Fermions in a spontaneously generated holographic lattice

James Alsup

Computer Science, Engineering and Physics University of Michigan-Flint

June 30, 2016 / Santiago de Compostela

Numerical Relativity and Holography

in collaboration with E. Papantonopoulos, G. Siopsis, K. Yeter

Outline

- Inhomogeneity
- Coupling
- Instability

- Expansion
- Scalar

- Critical Temp.
- Fermions

Alsup

< 6 b

ъ

Condensed Matter Theory

Semi-Classical explanation

► near the superconducting/normal transition line Ginzburg-Landau functional

$$\mathcal{F}_{G}= \pmb{a}|\psi|^{2}+\gamma|\overrightarrow{
abla}\psi|^{2}+rac{\pmb{b}}{2}|\psi|^{4}$$

▶ a, b, γ are functions of B, T, ψ - "order parameter"

a = 0 at the critical temperature at lower temperatures ψ turns on and F_G is extremized by

$$|\psi|^2 = -a/b$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Condensed Matter Motivation

FFLO states [Fulde, Ferrell, and Larkin, Ovchinnikov]
 ▶ near the superconducting/normal transition line
 Ginzburg-Landau functional

$$\mathcal{F}_{G} = a|\psi|^{2} + \gamma |\overrightarrow{
abla}\psi|^{2} + rac{b}{2}|\psi|^{4} + rac{\eta}{2}|\overrightarrow{
abla}^{2}\psi|^{2}$$

► a, b, γ, η are functions of B, T

Inhomogeneous Ground State

Alsup

- finite electron pair momentum
- translation/rotation symmetries broken

 $\psi \sim {m e}^{{\it i} {\it q} {\it x}}$

• truncation of low-energy IIB string theory [Arean, Bertolini, Krishnan, Prochazka]

holographic unbalanced superconductor [Bigazzi, Cotrone, Musso, Fokeeva

Lattice generation

Dynamical generation of a lattice found in

- Q-lattice, [Donos, Gauntlett]
- axion type, [Andrade, Withers]
- Einstein, Maxwell, Scalar (*F* ∧ *G*) (Pantelidou talk), [Donos, Gauntlett, Pantelidou]

Mechanism

gravity with Λ_{AdS} , scalar field ϕ of mass *m* and charge (*q*, 0) coupled to U(1) vector potential A_{μ}

$$S=\int d^4x\sqrt{-g}\left[rac{R+6/L^2}{16\pi G}-rac{1}{4}F_{AB}F^{AB}+S_{\phi}+S_{int}
ight]$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

AdS/CFT

Gravitational duals related to inhomogeneity have been widely studied

- allows for calculation of many interesting properties
 - Drude peaks, [Horowitz, Santos, Tong, ...]
 - Transport Properties , [Donos, Gauntlett, Blake, ...]
 - Momentum relaxation (Kim talk), [Hartnoll, Hoffman, ...]
 - Quench (Withers talk) [Withers]
 - Metal-Insulator, [Donos, Hartnoll, Goutraux, ...]

Fermion spectral functions

- explicit [Liu, Schalm, Sun, Zaanen]
- Q-lattice, [Ling, Liu, Niu, Wu, Xian]

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Coupling

Hairy black hole

Asymptotics

near Boundary ($z \rightarrow 0$)

$$h
ightarrow$$
 1, $A_t\sim \mu-
ho z,$ $\Psi\sim \Psi^\pm z^{\Delta_\pm},$ $\Delta_\pm=rac{3}{2}\pm\sqrt{rac{9}{4}}+m^2$

- chemical potential, μ and charge density, ρ - $\langle {\cal O}_{\Delta_\pm}\rangle=\sqrt{2}\Psi^\pm$

Horizon

z
ightarrow 1

$$A_t \rightarrow 0$$
, $h \rightarrow 0$

э

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Coupling

Unbroken phase

Solution with $\phi = 0$

$$ds^{2} = \frac{1}{z^{2}} \left[-h(z)dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h(z)} \right]$$

$$A_{t} = \mu(1-z)$$

$$h(z) = 1 - \left(1 + \frac{\mu^{2}}{4}\right)z^{3} + \frac{\mu^{2}}{4}z^{4}$$

use scaling symmetries: $z_H = 1$, with $z \in [0, 1]$ \longrightarrow AdS boundary at $z \rightarrow 0$

 \rightarrow AdS boundary at $z \rightarrow 0$

Alternative: self-dual under $\vec{E} \leftrightarrow \vec{B}$

$$A_y = \mathcal{B}x$$
, $A_t = 0$

イロト イポト イヨト イヨト

Coupling

Simple Scalar

Scalar Action

$$S_{\phi} = -\int d^4 x \sqrt{-g} \left[g^{AB} (D_A \phi)^* D_B \phi + m^2 |\phi|^2 \right], \ D_{\mu} = \partial_{\mu} - iqA_{\mu}$$
$$\partial_z^2 \phi + \left[\frac{h'}{h} - \frac{2}{z} \right] \partial_z \phi + \frac{1}{h} \nabla_z^2 \phi - \frac{1}{h} \left[\frac{m^2}{z^2} - q^2 \frac{A_t^2}{h} \right] \phi = 0$$

• introduce \vec{x} -dependence

$$abla_2^2 \phi = -k^2 \phi \;\;, \;\;\; \phi \sim \psi(z) \cos kx$$

• fix μ

• $\mu/r_+ \rightarrow$ eigenvalue in scalar equation

$$\frac{T_0}{\mu_0} = \frac{3}{4\pi\mu_0} \left[1 - \frac{\mu_0^2}{12} \right]$$

★ Ξ → < Ξ → </p>

Instability

picture from Hartnoll

Mechanism for Instability

Extremal black holes near horizon exhibit $AdS_2 \times \mathbb{R}^2$

• effective mass can be below 2D m_{BF}^2

$$m_{eff}^2 < 6 m_{BF,2}^2 = -3/2$$

Instability

Imbalance + Inhomogeneity

$$m_{eff}^2 = m^2 - 2q^2 + k^2$$

Limits placed on maximum imbalance from zero-T instability

$$q_{min}^2 = \frac{3+2\Delta(\Delta-3)+2k^2}{4}$$

and a limit on k^2

$$k_{max}^2 = 2q^2 - \frac{3}{2} - \Delta(\Delta - 3)$$

Interacting Scalar

Stringy considerations dictate S_{ϕ}

$$S_{int} = \int d^{4}x \sqrt{-g} \mathcal{L}_{int}$$

$$\mathcal{L}_{int} = \phi^{*} \left[\eta \mathcal{G}^{AB} D_{A} D_{B} + \eta' \mathcal{H}^{ABCD} D_{A} D_{B} D_{C} D_{D} + \dots \right] \phi + c.c.$$

▶ \mathcal{G}^{AB} and \mathcal{H}^{ABCD} may come from Einstein tensor, stress energy tensor, gauge or scalar fields, ...

Interaction

Can include terms in the Lagrangian

$$|F^{AB}\partial_B\phi|^2$$

 \Rightarrow similar to Landau-Ginzburg gradient term

э

Earlier Coupling

- scalar coupled with Einstein tensor [J.A., E. Papantonopoulous, G. Siopsis]
 - used cosmology with vanishing Λ
 - entry/exit quasi-de Sitter
 - scalar-tensor theory with second order Ψ eqn. [Sushkov]

[J.A., E. Papantonopoulous, G. Siopsis, K. Yeter]

$$S_{int} = \int d^4x \sqrt{-g} \left[\eta \mathcal{G}^{AB} (D_A \phi)^* D_B \phi - \eta' |D_A \mathcal{G}^{AB} D_B \phi|^2 \right]$$

pick

$$\mathcal{G}_{AB} = \mathcal{T}_{AB}^{EM} + g_{AB}\mathcal{L}^{EM} = \mathcal{F}_{AC}\mathcal{F}_{B}^{\ C} - \frac{1}{2}g_{AB}\mathcal{F}^{2}$$

A D A D A D A

Interaction term contribute linear terms in η , η' to the full system's stress-energy tensor, electromagnetic current, and scalar equation

Perturbatively solve the EMS equations

$$ds^{2} = \frac{1}{z^{2}} \Big[-h(z,x)e^{-\alpha(z,x)}dt^{2} + \frac{dz^{2}}{h(z,x)} + e^{\beta(z,x)}dx^{2} + e^{-\beta(z,x)} \Big]$$

$$A_{t} = A_{t}(z,x)$$

$$\phi = \phi(z,x)$$

Expansion in ξ

$$\begin{aligned} h(z,x) &= h_0(z) + \xi^2 h_1(z,x) + \dots, \quad \alpha = \xi^2 \alpha_1(z,x) + \dots \\ \phi &= \xi \phi_0(z,x) + \xi^3 \phi_1(z,x) + \dots, \quad \beta = \xi^2 \beta_z(z,x) \\ A_t &= A_{t0}(z) + \xi^2 A_{t1}(z,x) + \dots \end{aligned}$$
 (1)

The Hawking temperature is found as

$$\frac{T}{\mu} = -\frac{h'(1)e^{-\alpha(1)}}{4\pi\mu}$$

and chemical potential

$$\mu = A_t(0, x) = \mu_0 + \xi^2 \mu_1 + \dots$$

• when r_H is scaled back in, μ is constant

Scalar at (ξ)

$$\partial_z^2 \phi + \left[\frac{h'}{h} - \frac{2}{z}\right] \partial_z \phi + \frac{1}{h} \left(1 - \eta \mu^2 z^4 - \eta' \mu^4 z^{10} \nabla_2^2\right) \nabla_2^2 \phi$$
$$-\frac{1}{h} \left[\frac{m^2}{z^2} - q^2 \frac{A_t^2}{h}\right] \phi = 0$$

In the limit $k \to \infty$, the k term dominates the scalar equation at the horizon

$$rac{T}{\mu}=rac{3}{4\pi}\sqrt{\eta}\left(1-rac{1}{12\eta}
ight)$$

Large enough $\eta \Rightarrow$ produces a higher transition temperature than the homogeneous k = 0.

 k_c^2

 η' creates a limit new k_{max}^2

 \blacktriangleright η' a cutoff to compete with this effect and select a preferred finite

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Scalar

Inhomogeneous Solution, order ξ

► inhomogeneous solutions possess higher transition temperature than homogenous solution

▶ in CFT, dominant terms possess modulated order parameter

 $\langle \mathcal{O}
angle \sim \cos kx$

< 同 ト < 三 ト < 三 ト

Scalar

Inhomogeneous Solution

 $\Rightarrow \eta'$ sets UV cutoff and selects the lattice size

Δ	ls		n
		^{ru}	۲

• • • • • • • • • • • • •

Below T_c

Expansion

At each order in ξ only a finite number of modes

O(1) - 0
O(ξ) - k
O(ξ²) - 0, 2k
O(ξ³) - k, 3k

$$\frac{T}{T_c} \approx 1 - \xi^2 \left(\alpha_{10}(1) + \frac{\mu_1}{\mu_0} - \frac{h_{10}'(1)}{3 - \mu_0^2/4} \right) , \quad \frac{\langle \mathcal{O} \rangle}{T_c} \sim \sqrt{1 - \frac{T}{T_c}} \\ \frac{\rho}{\mu^2} = -\frac{\partial_z A_t(0, x)}{\left[A_t(0, x)\right]^2} \approx \frac{\rho_0}{\mu_0^2} + \xi^2 \frac{\rho_1(x)}{\mu_0^2} , \quad \rho_1 \sim \cos 2kx$$

æ

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Scalar

Inhomogeneous Solution

The charge density is spatially inhomogeneous in presence of lattice and spatially homogeneous chemical potential

Fermion phases

Fermions

- (aspects of) pseudogap
- insulating antiferromagnet
- strange metal
- Fermi liquid

Fermionic phases

Spectral Function

Scattering light illuminates constituents

extract Green's function

$$G = \frac{Z}{\omega - \nu_F(k - k_F) + \Sigma(\omega, k)}$$

• calculate the self-energy Σ

$$S_{\text{fermion}} = i \int d^4x \sqrt{-g} \bar{\Psi} \left[D - m_f \right] \Psi \; ,$$

22 / 27

Fermion

Bloch Expansion

$$\Psi_{lpha s} = \sum_{l=0,\pm 1,\pm 2,...} \psi_{lpha s}^{l}(z) e^{2ilkx}$$

Expand ψ in terms of parameter ξ

$$\psi_{\alpha s}' = \psi_{\alpha s}^{0,l} + \xi^2 \psi_{\alpha s}^{1,l} + \xi^4 \psi_{\alpha s}^{2,l} + \dots$$

 G_R comes from the z
ightarrow 0 behavior

$$\psi'_{lpha}(z) pprox A'_{lpha} \, z^{-m_f} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + B'_{lpha} \, z^{m_f} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $G_R = B A^{-1}$

크

イロト イポト イヨト イヨト

Leading Order

Poles

• at leading order, the Dirac equation

 $A^{0,l}(\omega, k_x, k_y) = \Im \left[\frac{\psi_{+1}^{0,l}(\epsilon)}{\psi_{-1}^{0,l}(\epsilon)} + \frac{\psi_{-1}^{0,l}(\epsilon)}{\psi_{-1}^{0,l}(\epsilon)} \right]$

$$\partial_{z}\psi_{\alpha s}^{0,l} - i\frac{q_{f}\mu_{0}(1-z)+\omega}{h(z)}\sigma^{2}\psi_{\alpha s}^{0,l} \\ + \frac{k_{x}+2kl}{\sqrt{h(z)}}\sigma^{3}\psi_{\alpha s}^{0,l} - \frac{k_{y}}{\sqrt{h(z)}}\sigma^{1}\psi_{-\alpha 3-s}^{0,l} = 0$$

► Same behavior at 1st order

and spectral function

э

2nd Order

- four nearest modes to / are excited
- I, I \pm 1 and I \pm 2

Near the Fermi surface,

$$G_R \sim rac{A^{0,l}B^{0,l}}{\left(A^{0,l}+\xi^4 A^{2,l}
ight)^2-\xi^4 A^{1,l-1}A^{1,l+1}}$$

The type of (non)-Fermi fluid is selected by

$$\nu_{k_l} = \frac{\sqrt{2}}{\mu_0} \sqrt{k_l^2 - \frac{q_f^2 \mu_0^2}{6}}$$

Which also determines the expansion of G_R and size of pseudogap Δ

Pseudogap

 $u_{k_l} < 1/2 \rightarrow \text{non-Fermi liquid}$

 $\Delta \sim \xi^{1/2\nu_{k_l}}$

small gap, broad peaks

 $u_{k_l} = 1/2 \rightarrow \text{marginal Fermi liquid}$

Alsup

Summary

- superconducting, strongly-coupled matter
- Iattice mechanism
 - lattice structure
 - modulated charge density
- fermion pseudogap creation

work to be done

- \Rightarrow effect on other types of states, insulators
- \Rightarrow transport coefficients
- \Rightarrow general features of other dynamical lattices?

A D A D A D A