattering rate, for example).

We conclude that the low-frequency absorption observed
by optical spectroscopy originates from the Higgs mode in
superconductors close to a quantum phase transition. As the
system approaches the critical point, the energy scale for this
mode decreases and its magnitude grows, exhibiting quantitative
agreement with numerical simulations.

The study of the properties of disordered superconductors is
a subject of ongoing intense activity, mostly because it is viewed
as being one of the few physical systems that can be tuned
through a two-dimensional quantum critical point, which is not
mean-field-like. The softening of the Higgs mode is direct proof
that the SIT transition is a quantum critical point in which a
diverging timescale is detected. Evidently, the vicinity to the QPT
o�ers a unique opportunity to study the nature of the low-energy
collective excitations in superconductors. Going beyond disordered
superconductors, our findings can play a role in tracing collective
excitations in other quantum critical condensed matter systems and
might influence related fields such as Bose-condensed ultracold
atoms, quantum statistical mechanics and high-energy physics.

Methods
The InO films were deposited on 10 ⇥ 10mm2 of THz-transparent MgO or
sapphire substrates (with various thickness ranging from 0.5 to 1.5mm) by e-gun

evaporation. During the deposition process dry oxygen was injected into the
chamber; the partial oxygen pressure allows us to tune the disorder. The NbN
films were grown on similar MgO substrates by reactive magnetron sputtering,
where the Nb/N ratio in the plasma served as a disorder tuning parameter. In
both cases the deposited films were structurally homogeneous; the thickness
ranges from 15 to 40 nm. DC transport measurements were used to characterize
Tc. THz spectroscopy has been applied in the past to confirm the BCS theory, as
it probes the energy range of the superconducting gap27–29. The experimental
set-up27,28 is based on several backward wave oscillators as powerful radiation
sources to emit continuous-wave, coherent radiation which, in sum, can be tuned
over the frequency range 0.05–1.2 THz, corresponding to a photon energy of
0.18–5meV. We employ a quasi-optical Mach–Zehnder interferometer to measure
the complex transmission T = tei✓ , with t the amplitude and ✓ the phase shift of
radiation passing through the sample under study, from which the complex
conductivity, �̂ (!), is directly calculated. The samples were mounted in an optical
4He cryostat with a continuously accessible temperature range spanning from 300
to 1.85K. To further proceed with the experimental data, we employ two analysis
routines. In the first, t and ✓ are simultaneously fitted to a combination of Fresnel
equations (for multiple reflections)26 for the optics and an appropriate
microscopic model for the charge carrier dynamics (that is, Drude theory for the
metallic state and BCS theory for the superconducting state, complemented by a
finite scattering rate30). Free-electron parameters (such as the scattering rate or
plasma frequency) required for the BCS fit are taken from Drude fits to the
normal-state t and ✓ slightly above the superconducting transition. The
superconducting energy gap 2� is then obtained as the sole fit parameter.
Although this approach is well established for BCS-type—that is,
non-disordered—superconducting systems, it fails for disordered systems beyond
the Anderson limit. The second routine is suited for systems where no
microscopic model is available—that is, strongly disordered systems. In a narrow
band around each Fabry–Perot resonance (which are caused by the finite
thickness of the sample), we fit t and ✓ exclusively to the Fresnel equations using
�1 and �2 as fit parameters. Depending on the optical thickness of the substrate
this routine yields 10 to 15 pairs of �1 and �2 for each resonance frequency !i.
Details of the experimental set-up and analysis routines are found, for example,
in refs 26–29,31.
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(4). The observed linear relation indicates that the redistribution of the spectral weight occurs within our measured energy spectrum.
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a reduced superfluid density ⇢s on increasing disorder leads to
a reduced value of s. As the quasiparticle gap remains fairly
unchanged with disorder, this necessarily causes the spectral weight
contribution of the Higgs mode,
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1 (!), to become more
pronounced. Figure 3c shows the detected linear relationship
between the missing spectral weight, s, and the superfluid density,
⇢s, for several filmswith di�erent degrees of disorder, thus providing
the self consistency of the above argument and eliminating the
possibility of a redistributed spectral weight to higher frequencies
(due to a sudden change in the scattering rate, for example).

We conclude that the low-frequency absorption observed
by optical spectroscopy originates from the Higgs mode in
superconductors close to a quantum phase transition. As the
system approaches the critical point, the energy scale for this
mode decreases and its magnitude grows, exhibiting quantitative
agreement with numerical simulations.

The study of the properties of disordered superconductors is
a subject of ongoing intense activity, mostly because it is viewed
as being one of the few physical systems that can be tuned
through a two-dimensional quantum critical point, which is not
mean-field-like. The softening of the Higgs mode is direct proof
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metallic state and BCS theory for the superconducting state, complemented by a
finite scattering rate30). Free-electron parameters (such as the scattering rate or
plasma frequency) required for the BCS fit are taken from Drude fits to the
normal-state t and ✓ slightly above the superconducting transition. The
superconducting energy gap 2� is then obtained as the sole fit parameter.
Although this approach is well established for BCS-type—that is,
non-disordered—superconducting systems, it fails for disordered systems beyond
the Anderson limit. The second routine is suited for systems where no
microscopic model is available—that is, strongly disordered systems. In a narrow
band around each Fabry–Perot resonance (which are caused by the finite
thickness of the sample), we fit t and ✓ exclusively to the Fresnel equations using
�1 and �2 as fit parameters. Depending on the optical thickness of the substrate
this routine yields 10 to 15 pairs of �1 and �2 for each resonance frequency !i.
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Dynamical Conductivity Across The Disorder-Tuned Superconductor-Insulator

Transition

Mason Swanson1, Yen Lee Loh2, Mohit Randeria1, and Nandini Trivedi1

(1) Department of Physics, The Ohio State University, Columbus, OH 43210, USA and
(2) Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202, USA

(Dated: February 12, 2014)

We calculate the dynamical conductivity �(!) and the bosonic (pair) spectral function P (!)
from quantum Monte Carlo simulations across clean and disorder-driven superconductor-insulator
transitions (SIT). We identify characteristic energy scales in the superconducting and insulating
phases that vanish at the transition due to enhanced quantum fluctuations, despite the persistence
of a robust fermionic gap across the SIT. Disorder leads to enhanced absorption in �(!) at low
frequencies compared to the SIT in a clean system. Disorder also expands the quantum critical
region, due to a change in the universality class, with an underlying T = 0 critical point with a
universal low-frequency conductivity �⇤ ' 0.5(4e2/h).

The interplay of superconductivity and localization has
proven to be a rich and intriguing problem, especially in
two dimensions1–7. Both paradigms stand on the shoul-
ders of giants – the BCS theory of superconductivity and
the Anderson theory of localization. Yet, when the com-
bined e↵ects of superconductivity and disorder are con-
sidered, both paradigms break down, even for s-wave su-
perconductors.

It has been shown8–10 in model fermionic Hamiltoni-
ans with attraction between electrons and disorder aris-
ing from random potentials, that the single-particle den-
sity of states continues to show a hard gap across the
disorder-driven quantum phase transition and that pairs
continue to survive into the insulating state. The super-
conducting transition temperature T

c

, however, does de-
crease with increasing disorder and vanishes at a critical
disorder signaling a superconductor-insulator transition
(SIT). These theoretical predictions are supported by
scanning tunneling spectroscopy experiments11–14 and by
magnetoresistance oscillations6 in disordered thin films.

Recent conductivity measurements at frequencies well
within the superconducting gap (0–20 GHz)15–20 have ob-
served low-frequency features that cannot be accounted
for by pair-breaking mechanisms. A theoretical under-
standing of the low-frequency dynamical conductivity is
vital for understanding the role of fluctuations and for
guiding future experiments that probe the SIT.

The robustness of the single-particle gap across the SIT
suggests that the low-energy physics near the SIT can be
described by an e↵ective “bosonic” Hamiltonian, the dis-
ordered quantum XY model, where the relevant degrees
of freedom are the phases of the local superconducting
order parameter. This model is also relevant for ultra-
cold atomic gases in optical lattices where the transition
is tuned by changing the tunneling of bosons compared
to their on-site repulsion21–24. More recently, it has also
become possible to include disorder in optical lattices us-
ing speckle patterns. By increasing the strength of the
disorder potential it could be possible to drive quantum
phase transitions from a superfluid to a Bose glass25–28;
our results are also relevant for such experiments.

We map the quantum (2+1)D XY Hamiltonian to an
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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FIG. 1. The emergent inhomogeneity of the local pairing am-
plitude �(r) in a disordered superconductor in the left panel
and the robustness of the single particle gap8–10 across the
SIT suggests an e↵ective low-energy description in terms of a
disordered quantum XY model shown on the right. The quan-
tum phase transition occurs when long range phase coherence
is lost between weakly connected “superconducting islands”
tuned by the ratio E

c

/E
J

of charging energy to Josephson
coupling as well as by disorder, modeled by removing a frac-
tion p of the Josephson bonds.

anisotropic classical 3D XY model29–31 and simulate the
model using Monte Carlo methods. We focus on the be-
havior of two dynamical quantities of fundamental sig-
nificance, the conductivity �(!) and the boson (“pair”)
spectral function P (!) obtained by analytic continuation
from imaginary time using the maximum entropy method
supplemented by sum rules. Disorder is introduced into
the quantum model by breaking bonds (“Josephson cou-
plings”) on a 2D square lattice with a probability p. We
compare the results of the disorder-driven SIT with the
clean system29,32, where the SIT is tuned by E

c

/E
J

, the
charging energy relative to the Josephson coupling.

Our main results are as follows.

(1) The conductivity Re�(!) in the clean superconductor
shows absorption above a threshold !Higgs that can be
associated with the scale of the Higgs (amplitude) mode.
As we approach the SIT from the superconducting (SC)
side, both the superfluid sti↵ness ⇢

s

and the Higgs scale
!Higgs go soft and vanish at the SIT, even though the
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FIG. 4. Dynamical response functions across the disorder-tuned SIT. The critical disorder p
c

= 0.337 is marked as a dashed
line; T/E

J

= 0.156, E
c

/E
J

= 3.0 and L = 64. (a) In the conductivity Re�(!) the superfluid response is evident as a zero-
frequency delta function of strength ⇢

s

. Deep in the insulator there is a gap in Re�(!) that grows with disorder. (b) ! Im�(!)
shows a crossover from “inductive” (! Im�(!) = ⇢

s

> 0) to “capacitative” (! Im�(!) < 0) behavior at small ! across the
transition. (c) The boson spectral function ImP (!)/!, which has a peak centered about zero frequency in the superconductor,
develops a characteristic scale e!

B

in the insulator that grows with disorder.

the boson spectral function ImP (!). We estimate the
superfluid sti↵ness ⇢

s

using ⇢
s

/⇡ = ⇤
xx

(q
x

! 0, q
y

=
0, i!

n

= 0) � ⇤
xx

(q
x

= 0, q
y

! 0, i!
n

= 0), which is
the di↵erence of the longitudinal and transverse pieces
of the current-current correlation function ⇤

xx

. Here
j
x

(r, ⌧) ⇠ sin [✓(r+ x̂, ⌧)� ✓(r, ⌧)] is the current and
!
n

= 2⇡nT are Matsubara frequencies.

We use the Kubo formula for the complex conductivity
�(!) expressed in terms of ⇤

xx

(q = 0, ⌧) and transform
the imaginary-time QMC results to real frequency using
the maximum entropy method (MEM); see Appendix B.
We have checked our results extensively using sum rules
and compared the MEM results with direct estimates in
imaginary time, as described in detail below. Similarly,
we use QMC methods to calculate the imaginary time
correlation function P (r, ⌧) = ha†(r, ⌧)a(0, 0)i, where the
bosonic creation operator is a† = exp i✓(r, ⌧), and we
obtain the spectral function ImP (!) using the MEM.

Superconductor: We first discuss the SC and insu-
lating state in both the clean and disordered systems,
before turning to the quantum critical point. The SC
state is characterized by a non-zero superfluid sti↵ness
⇢
s

(see Fig. 2). We use our calculated ⇢
s

to test the
sum rule for the MEM-derived optical conductivity. The
total spectral weight is given by

R1
0

d! Re�(!) =
⇡h�k

x

i/2, where h�k
x

i is the kinetic energy. We find
that

R1
0+

d! Re�(!) (note the lower limit of 0+) cal-
culated from the MEM result di↵ers from h�k

x

i by an
amount that is exactly accounted for by the delta func-
tion ⇢

s

�(!). We have checked this sum rule both in the
clean and the disordered systems (see Appendix B).

In the clean superconductor (Fig. 3(a)), Re�(!) shows
finite spectral weight above a threshold. Note that in
the bosonic model, the cost of making electron-hole ex-
citations is essentially infinite (i.e., much larger than all

scales of interest). Phase fluctuations of the order param-
eter,  = A exp(i✓), lead to a current j ⇠ Im ⇤r ⇠
|A|2r✓. This then leads to the absorption threshold36,37

for creating a massive amplitude excitation (Higgs mode)
and a massless phase excitation (phonon). Hence, we
identify the threshold in Re�(!) with the Higgs scale
!Higgs. We emphasize that even though the microscopic
model (1) has only phase degrees of freedom, its long-
wavelength behavior upon coarse-graining contains both
amplitude (Higgs) and phase fluctuations (phonons and
vortices). In addition, one can show that Re�(!) has
a !5 tail at low energies arising from three-phonon ab-
sorption in a clean SC. The large power-law suppression,
together with a very small numerical prefactor38, how-
ever, makes this spectral weight too small to be visible
in our numerical results for Re�(!).

As E
c

/E
J

is tuned to reach the SIT in the clean sys-
tem, ⇢

s

decreases and vanishes at the transition; see
Fig. 2. We also find that the Higgs scale goes soft upon
approaching the quantum critical point, as expected.

The disordered SC results di↵er in several ways from
those of the clean system. First, the superfluid sti↵ness
⇢
s

is reduced by disorder, vanishing at the SIT upon tun-
ing the transition by disorder p. An important di↵erence
is the absence of a discernible Higgs threshold in Re�(!)
for the disordered SC; see Fig. 3(b). Qualitatively we can
understand this by the fact that once disorder breaks mo-
mentum conservation even single-phonon absorption is
permitted and one no longer needs a multi-phonon pro-
cess for absorption. The e↵ect of long-range Coulomb
interactions, which change the phonon dispersion (⇠ q)
to that of a 2D plasmon (⇠ p

q), is an important open
problem.

While the delta function in Re�(!) cannot be directly
detected in dynamical experiments, its Kramers-Kronig
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Quantum critical scaling in graphene

Daniel E. Sheehy∗ and Jörg Schmalian
Ames Lab and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011

(Dated: July 19, 2007)

We show that the emergent relativistic symmetry of electrons in graphene near its quantum critical
point (QCP) implies a crucial importance of the Coulomb interaction. We derive scaling laws, valid
near the QCP, that dictate the nontrivial magnetic and charge response of interacting graphene.
Our analysis yields numerous predictions for how the Coulomb interaction will be manifested in
experimental observables such as the diamagnetic response and electronic compressibility.

Recent experimental developments have made possi-
ble the study of graphene, a single-atom thick sheet of
graphite[1]. The novel electronic properties of graphene
arise from the linear, cone-shaped energy-momentum dis-
persion of electrons at low energies. This condensed mat-
ter realization of a relativistic Dirac spectrum follows
from simple models of electrons hopping on the honey-
comb lattice of graphene[2], and has been confirmed by
a range of experiments [3, 4, 5].

The relevant Hamiltonian is that of relativistic
Coulomb-interacting fermions in two dimensions:

H =
∑

l

vp̂l·σ+
1

2

∑

l ̸=l′

e2

ε |rl − rl′ |
, (1)

with velocity v ≃ 108cm/s[3]. p̂l = −ih̄∇rl
is the mo-

mentum operator and σ = (σx,σy) are Pauli matrices
that act in the space of the two sub-lattices of the honey-
comb lattice structure. There is an additional N = 4 fold
degeneracy caused by spin and the two distinct nodes of
the dispersion, with the only tunable parameter in Eq. (1)
being the dielectric constant ε.

In case of the usual electron gas, the first term in
Eq. (1) is

∑
l p̂

2
l /(2m). Then, dimensional arguments

imply that the kinetic energy dominates for high elec-
tron density while the Coulomb interaction dominates at
low density. The linear Dirac spectrum changes this sit-
uation. The relative importance of the potential and ki-
netic energy is the same for all densities and controlled by
the dimensionless number λ = e2/(4εvh̄). For λ≪ 1, the
Coulomb interaction is negligible. Using the above value
for the electron velocity yields λ ≃ 0.55/ε, i.e. λ ≃ 0.55
for a free standing graphene film in vacuum, implying
that one cannot ignore the Coulomb interaction. The
role of interactions in graphene has been discussed pre-
viously [6, 7, 8, 9, 10, 11, 12, 13, 14]. However, few
specific predictions for observable quantities have been
made that allow for a comparison with experiment (see,
however, Ref. [15]). Here, we exploit the enlarged sym-
metry near its quantum critical point (QCP) to deduce
numerous predictions (based on scaling theory) of inter-
acting graphene.

In this letter, we use a renormalization group (RG)
approach to the Hamiltonian, Eq. (1), and analyze the
magnetic and charge response of graphene as a function
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FIG. 1: (Color Online) Quantum critical phase diagram of
graphene as a function of density n (in units of 1012m−2) and
temperature T (in K), for the vacuum case ϵ = 1, showing
the Dirac liquid and Fermi liquid regimes separated by the
crossover temperature T ∗ [dashed lines, Eq. (13)], with the
quantum critical point occuring at n = T = 0.

of temperature T , carrier density n, chemical potential µ
and magnetic field B. We make specific predictions for
the the compressibility κ = ∂n/∂µ, the diamagnetic sus-
ceptibility χD, the magnetic moment M(B), the heat ca-
pacity C, the infrared conductivity σ(ω) and the density-
density correlation functions χc(q,ω). We demonstrate
that interaction effects in these quantities are measur-
able, allowing experiments to reveal the subtle interplay
of interactions and kinetic energy in a Dirac liquid. Our
analysis is based on the fact that for T = B = µ = n = 0,
clean graphene is located at a QCP, as illustrated in
Fig. 1, and its properties nearby can be obtained via
crossover scaling arguments.

The low energy action that follows from Eq. (1) is

S = h̄

∫

x
ψ† (∂τσ0 − iv∇r·σ)ψ +

e2

2ε

∫

x,x′

nxnx′

|r− r′|
. (2)

Here, ψ = ψ (x) is a two component electron field where
x = (r,τ, s) stands for the 2D position r, imaginary time
τ , and valley and spin quantum numbers s = 1 · · · 4, such

that
∫

x . . . =
∫

d2r
∫ β
0 dτ

∑4
s=1 . . . with β−1 = kBT/h̄.

nx = ψ† (x)ψ (x) is the electron density.
We perform a one-loop Kadanoff-Wilson RG analysis

of Eq. (2). Fourier transforming ψ(x) yields ψ(k) where
k = (k,ωn, s) with planar wave vector k and Matsubara
frequency ωn = (2n+1)kBT/h̄. We trace out high energy
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we will refer to quasi-particles and quasi-holes collectively as quasi-particles.) Thus for a Fermi liquid, equation (1.3)
should be modified to

GR(t,✓k) ⇤ e�i�(k)t��
2 t , � ⇤ ⇥2(k) (1.6)

which implies that near the Fermi surface the retarded function for the electron operator should have the form

GR(⌅,✓k) =
Z

⌅ � vF (k � kF ) + ⇥(⌅, k)
+ . . . , (1.7)

with the self-energy ⇥(⌅, k)

⇥ =
i�

2
⇤ i⌅2 . (1.8)

The residue Z ⇥ 1 of the pole, which is called the quasiparticle weight, can be interpreted as the overlap between the
(approximate) one-quasiparticle state with the state generated by acting the electron operator on the vacuum.

The concept of quasi-particles is extremely powerful and makes it possible to develop a general low energy theory
– Fermi liquid theory – independently of the precise microscopic details of a system. With some phenomenological
input, the theory can then be used to predict essentially all the low energy behavior of the system. For example, the
theory predicts that the specific heat is linear in temperature (see e.g. [6])

Ce = �T + . . . � ⇤ m⇥ (1.9)

and that the low temperature resistivity increases with temperature quadratically

⇤e = ⇤0 +AT 2 + . . . . (1.10)

The theory has been tremendously successful in explaining almost all metallic states in nature.
It is important to emphasize that Fermi liquid theory does not require interactions among the fundamental con-

stituents to be weak. For example for 3He, one finds that m⇥ = 2.8mHe, indicating that interactions among 3He
atoms are clearly not weak. There also exist so-called heavy electron compounds for which the e⇤ective mass for
electron quasi-particles can be as large as 102 � 103 times of the electron mass.

It is rather remarkable that weakly interacting quasiparticles can emerge as the low energy collective excitations
of a strongly interacting many-body system, with only certain parameters (such as the e⇤ective mass) renormalized
compared to the fundamental constituents of the system. The self-consistency of Fermi liquid theory can also be
understood from an e⇤ective field theory perspective using the renormalization group [7–9]. Assuming the existence
of quasi-particles, one can then try to write down the most general local e⇤ective field theory for them. One finds
that due to kinematical constraints from the Fermi surface all interactions are irrelevant at low energies except
for the forward scatterings3 and BCS-type pairing instabilities leading to a superconductor. Note that while the
renormalization group analysis shows that the Fermi liquid theory is a stable fixed point (up to superconducting
instabilities), it does not tell us whether or why a specific microscopic theory will flow to this fixed point.

Strange 
metal 

Fermi liquid 
SC 

AFM 

Doping 

T

T

�

Tc

FIG. 1. Left: a cartoon picture of the phase diagram of cuprate superconductors; Right: a cartoon picture of linear temperature
dependence of the resistivity in the strange metal phase.

3 The forward scatterings give rise to interactions among quasi-particles via their densities, which are incorporated in the Fermi liquid
theory. Note that such interactions do not give rise to widths.

> High Tc Superconductors

> Graphene

► (Strongly coupled) Quantum Critical Point

4

t ⇥ �zt and x ⇥ �x. Di�erent z occur in di�erent condensed matter systems. For example,
z = 1 is common for spin systems, and we will see an example of such a system shortly. The
case z = 1 is special because the quantum critical system typically has a Lorentz symmetry and
the scaling becomes a part of a larger conformal symmetry group SO(d + 1, 2) for a system in d

spatial dimensions. These lectures will focus mostly on the z = 1 case because it is here that the
AdS/CFT dictionary is most powerful and well developed. Another common and familiar value
is z = 2. The free Schrödinger equation is invariant under z = 2 scalings, but there are other
examples as well, e.g. Lifshitz theories. Generic, non-integer z are possible.

Figure 1 shows a prototypical phase diagram for a system that undergoes a quantum phase
transition. Here the physical parameter is a coupling g, and the quantum phase transition occurs
at g = gc and T = 0. At low temperatures, we imagine the system is in one of two phases
well characterized by some order parameter(s). The solid blue lines in the phase diagram could
be classical thermal phase transitions or softer cross-overs, depending on the dimensionality and
nature of the system. The region between the dashed black lines is the quantum critical region
(QCR).

phase 2

T

g gc

QCR

phase 1

FIG. 1: A typical phase diagram involving a second order quantum critical point.

The usefulness of the notion of a quantum phase transition lies in a wished for ability to
understand the system in the QCR. The QCR is characterized by the requirement that T be large
compared to the dimensionally appropriate power of (g�gc). It seems reasonable to expect that the
e�ective scale invariant field theory valid at the critical point, now generalized to nonzero T , can be
used to predict the behavior of the system in the QCR. (We can generalize this discussion, replacing
T with some other external parameter or set of parameters — chemical potential, magnetic field,
etc.)

[from Herzog]

� ⇠ (g � gc)
⌫ z

⇠ ⇠ (g � gc)
�⌫

@ QCP…
Strongly coupled 
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Holographic Disorder

> Disordered Holographic Superconductors

> Disordered Transport (strange metals): Lucas, Sachdev, Schalm’14; donos, Gauntlett’14,   
O’Keeffe, Peet’14; HARTNOLL, RAMIREZ, SANTOS’15

> Disordered fixed points: Hartnoll, Santos’14; Garcia, loureiro’15 

> Disordered hydro (-> Graphene): Lucas et al’15

> Disordered branes
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> Results: The Inhomogeneous Condensate
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> Results: Disorder-induced Phase Transition
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robustness. Namely, the precise form of the phase diagram varies quantitatively depending on

where precisely we draw the cut o↵ line defining the “appearance” of a nonzero condensate.

However, qualitatively it is clear from the plot that the conclusions are stable with respect

to parallel shifts of the position of this cut o↵ line.

0 1 2 3 4
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Figure 8: Enhancement of T
c

with the noise strength w (Tw=0

c

stands for the critical tem-
perature in the absence of disorder). For values of w to the right of the red dashed line the
chemical potential becomes negative at its minimum.

Finally, let us try and explain the mechanism behind this enhancement of the critical

temperature. Looking at Eq. (35) it is not evident that the noise would enhance conden-

sation by lowering the e↵ective mass. Actually the e↵ect of the noise on the average (along

x) of that e↵ective mass is almost negligible. However, the noise does have the e↵ect of

producing regions (in the x direction) where the e↵ective mass is below the critical value for

condensation. When these regions are large enough they trigger the condensation, resulting

in solutions where the condensate is nonzero along the whole sample (see Fig. 3); even in the

regions where the chemical potential is below its critical value (for the homogeneous case)

the condensate is nonzero.

6 Correlated noise

In this section we shall analyze the case of correlated noise, namely that when in Eq.

(23) we consider ↵ 6= 0. Although, as we have seen in Eq.(26), this noise is correlated along

the whole system, it is still worth looking at its e↵ect on the condensate, and check if the

main features of the response of the system are similar to those of the s-wave case studied

in [24].
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Figure 3 | Higgs conductivity and spectral weight. a, Experimental and theoretical results for the Higgs conductivity � H
1 , as a function of energy for three

NbN films of di�erent disorder. The numerical results25 were obtained for a fixed value of EC/EJ, whereas the degree of disorder, reflecting breaking bonds
between the superconducting islands, is denoted by p. Qualitative and quantitative features are shared by both experiment and theory. The sharp lines in
the experimental data are due to interpolation between measured data points. b, Charge carrier density N in the normal state obtained from Hall
measurements (red squares) and superfluid density, ⇢s, measured by optical spectroscopy as functions of Tc/Tclean

c (reflecting the degree of disorder).
Note the faster decrease of ⇢s with increasing disorder, indicating the vanishing contribution of the superfluid condensate to the spectral weight.
c, Redistribution of the ‘missing’ spectral weight s between the normal and superconducting states versus the superfluid density ⇢s, as defined in equation
(4). The observed linear relation indicates that the redistribution of the spectral weight occurs within our measured energy spectrum.

sum rule26 for the ‘missing’ spectral weight s between normal and
superconducting states,

s=
Z 1

0+
d![� n

1 (!)�� s
1(!)]⇠⇢s (4)

a reduced superfluid density ⇢s on increasing disorder leads to
a reduced value of s. As the quasiparticle gap remains fairly
unchanged with disorder, this necessarily causes the spectral weight
contribution of the Higgs mode,

R
d!�H

1 (!), to become more
pronounced. Figure 3c shows the detected linear relationship
between the missing spectral weight, s, and the superfluid density,
⇢s, for several filmswith di�erent degrees of disorder, thus providing
the self consistency of the above argument and eliminating the
possibility of a redistributed spectral weight to higher frequencies
(due to a sudden change in the scattering rate, for example).

We conclude that the low-frequency absorption observed
by optical spectroscopy originates from the Higgs mode in
superconductors close to a quantum phase transition. As the
system approaches the critical point, the energy scale for this
mode decreases and its magnitude grows, exhibiting quantitative
agreement with numerical simulations.

The study of the properties of disordered superconductors is
a subject of ongoing intense activity, mostly because it is viewed
as being one of the few physical systems that can be tuned
through a two-dimensional quantum critical point, which is not
mean-field-like. The softening of the Higgs mode is direct proof
that the SIT transition is a quantum critical point in which a
diverging timescale is detected. Evidently, the vicinity to the QPT
o�ers a unique opportunity to study the nature of the low-energy
collective excitations in superconductors. Going beyond disordered
superconductors, our findings can play a role in tracing collective
excitations in other quantum critical condensed matter systems and
might influence related fields such as Bose-condensed ultracold
atoms, quantum statistical mechanics and high-energy physics.

Methods
The InO films were deposited on 10 ⇥ 10mm2 of THz-transparent MgO or
sapphire substrates (with various thickness ranging from 0.5 to 1.5mm) by e-gun

evaporation. During the deposition process dry oxygen was injected into the
chamber; the partial oxygen pressure allows us to tune the disorder. The NbN
films were grown on similar MgO substrates by reactive magnetron sputtering,
where the Nb/N ratio in the plasma served as a disorder tuning parameter. In
both cases the deposited films were structurally homogeneous; the thickness
ranges from 15 to 40 nm. DC transport measurements were used to characterize
Tc. THz spectroscopy has been applied in the past to confirm the BCS theory, as
it probes the energy range of the superconducting gap27–29. The experimental
set-up27,28 is based on several backward wave oscillators as powerful radiation
sources to emit continuous-wave, coherent radiation which, in sum, can be tuned
over the frequency range 0.05–1.2 THz, corresponding to a photon energy of
0.18–5meV. We employ a quasi-optical Mach–Zehnder interferometer to measure
the complex transmission T = tei✓ , with t the amplitude and ✓ the phase shift of
radiation passing through the sample under study, from which the complex
conductivity, �̂ (!), is directly calculated. The samples were mounted in an optical
4He cryostat with a continuously accessible temperature range spanning from 300
to 1.85K. To further proceed with the experimental data, we employ two analysis
routines. In the first, t and ✓ are simultaneously fitted to a combination of Fresnel
equations (for multiple reflections)26 for the optics and an appropriate
microscopic model for the charge carrier dynamics (that is, Drude theory for the
metallic state and BCS theory for the superconducting state, complemented by a
finite scattering rate30). Free-electron parameters (such as the scattering rate or
plasma frequency) required for the BCS fit are taken from Drude fits to the
normal-state t and ✓ slightly above the superconducting transition. The
superconducting energy gap 2� is then obtained as the sole fit parameter.
Although this approach is well established for BCS-type—that is,
non-disordered—superconducting systems, it fails for disordered systems beyond
the Anderson limit. The second routine is suited for systems where no
microscopic model is available—that is, strongly disordered systems. In a narrow
band around each Fabry–Perot resonance (which are caused by the finite
thickness of the sample), we fit t and ✓ exclusively to the Fresnel equations using
�1 and �2 as fit parameters. Depending on the optical thickness of the substrate
this routine yields 10 to 15 pairs of �1 and �2 for each resonance frequency !i.
Details of the experimental set-up and analysis routines are found, for example,
in refs 26–29,31.
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Figure 3 | Higgs conductivity and spectral weight. a, Experimental and theoretical results for the Higgs conductivity � H
1 , as a function of energy for three

NbN films of di�erent disorder. The numerical results25 were obtained for a fixed value of EC/EJ, whereas the degree of disorder, reflecting breaking bonds
between the superconducting islands, is denoted by p. Qualitative and quantitative features are shared by both experiment and theory. The sharp lines in
the experimental data are due to interpolation between measured data points. b, Charge carrier density N in the normal state obtained from Hall
measurements (red squares) and superfluid density, ⇢s, measured by optical spectroscopy as functions of Tc/Tclean

c (reflecting the degree of disorder).
Note the faster decrease of ⇢s with increasing disorder, indicating the vanishing contribution of the superfluid condensate to the spectral weight.
c, Redistribution of the ‘missing’ spectral weight s between the normal and superconducting states versus the superfluid density ⇢s, as defined in equation
(4). The observed linear relation indicates that the redistribution of the spectral weight occurs within our measured energy spectrum.

sum rule26 for the ‘missing’ spectral weight s between normal and
superconducting states,

s=
Z 1

0+
d![� n

1 (!)�� s
1(!)]⇠⇢s (4)

a reduced superfluid density ⇢s on increasing disorder leads to
a reduced value of s. As the quasiparticle gap remains fairly
unchanged with disorder, this necessarily causes the spectral weight
contribution of the Higgs mode,

R
d!�H

1 (!), to become more
pronounced. Figure 3c shows the detected linear relationship
between the missing spectral weight, s, and the superfluid density,
⇢s, for several filmswith di�erent degrees of disorder, thus providing
the self consistency of the above argument and eliminating the
possibility of a redistributed spectral weight to higher frequencies
(due to a sudden change in the scattering rate, for example).

We conclude that the low-frequency absorption observed
by optical spectroscopy originates from the Higgs mode in
superconductors close to a quantum phase transition. As the
system approaches the critical point, the energy scale for this
mode decreases and its magnitude grows, exhibiting quantitative
agreement with numerical simulations.

The study of the properties of disordered superconductors is
a subject of ongoing intense activity, mostly because it is viewed
as being one of the few physical systems that can be tuned
through a two-dimensional quantum critical point, which is not
mean-field-like. The softening of the Higgs mode is direct proof
that the SIT transition is a quantum critical point in which a
diverging timescale is detected. Evidently, the vicinity to the QPT
o�ers a unique opportunity to study the nature of the low-energy
collective excitations in superconductors. Going beyond disordered
superconductors, our findings can play a role in tracing collective
excitations in other quantum critical condensed matter systems and
might influence related fields such as Bose-condensed ultracold
atoms, quantum statistical mechanics and high-energy physics.

Methods
The InO films were deposited on 10 ⇥ 10mm2 of THz-transparent MgO or
sapphire substrates (with various thickness ranging from 0.5 to 1.5mm) by e-gun

evaporation. During the deposition process dry oxygen was injected into the
chamber; the partial oxygen pressure allows us to tune the disorder. The NbN
films were grown on similar MgO substrates by reactive magnetron sputtering,
where the Nb/N ratio in the plasma served as a disorder tuning parameter. In
both cases the deposited films were structurally homogeneous; the thickness
ranges from 15 to 40 nm. DC transport measurements were used to characterize
Tc. THz spectroscopy has been applied in the past to confirm the BCS theory, as
it probes the energy range of the superconducting gap27–29. The experimental
set-up27,28 is based on several backward wave oscillators as powerful radiation
sources to emit continuous-wave, coherent radiation which, in sum, can be tuned
over the frequency range 0.05–1.2 THz, corresponding to a photon energy of
0.18–5meV. We employ a quasi-optical Mach–Zehnder interferometer to measure
the complex transmission T = tei✓ , with t the amplitude and ✓ the phase shift of
radiation passing through the sample under study, from which the complex
conductivity, �̂ (!), is directly calculated. The samples were mounted in an optical
4He cryostat with a continuously accessible temperature range spanning from 300
to 1.85K. To further proceed with the experimental data, we employ two analysis
routines. In the first, t and ✓ are simultaneously fitted to a combination of Fresnel
equations (for multiple reflections)26 for the optics and an appropriate
microscopic model for the charge carrier dynamics (that is, Drude theory for the
metallic state and BCS theory for the superconducting state, complemented by a
finite scattering rate30). Free-electron parameters (such as the scattering rate or
plasma frequency) required for the BCS fit are taken from Drude fits to the
normal-state t and ✓ slightly above the superconducting transition. The
superconducting energy gap 2� is then obtained as the sole fit parameter.
Although this approach is well established for BCS-type—that is,
non-disordered—superconducting systems, it fails for disordered systems beyond
the Anderson limit. The second routine is suited for systems where no
microscopic model is available—that is, strongly disordered systems. In a narrow
band around each Fabry–Perot resonance (which are caused by the finite
thickness of the sample), we fit t and ✓ exclusively to the Fresnel equations using
�1 and �2 as fit parameters. Depending on the optical thickness of the substrate
this routine yields 10 to 15 pairs of �1 and �2 for each resonance frequency !i.
Details of the experimental set-up and analysis routines are found, for example,
in refs 26–29,31.
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Noisy Branes [1603.09625]
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> Setup: D3/D5 @ finite T and μ

Nc Black D3-branes
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> Setup: D3/D5 @ finite T and μ

[Meson melting: Hoyos et al’06]

★ Phase Diagram

Figure 1: Various possible D7-brane embeddings in the black D3-brane geometry for zero baryon
number density. The temperature increases from left to right. At finite nb, the Minkowski (and
critical) embeddings are not allowed – see discussion in the text.

that undergo a confinement/deconfinement phase transition at some temperature Td < Tfun,

mesonic states thus remain bound in the deconfined phase for the range of temperatures

Td < T < Tfun.

This physics is in qualitative agreement with that of QCD, in which ss̄ and cc̄ states, for

example, seem to survive the deconfinement phase transition at Td ≃ 175 MeV – see [7] for

a more detailed discussion. It is thus interesting to ask how this physics is modified at finite

baryon density. In the presence of Nf flavours of equal mass, the gauge theory possesses a

global U(Nf) ≃ SU(Nf)×U(1)q symmetry. The U(1)q charge counts the net number of quarks,

i.e., the number of baryons times Nc – see appendix A for details. In the gravity description,

this global symmetry corresponds to the U(Nf) gauge symmetry on the worldvolume of the

Nf D-brane probes. The conserved currents associated to the U(Nf) symmetry of the gauge

theory are dual to the gauge fields on the D-branes. Thus, the introduction of a chemical

potential µb or a non-zero density nb for the baryon number in the gauge theory corresponds

to turning on the diagonal U(1) ⊂ U(Nf) gauge field on the D-branes.3

In this paper we study the gauge theory at constant baryon number density nb. We find

that, for any finite value of the baryon number density, the Minkowski embeddings, i.e., those

embeddings where the probe brane closes off above the horizon, are physically inconsistent.

Hence at finite nb, we focus our study on black hole embeddings. Despite this difference with

the nb = 0 case, the first order phase transition found there continues to exist here for small

enough a baryon number density. In this case, however, the transition is between two black

hole embeddings. For a large enough baryon number density, there is no phase transition as a

function of the temperature. The phase transition ceases to exist at a critical value n∗
b. These

results are summarised in fig. 2. This phase diagram also shows a shaded region where the

black hole embeddings are found to be thermodynamically unstable. While the boundary of

this region shown in the diagram is qualitative, we have found that the unstable region has a

limited extent to the left of the line of first order phase transitions. Hence the system must

find a new stable phase, at least, in this small region – see section 3.
3This should not be confused with the chemical potential for R-charge (as considered in, e.g., [12, 13])

which is dual to internal angular momentum on the S5 in the gravity description.

– 2 –

D5

[hep-th/0611099]

Minkowski

Figure 1: Various possible D7-brane embeddings in the black D3-brane geometry for zero baryon
number density. The temperature increases from left to right. At finite nb, the Minkowski (and
critical) embeddings are not allowed – see discussion in the text.

that undergo a confinement/deconfinement phase transition at some temperature Td < Tfun,

mesonic states thus remain bound in the deconfined phase for the range of temperatures

Td < T < Tfun.

This physics is in qualitative agreement with that of QCD, in which ss̄ and cc̄ states, for

example, seem to survive the deconfinement phase transition at Td ≃ 175 MeV – see [7] for

a more detailed discussion. It is thus interesting to ask how this physics is modified at finite

baryon density. In the presence of Nf flavours of equal mass, the gauge theory possesses a

global U(Nf) ≃ SU(Nf)×U(1)q symmetry. The U(1)q charge counts the net number of quarks,

i.e., the number of baryons times Nc – see appendix A for details. In the gravity description,

this global symmetry corresponds to the U(Nf) gauge symmetry on the worldvolume of the

Nf D-brane probes. The conserved currents associated to the U(Nf) symmetry of the gauge

theory are dual to the gauge fields on the D-branes. Thus, the introduction of a chemical

potential µb or a non-zero density nb for the baryon number in the gauge theory corresponds

to turning on the diagonal U(1) ⊂ U(Nf) gauge field on the D-branes.3

In this paper we study the gauge theory at constant baryon number density nb. We find

that, for any finite value of the baryon number density, the Minkowski embeddings, i.e., those

embeddings where the probe brane closes off above the horizon, are physically inconsistent.

Hence at finite nb, we focus our study on black hole embeddings. Despite this difference with

the nb = 0 case, the first order phase transition found there continues to exist here for small

enough a baryon number density. In this case, however, the transition is between two black

hole embeddings. For a large enough baryon number density, there is no phase transition as a

function of the temperature. The phase transition ceases to exist at a critical value n∗
b. These

results are summarised in fig. 2. This phase diagram also shows a shaded region where the

black hole embeddings are found to be thermodynamically unstable. While the boundary of

this region shown in the diagram is qualitative, we have found that the unstable region has a

limited extent to the left of the line of first order phase transitions. Hence the system must

find a new stable phase, at least, in this small region – see section 3.
3This should not be confused with the chemical potential for R-charge (as considered in, e.g., [12, 13])

which is dual to internal angular momentum on the S5 in the gravity description.
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From Eq. (3) it is clear the contributions to the A ∧ dA
Chern-Simons term cancel between the two fermions:
while they have the same charge squared of 1, they have
opposite sign mass. The same holds for the AR ∧ dAR

Chern-Simons term for the non-dynamical background
vector potential AR that one may want to introduce
to describe non-trivial non-dynamical U(1)R background
fields. We do however generate a non-trivial mixed
Chern-Simons term AR ∧ dA [45]. As the two fermions
have charges of same sign under the Maxwell U(1) but
charges of opposite sign under the U(1)R in addition to
their opposite sign of M , this time the two contributions
add and we generate a Chern-Simons term at level 1.
This is exactly the QSH effect. In a background elec-
tric field, the R-current we obtain by varying the action
with respect to the R-charge gauge field carries one Hall
quantum of R-current in the y direction from the unit
level Chern-Simons term. For Nf fermion pairs we get a
Chern-Simons term at level Nf . However, once again the
only topologically protected information is whether Nf is
even or odd; an even number of pairs can be removed in
a T -invariant way without generating any Chern-Simons
terms.
On a boundary between a topologically non-trivial

(2 + 1)-dimensional insulator and a topologically triv-
ial insulator such as vacuum, one again localizes mass-
less fermions, this time a helical edge state. This helical
state consists of two (1+1)-dimensional chiral fermions of
opposite chirality and opposite R-charge. Unlike the chi-
ral edge modes of the quantum Hall effect, here a mass
term can be written down corresponding to backscat-
tering of left- and right-movers. However, as in the
(3 + 1)-dimensional case with the (2 + 1)-dimensional
massless surface mode, the mass term is T -odd and so
will not be generated by arbitrary perturbations as long
as they preserve T -invariance. A quartic backscattering
term is allowed but is irrelevant at the free fermion fixed
point [19, 20, 46]. The edge modes do not contribute
to charge transport, but do transport R-charge (i.e. the
z component of spin). For Nf topologically non-trivial
fermion pairs in 2 + 1 dimensions, one correspondingly
finds Nf helical edge-mode pairs. Again, an even num-
ber of them can be made massive by adding a T -invariant
mass term, hence we only have a Z2 TI.
While most of this is well known, the identification of

spin-transport with an R-current allows us to realize this
phenomenon in some of the best understood strongly cou-
pled (2 + 1)-dimensional field theories: supersymmetric
gauge theories and their brane realizations.

C. Fractional quantum spin Hall insulator

Just as in the example of the (3+1)-dimensional TI of
Ref. 33, it is straightforward to generalize this continuum
picture of a QSH insulator to a continuum description of
a fractional QSH system. Again, we simply demand that
the electron is allowed to fractionalize into N partons.

FIG. 1: Geometry of the basic construction underlying holo-
graphic realizations of the various topological insulators we
describe. (a) General D3-Dp system, where the N D3-branes
realize the N = 4 super Yang-Mills sector containing the sta-
tistical SU(N) gauge field Ãµ, and matter Dirac fermions ψ
are added via inclusion of p = 5 and p = 3 “flavor” Dp-
branes containing the non-dynamical U(1) gauge field Aµ. A
finite D3-Dp separation ∆x ̸= 0 corresponds to a finite mass
|M | = Ts∆x for the ψ fermions, where Ts is the string ten-
sion. (b) Configuration with a mass term that interpolates
between two topologically distinct phases. As the D3-branes
and the Dp-brane now intersect, massless fermionic matter is
localized at the intersection.

Additional gauge fields should be added to ensure that
the electrons are the only gauge-invariant states, just as
in 3+1 dimensions. The coefficient of the Chern-Simons
term encoding the spin or R-transport is once more com-
pletely insensitive to the details of the gauge sector, and
given by (i running over all fields)

k =
1

2

∑

i

qelectrici qRi sgn(Mi) =
1

N
,

where we have used the fact that in the non-trivial insu-
lator all partons have negative mass M and carry both
spin (i.e. R-charge) and Maxwell charge of magnitude
1/N , with same-sign R-charge but opposite-sign Maxwell
charge for the two fermions in a T -invariant pair.

III. HOLOGRAPHIC FRACTIONAL QUANTUM
SPIN HALL INSULATOR

A. Bulk theory

In order to realize the continuum field theory of the
QSH effect in terms of a brane system in string theory
and give a holographic description, it is easiest to first
embed this sector in a supersymmetric gauge theory. As
in the holographic realization of the (3 + 1)-dimensional
TI, a good statistical gauge sector is N = 4 SYM the-
ory with SU(N) gauge group. This theory naturally de-
scribes a deconfined phase of the non-Abelian gauge field.
At strong coupling it has a very simple holographic dual.
As in the (3+1)-dimensional case [35], we add the partons

[from 1009.2991]
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> Adding noise…

➥ 2 PDEs (At,𝛘) Numerics



> D3/D5. Results
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Noisy Conductivity

+
Noisy charged D5 Electric field DC (along x)

          ⟺  Horizon data�DC [Iqbal&Liu’08; Ryu et al’12]
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DC Conductivity vs Charge Density
> In Graphene…

Experimental Conductivity [Tan et al, PRL’99]

i) ∃ 𝝈 minimal @ CNP



ii)           up to n*


iii)  𝝈 sublinear for high n

� / n

Figure 1(a) shows the resistivities ! of five representa-
tive samples as a function of Vg. The resistivity curves are
largely symmetric around a particular gate voltage Vg !
VDirac and show a maximum at this value. The nonzero
value of VDirac indicates that there exists an unintentional
doping of the graphene samples [15] whose origin may be
caused by charged impurities. The actual carrier density n
in graphene induced by the gate voltage in the presence of
impurity doping is then obtained from n ! Cg"Vg #
VDirac$=e where the gate capacitance Cg ! 115 aF="m2

is deduced from a separate Hall measurement. There is
only a small (< 5%) sample dependent variation of this
measured capacitance. We observe that ! decreases mono-
tonically as jnj increases; however, the sharpness of the
dips at n ! 0 varies drastically from sample to sample.

In order to analyze the difference between samples
quantitatively, we employ the semiclassical Drude model
to estimate the mobility of samples, " ! "en!$#1. Fig-
ure 2 displays " as a function of n obtained from Fig. 1(a).
Although " defined in this way diverges at Vg ! VDirac

(the portion of curves represented by broken lines) since
n ! 0 at the Dirac point, the limiting value of the mobility
"L defined in the large density limit (n% 4& 1012 cm#2)
serves as a useful measure to characterize sample quality.
We have measured a total of 19 samples in this experiment

where "L ranges 2000–20 000 cm2=V sec . Quite gener-
ally, for samples of poorer quality, the Dirac points shift
further away from Vg ! 0, indicating a larger, uninten-
tional charge doping of unknown origin [16]. The inset of
Fig. 2 shows explicitly the scattering time # of the samples
shown in Fig. 1, estimated by # ! @$"%=n$1=2="e2vF$
employing the Einstein relation. The corresponding mean
free path of the samples can be obtained from l ! vF#,
where the Fermi velocity vF ' 106 m= sec [4]. We note
that the resulting mean free path for both electrons and
holes strongly depends on the density n, ranging from 10–
500 nm in most of the samples and density ranges.

The quality of the samples can be further differentiated
by comparing their carrier density-dependent conductivity.
Figure 3 shows$ ! !#1 as a function of Vg. Evidently, the
samples of poorer quality ("L < 5000 cm2=V sec ) show a
very broad and smooth maximum in !"Vg$ near the Dirac
point followed by a linear relationship of$"Vg$ in the large

K17

K12

K151

K145

K130

0 4-2-4 2
103

104

105

M
obility (cm

2/V
 sec)

n (1012 cm-2)

|n| (1012 cm-2)

(fsec)

1000

100

10

K17
K12

K151
K145

K131

1 100.1

FIG. 2 (color online). Mobility estimated by applying Drude
model to the data in Fig. 1. Broken lines indicate the region
where simple Drude model fails to hold. The inset shows the
scattering time in this model. The solid lines are for electrons
and dashed lines are for holes.
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FIG. 3 (color online). The conductivity of five representative
samples shown in Fig. 1 as a function of applied gate voltage
(solid lines). For clarity, curves are vertically displaced. The
horizontal dashed lines indicate the zero conductance for each
curve. Dotted curves are the corresponding theoretical fits as
explained in the text. The only fit parameter in the theory is the
density of the random charged impurity centers in the substrate,
which is taken to be (top to bottom in units of 1011 cm#2) 2.2,
4.0, 4.6, 9.7, 14.5. The inset shows the detailed view of the
density-dependent conductivity near the Dirac point for the data
in the main panel.
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> Clean D3/D5
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� ⇠ ⇢ , (⇢ ! 1) linear conductivity

➥ What if we add disorder?



Moderate Noise (𝝁(x)>0)

with

➥ Non-linear conductivity?

DC Conductivity vs Charge Density
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> DC Conductivity vs Charge Density

Clean system

`Weak noise’ prediction (w = 3)

Numerics (w = 3)
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Increase noise… → What if 𝝁(x) < 0 ?

regions of ‘negative’ charge

Expected in graphene
➥ Non-linear conductivity?
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𝝈 sublinear?!

k0 =

1

10

, 10 modes

> ‘Strong disorder’ (w ≳ 5) ➡ e- - hole puddles appear

➥ Remember graphene …

Figure 1(a) shows the resistivities ! of five representa-
tive samples as a function of Vg. The resistivity curves are
largely symmetric around a particular gate voltage Vg !
VDirac and show a maximum at this value. The nonzero
value of VDirac indicates that there exists an unintentional
doping of the graphene samples [15] whose origin may be
caused by charged impurities. The actual carrier density n
in graphene induced by the gate voltage in the presence of
impurity doping is then obtained from n ! Cg"Vg #
VDirac$=e where the gate capacitance Cg ! 115 aF="m2

is deduced from a separate Hall measurement. There is
only a small (< 5%) sample dependent variation of this
measured capacitance. We observe that ! decreases mono-
tonically as jnj increases; however, the sharpness of the
dips at n ! 0 varies drastically from sample to sample.

In order to analyze the difference between samples
quantitatively, we employ the semiclassical Drude model
to estimate the mobility of samples, " ! "en!$#1. Fig-
ure 2 displays " as a function of n obtained from Fig. 1(a).
Although " defined in this way diverges at Vg ! VDirac

(the portion of curves represented by broken lines) since
n ! 0 at the Dirac point, the limiting value of the mobility
"L defined in the large density limit (n% 4& 1012 cm#2)
serves as a useful measure to characterize sample quality.
We have measured a total of 19 samples in this experiment

where "L ranges 2000–20 000 cm2=V sec . Quite gener-
ally, for samples of poorer quality, the Dirac points shift
further away from Vg ! 0, indicating a larger, uninten-
tional charge doping of unknown origin [16]. The inset of
Fig. 2 shows explicitly the scattering time # of the samples
shown in Fig. 1, estimated by # ! @$"%=n$1=2="e2vF$
employing the Einstein relation. The corresponding mean
free path of the samples can be obtained from l ! vF#,
where the Fermi velocity vF ' 106 m= sec [4]. We note
that the resulting mean free path for both electrons and
holes strongly depends on the density n, ranging from 10–
500 nm in most of the samples and density ranges.

The quality of the samples can be further differentiated
by comparing their carrier density-dependent conductivity.
Figure 3 shows$ ! !#1 as a function of Vg. Evidently, the
samples of poorer quality ("L < 5000 cm2=V sec ) show a
very broad and smooth maximum in !"Vg$ near the Dirac
point followed by a linear relationship of$"Vg$ in the large
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FIG. 2 (color online). Mobility estimated by applying Drude
model to the data in Fig. 1. Broken lines indicate the region
where simple Drude model fails to hold. The inset shows the
scattering time in this model. The solid lines are for electrons
and dashed lines are for holes.
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FIG. 3 (color online). The conductivity of five representative
samples shown in Fig. 1 as a function of applied gate voltage
(solid lines). For clarity, curves are vertically displaced. The
horizontal dashed lines indicate the zero conductance for each
curve. Dotted curves are the corresponding theoretical fits as
explained in the text. The only fit parameter in the theory is the
density of the random charged impurity centers in the substrate,
which is taken to be (top to bottom in units of 1011 cm#2) 2.2,
4.0, 4.6, 9.7, 14.5. The inset shows the detailed view of the
density-dependent conductivity near the Dirac point for the data
in the main panel.
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𝝈 sublinear…!
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> Semi-analytic approximation @ strong disorder

DC Conductivity at Strong Disorder

𝝈 sublinear!
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DC Conductivity vs Charge Density

> Noisy branes @ strong disorder
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> In Graphene…

i) ∃ 𝝈 minimal @ CNP



ii)           up to n*


iii)  𝝈 sublinear for high n

� / n

Figure 1(a) shows the resistivities ! of five representa-
tive samples as a function of Vg. The resistivity curves are
largely symmetric around a particular gate voltage Vg !
VDirac and show a maximum at this value. The nonzero
value of VDirac indicates that there exists an unintentional
doping of the graphene samples [15] whose origin may be
caused by charged impurities. The actual carrier density n
in graphene induced by the gate voltage in the presence of
impurity doping is then obtained from n ! Cg"Vg #
VDirac$=e where the gate capacitance Cg ! 115 aF="m2

is deduced from a separate Hall measurement. There is
only a small (< 5%) sample dependent variation of this
measured capacitance. We observe that ! decreases mono-
tonically as jnj increases; however, the sharpness of the
dips at n ! 0 varies drastically from sample to sample.

In order to analyze the difference between samples
quantitatively, we employ the semiclassical Drude model
to estimate the mobility of samples, " ! "en!$#1. Fig-
ure 2 displays " as a function of n obtained from Fig. 1(a).
Although " defined in this way diverges at Vg ! VDirac

(the portion of curves represented by broken lines) since
n ! 0 at the Dirac point, the limiting value of the mobility
"L defined in the large density limit (n% 4& 1012 cm#2)
serves as a useful measure to characterize sample quality.
We have measured a total of 19 samples in this experiment

where "L ranges 2000–20 000 cm2=V sec . Quite gener-
ally, for samples of poorer quality, the Dirac points shift
further away from Vg ! 0, indicating a larger, uninten-
tional charge doping of unknown origin [16]. The inset of
Fig. 2 shows explicitly the scattering time # of the samples
shown in Fig. 1, estimated by # ! @$"%=n$1=2="e2vF$
employing the Einstein relation. The corresponding mean
free path of the samples can be obtained from l ! vF#,
where the Fermi velocity vF ' 106 m= sec [4]. We note
that the resulting mean free path for both electrons and
holes strongly depends on the density n, ranging from 10–
500 nm in most of the samples and density ranges.

The quality of the samples can be further differentiated
by comparing their carrier density-dependent conductivity.
Figure 3 shows$ ! !#1 as a function of Vg. Evidently, the
samples of poorer quality ("L < 5000 cm2=V sec ) show a
very broad and smooth maximum in !"Vg$ near the Dirac
point followed by a linear relationship of$"Vg$ in the large
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FIG. 2 (color online). Mobility estimated by applying Drude
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[Hwang et al, PRL’98] See also: 𝞼 vs noise strength
• σ  enhancement @ low 𝝆  

• σ decrease @ high 𝞺



> CHALLENGE: DISORDER + STRONG INTERACTIONS ✔


> DIRTY HOLO SCs: islands of SC -> Disorder-induced PT


> NOISY BRANES: 2+1 matter + disorder


> NOISY Conductivity (strong noise): Sub-linear at ‘large 𝞺’  ✔ 


> Epic Challenges: backreaction (smearing?),  2d noise (thin films, 

graphene, disorder SC fixed points, QHE models?

OUTLINE



and now… some SUPPLEMENTARY SLIDES



> Conductivity. `Weak Noise’

Small 𝝆. Numerics
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> Conductivity. ‘Weak Noise’

Homogeneous limit:

Noise strength expansion:
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> Conductivity. `Weak Noise’

Small 𝝆
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µ(x) = µ0 + wµ0

k⇤X

k=k0

p
S(k) cos(k x+ �k)> Noise II:

● Flat Spectrum S(k) = 1

k⇤ ! 1hµ(x)µ(x0)i � µ
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● SYSTEM ON A GRID
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> Noise III (Solving…)
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> Noise IV (UV & IR Scales)

TAKE (ideally): L
x

� 1 [! k0 ⌧ 1] , k⇤ � 1
‘Uncorrelated 

Noise’
* [in units of temperature]

➠



> Noise V:

● Flat Spectrum

Gaussian noise

µ(x) = µ0 +
¯

V

k⇤X

k=k0

cos(k x+ �k)

µ(x) = µ0 + wµ0

k⇤X

k=k0

p
S(k) cos(k x+ �k)

hµ(x)µ(x0)i � µ

2
0 = V̄

2
�(x� x

0)

(k⇤ ! 1)
⇥
V̄
⇤
=

1

2

⇥
V̄
⇤
> 0 1d Noisy 𝞵(x) is relevant

> Harris Criterion:

2d Noisy 𝞵(x)
⇥
V̄
⇤
= 0 marginal



µ(x) = µ0 + wµ0
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● Power Spectrum S(k) =
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● Black Hole gets hair ⇠ h
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Figure 1: On the left we plot ⟨O2⟩ versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature ⟨O2⟩ vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.

This phase transition pattern is quite different from that of refs. [7, 11]. The

analysis performed there corresponds to experiments where instead of the current,

the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.

3.1.1 The free energy

In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of
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◆ Charged BH unstable against scalar condensation (Gubser’08)

> Review: Holo (s-wave) Superconductor [Hartnoll et al’08]



★ U(1) Gauge field Aµ ⇠ Jµ → Chemical Potential
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> Review: Holo (s-wave) Superconductor
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Figure 1: On the left we plot ⟨O2⟩ versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature ⟨O2⟩ vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.

This phase transition pattern is quite different from that of refs. [7, 11]. The

analysis performed there corresponds to experiments where instead of the current,

the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.

3.1.1 The free energy

In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of
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> Setup:

Maxwell-Einstein + scalar S =
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> Looking for superconducting solutions:
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> Review: Holo (s-wave) Superconductor





> Results: ‘phase diagram’

robustness. Namely, the precise form of the phase diagram varies quantitatively depending on

where precisely we draw the cut o↵ line defining the “appearance” of a nonzero condensate.

However, qualitatively it is clear from the plot that the conclusions are stable with respect

to parallel shifts of the position of this cut o↵ line.
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Figure 8: Enhancement of T
c

with the noise strength w (Tw=0

c

stands for the critical tem-
perature in the absence of disorder). For values of w to the right of the red dashed line the
chemical potential becomes negative at its minimum.

Finally, let us try and explain the mechanism behind this enhancement of the critical

temperature. Looking at Eq. (35) it is not evident that the noise would enhance conden-

sation by lowering the e↵ective mass. Actually the e↵ect of the noise on the average (along

x) of that e↵ective mass is almost negligible. However, the noise does have the e↵ect of

producing regions (in the x direction) where the e↵ective mass is below the critical value for

condensation. When these regions are large enough they trigger the condensation, resulting

in solutions where the condensate is nonzero along the whole sample (see Fig. 3); even in the

regions where the chemical potential is below its critical value (for the homogeneous case)

the condensate is nonzero.

6 Correlated noise

In this section we shall analyze the case of correlated noise, namely that when in Eq.

(23) we consider ↵ 6= 0. Although, as we have seen in Eq.(26), this noise is correlated along

the whole system, it is still worth looking at its e↵ect on the condensate, and check if the

main features of the response of the system are similar to those of the s-wave case studied

in [24].
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Figure 7: Spatial average of the condensate as a function of the strength of disorder. Each
line corresponds to an average over 25 realizations of noise (with ↵ = 0) on a lattice of size
25⇥ 90. The value of the condensate grows with increasing disorder strength, w. Each line
corresponds to a value of µ

0

as indicated on the legend, but for the black dashed line which,
as explained in the text, marks the cut o↵ used to define the critical temperature.

One of our main results is the dependence of the condensate on the strength of the

disorder, w, presented in Fig. 7. The results are qualitatively similar to the s-wave results

[24]. As there, we observe that the average of the condensate grows as the strength of the

disorder is increased. Moreover, for chemical potentials below the critical one, strong enough

disorder drives the system into a phase where the average of the condensate is non-vanishing.

To make direct contact with the condensed matter literature we propose a disordered

phase diagram in Fig. 8, where we track the value of the critical temperature of the normal

to superconductor phase transition as a function of the strength of the disorder. Let us

explain, for the benefit of clarity how we have proceeded. Since the value of the condensate

increases with the the strength of the disorder, we have determined a value of the condensate

above which we consider the system in the superconducting phase (black dashed line in Fig.

7). We then read the average chemical potential6 and use the fact that the only relevant

scale is µ/T to determine the critical temperature. Let us advance a potential criticism

to out method. Clearly, it would have been more relevant to compute the conductivities

and determine the phase diagram based on a conductivity criterion [56]; we expect, as in

all previous cases, that there is a direct relation between the existence of a condensate and

the transport properties of the holographic solutions. One important aspect of Fig. 7 is its

6
We refer to the average over realizations, not to be confused with the spatial average.
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> Results: Phase transition @ finite disorder

> Average of the condensate vs Temperature…
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> σ_AC: Large disorder & Higgs mode(?)
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Figure 2 | Tunnelling versus optical spectroscopy. a,b, Experimental results on low-disorder NbN samples. a, Measured tunnelling conductance
normalized to the normal state conductance G/Gn (green triangles) alongside a fit to BCS (black line) with a Dynes broadening parameter, � . b, Real part
of the dynamical conductivity, �1, versus frequency (energy) at temperatures below and above Tc =9.5 K. The low-temperature curve is fitted (green line)
to Mattis–Bardeen theory using the energy gap value obtained in the corresponding tunnelling result, �t. c, Summary of the quasiparticle tunnelling gap, �t
(green symbols), measured by planar tunnelling junctions or scanning tunnelling microscopy (STM), versus ⌦ , the frequency at which �1(!) is minimal
(blue symbols), obtained from optical spectroscopy for several superconducting NbN and InO films spanning the di�erent degrees of disorder. Whereas
the quasiparticle gap, �t, remains fairly unchanged with increasing disorder, and basically falls on the BCS strong coupling limit ratio, ⌦ is significantly
suppressed. According to Mattis–Bardeen theory, for ideal superconductors �1 is minimal at a frequency ⌦ that corresponds to 2�. The discrepancy
between both spectroscopic probes increases towards the highly disordered limit, signalling the presence of additional modes superimposed on the
quasiparticle response. The solid red line corresponds to the analytical prediction of mH close to a QPT calculated by Podolsky and colleagues12.
d,e, Experimental results on highly disordered NbN samples. d, Measured tunnelling conductance normalized to the normal state conductance G/Gn
(green triangles) together with a fit to BCS (black line) with a Dynes broadening parameter, � . e, Real part of the dynamical conductivity, �1, versus
frequency (energy) at temperatures below and above Tc =4.2 K. The low-temperature curve is fitted (green line) to Mattis–Bardeen theory using the
energy gap value obtained in the corresponding tunnelling result. Unlike the case of the low-disorder sample, these two curves di�er. The excess spectral
weight, marked in yellow and defined as the di�erence between the curves, is attributed to the Higgs contribution, � H

1 (see text). The error bars for �1 in the
graphs are determined by the distortion of the Fabry–Perot oscillations due to parasitic radiation, standing waves and electronic noise.

towards low frequencies is not at all captured by BCS theory (green
curve). In fact, using �t extracted from corresponding tunnelling
experiments, as seen in Fig. 2d, yields a curve which is significantly
below �

exp
1 (!). With increasing disorder, both the discrepancy

between 2�t and ⌦ and the insu�ciency of Mattis–Bardeen
fits become progressively worse. This trend is demonstrated in
Fig. 2c, where we compare results from both techniques on a
large number of NbN and InO samples spanning the various
degrees of disorder (measured in terms of the normalized critical
temperature, T̃c =Tc/T clean

c ). For small disorder, T̃c ' 1, tunnelling
and THz spectroscopy yield the same value for the superconducting
energy gap. On increasing disorder (decreasing T̃c) the discrepancy
becomes more and more pronounced. For the most-disordered
samples, we find about one order of magnitude di�erence between
corresponding values. We assign these di�erences to an absorption
process stemming from the Higgs mode that becomes progressively
prominent as the systemapproaches the quantumcritical point. This
explains the discrepancy in the sense that ⌦ in the strong-disorder
limit no longer equals 2� as a consequence of the additional
conductivity �H

1 (!) of the emergent Higgs mode. The previously
prominent spectral feature marking the gap frequency is now
hidden in the shoulder at higher frequencies. Although a distinct
experimental determination of⌦ becomes progressively di�cult as
it is pushed to low frequencies, we note the resemblance between
⌦ and the theoretical prediction ofmH in the vicinity of the critical
point12, as seen in Fig. 2c.

We now explore the evolution of the observed additional excess
weight associated with the Higgs conductivity, �H

1 (!), as defined
in equation (2), and compare these measured results with recent
numerical simulations detailed in ref. 25 and sketched in Fig. 1b.
Figure 3a shows the measured �H

1 (!) for three disordered NbN
films with di�erent critical temperatures Tc =6.7, 5 and 4.2 K and
the theoretical calculation for corresponding values of disorder
p=0.075, 0.1 and 0.125. We note that one cannot expect a perfect
quantitative agreement since the theory assumes that 2� is much
larger than the Higgs mode energy, whereas experimentally they
are of the same order of magnitude. Nevertheless, the overall
behaviour—and even quantitative trends—is shared by theory
and experiment: There is a pronounced peak of �H(!), which
shifts towards smaller frequencies and becomes sharper with
increasing disorder.

The appearance of the Higgs mode must go along with a
redistribution of the spectral weight, as this quantity is strictly
conserved; it measures the total charge carrier density N in the
system26. In accordance with the bosonic model of the SIT sketched
above, the strength of the �-peak—that is, the superfluid density
⇢s—dwindles to zero in the vicinity of the quantum critical point.
Figure 3b shows ⇢s for disordered NbN films extracted from the
imaginary part of the conductivity, using equation (3), and N in
the normal state obtained from Hall measurements. While ⇢s is
reduced by about two orders or magnitude with increasing disorder,
N is much less a�ected. According to the Ferrell–Tinkham–Glover
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The Goldstone QNM has a massive partner…
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where we have divided � = ⇣ + i� into real and imaginary part. The system (37)-(41) is
again the one studied in [15]. This sector, that also appears in the gauged model that will be
presented afterwards, decouples from the additional scalar fluctuation ⌘. Notice that even
if (36) is formally the same as in the normal phase, the background � is di↵erent leading to
non trivial features in the ⌘ sector such as the presence of a massless excitation.
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Figure 3: Real (left) and imaginary (right) parts of the lowest scalar QNMs as a function
of the chemical potential. Solid lines correspond to the unbroken phase. For the broken
phase dashed lines stand for modes of the additional scalar while dotdashed lines represent
the modes common to the U(1) holographic superconductor.

Figure 3 shows the spectrum of quasinormal excitations of the scalar doublet. In the
normal phase we have two degenerate copies of the spectrum that partially split after the
phase transition. It is clear that the two lowest excitations become massless at the critical
chemical potential and then remain massless in the superconducting phase. They can be
identified with the two Goldstone bosons at the phase transition. The rest of the excitations
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> σ_AC: Large disorder & Higgs mode(?)





> Background: Charge Density 

Charge Density vs Noise Strength ⇒ Study 𝝆(μ) clean system

Homogeneous (massless) case: ⇢ ⇡
p
2µ ; (⇢ ⌧ 1)
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> Conductivity. ‘Weak Noise’

Homogeneous limit:

Noise strength expansion:
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> Conductivity. ‘Strong Noise’ [pseudo-analytics]

Invert (numerically) for ➥

— (Pseudo-analytic) DC Conductivity at all orders in w —
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