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Defining Parton Distribution Functions (PDFs)
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Parton is the name proposed by R.

Feynman in 1969 as a generic

description of the particles that

constitute the nucleons.

A model assuming that the nucleon is made out of three valence quarks in

a bag is way too simple!

It can not reproduce the experimental results for scattering processes with

inelastic scattering of electrons off protons.

Actually hadrons are relativistic many body systems where valence quarks

are ”embedded ” in a sea of virtual q − q̄ pairs created by the gluons...

The nucleon structure is experimentally very intensively investigated, but

can in principle be accessed also with theoretical calculations
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Defining Parton Distribution Functions (PDFs)

Deep Inelastic Scattering (DIS)

In DIS processes leptons act as a

probe transferring “four-momentum”

q to the nucleon to resolve the

partonic structure.

Resolving power of the probe given

by 1/q. Resolution increases with q.

With q = 100 GeV, the resolution is

0.02 fm.

Friedman, Kendall and Taylor were awarded the Nobel prize in 1990 for

their pioneering experiments at SLAC in 1966 which showed the first

evidence of partonic structure of the nucleon.
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Defining Parton Distribution Functions (PDFs)

The target in the DIS experiments can be seen as a stream of partons

carrying a fraction x of the longitudinal momentum.

The momentum distribution functions of partons within the proton are

called Parton Distribution Functions (PDFs).

They represent probability densities to find a parton carrying a fraction x of

the nucleon momentum at squared energy scale Q2 = −q2.
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Defining Parton Distribution Functions (PDFs)

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  
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e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016
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 (NLO

pp –> tt (NNLO)

)
(–)

Scale-dependent coupling constant

A key property of QCD is asymptotic

freedom.

Interactions between partons become

arbitrarily weak at higher and higher

energies or shorter and shorter distances.

Perturbation theory can make predictions about the rate of change

(evolution) of PDFs when the energy scale Q2 changes.

The QCD evolution equations were discovered by Dokshitzer (1977),

Gribov, Lipatov (1972), Altarelli and Parisi (1977) and are called the

DGLAP equations.

The x dependence of the PDFs can not be predicted by perturbation theory.
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PDFs are of paramount importance because...

The uncertainties in PDFs are the dominant theoretical uncertainties in

Higgs couplings, αs and the mass of the W boson

Beyond the LHC, PDFs play an important role,

for instance in astroparticle physics, such as for

the accurate predictions for signal and

background events at ultra–high energy neutrino

telescopes (ANITA, IceCube, Pierre Auger

Observatory)

PDFs will keep playing an important role for

any future high energy collider involving hadrons

in the initial state. Therefore improving our

understanding of PDFs also strengthens the

physics potential of such future colliders

Gao, Harland-Lang, Rojo (2018)
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PDF uncertainties and BSM Physics

The uncertainty on the PDFs is rapidly becoming one of the limiting factors

in searches for new physics.

mq̃ = mg̃ = m [GeV]

NNPDF3.0NLO
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KNLO+NLL(pp→ g̃g̃ +X)√
S = 13 TeV

µF = µR = m

The relative size of the NLL corrections for gluino pair production was
computed.The error in the relative size of the NLL corrections grows very
quickly as the gluino mass is increased, mostly as a consequence of the large
PDF errors at large values of x. Beenakker et al. (2016)
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From DIS to PDFs via factorization

The measurement of PDFs is made possible due to factorization theorems

Intuitively, factorization theorems tell us that the same universal

non-perturbative objects (the PDFs), representing long distance physics,

can be combined with many short-distance calculations in QCD to give the

cross-sections of various processes

σ = f ⊗H

I f are the PDFs, H is the hard perturbative part and ⊗ is convolution.

I PDFs truly characterize the hadronic target

I PDFs are essentially non-perturbative
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Lattice?

gluon quark

a

The natural ab-initio method to

study QCD non-perturbatively is on

the lattice. But ...

PDFs are defined as an expectation

value of a bilocal operator evaluated

along a light-like line.

Clearly, we can not evaluate this on

a Euclidean set-up.
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Lattice traditionally & global PDF fits

q(x)=
1

4π

∞∫

−∞

dω−e−ixP
+ω−〈P |ψ̄(ω−)W (ω−, 0)γ+ψ(0)|P 〉

Light cone PDF

where W (ω−, 0) = Pe−ig0
∫ ω−
0

dy−A+(y−)
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4π

∞∫

−∞

dω−e−ixP
+ω−〈P |ψ̄(ω−)W (ω−, 0)γ+ψ(0)|P 〉

Light cone PDF

Mellin moments 〈xk〉q =
∫ 1

−1
dx xk q(x) related to local matrix elements of

twist-2 operators

〈P |ψ̄(0)γ{µ1Dµ2 ...Dµk}ψ(0)|P 〉 = 2〈xk〉q(Pµ1 ...Pµk − traces)
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Lattice traditionally & global PDF fits

Not an issue if every moment were accessible because a probability

distribution is completely determined once all its moments are known.

These studies are limited to the first few (three) moments due to

I Bad signal to noise ratio

I Power-divergent mixing on the lattice (discretized space-time does not

possess the full rotational symmetry of the continuum).
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Lattice traditionally & global PDF fits

Mellin moments
Constantinou (2015)
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Lattice traditionally & global PDF fits

Mellin moments
Constantinou (2015)

Global fits

Usual determination of PDFs is performed by fitting experimental data

from several hard scattering cross sections (l-p and p-p collisions)

Combining the most PDF-sensitive data and the highest precision QCD

and EW calculations (always assuming that SM holds) and employing a

statistically robust fitting methodology

Can achieve high precision for the cases that data are abundant
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Lattice traditionally & global PDF fits

Mellin moments
Constantinou (2015)

Global fits
Lin et al. (2018)

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 9/33

https://inspirehep.net/record/1325811
https://inspirehep.net/record/1637373


Large-x discrepancies for the nucleon and the pion

The nucleon
JLab 12-GeV measurements of the ratio

of the PDFs for the d and u quarks at

large momentum fraction x

In yellow the projected uncertainty in

measurements under several theoretical

assumptions

The pion

Model/theory large x

QCD parton model (1− x)2

pQCD (1− x)2+γ

Light-front holographic QCD (1− x)0

Nambu-Jona-Lasino/duality (1− x)1

ū quark distribution of π− extracted

@FNAL E615

Large-x of pion PDF is the goal

@JLab-C12-15-006, @COMPASS-CERN.

Large-x of kaon PDF is the goal

@JLab-C12-15-006A

An ab-initio non-perturbative QCD calculation is timely and imperative!
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PDFs from the lattice: Pseudo-PDFs Formalism

Starting point: the equal time hadronic matrix element with the quark and

anti-quark fields separated by a finite distance Radyushkin (2017)

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)τ3ψ(z)|p〉

Lorentz inv. Mα(z, p) = 2pαMp(−(zp),−z2)︸ ︷︷ ︸
Leading twist

+ zαMz(−(zp),−z2)︸ ︷︷ ︸
Higher twist

z = (0, 0, 0, z3)

p = (p0, 0, 0, p)
α = 0

The Lorentz invariant quantity ν = −(zp), is the ”Ioffe time”

Ioffe time PDFs M(ν, z2
3) defined at a scale µ2 = 4e−2γE/z2

3 (at leading

log level) are the Fourier transform of regular PDFs f(x, µ2) Balitsky, Braun

(1988), Braun et al. (1995)

M(ν, z2
3) =

∫ 1

−1

dx f(x, 1/z2
3)eixν
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Lattice QCD requirements

Largest momentum on the lattice aPmax = π/2 ∝ O(1)

a = 0.1fm → Pmax = 10Λ where Λ = 300 MeV

a = 0.05fm → Pmax = 20Λ

Large momentum provides a wide coverage of the Ioffe time ν

Pmax = 3 GeV easily achievable with moderate values of the lattice spacing

but still demanding due to statistical noise

Pmax = 6 GeV exponentially harder requiring very fine values of the lattice

spacing
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Signal to Noise

N̄
π

π

π

〈|CN (t)|2〉 ∼ e−3mπt

N

〈CN (t)〉 ∼ e−mN t

N N

Statistical accuracy drops exponentially with increasing momentum P

StN(O) =
〈O〉√
var(O)

∝ e−[EN (P )−3/2mπ ]t

G. Parisi (1984) P. Lepage (1989)
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Obtaining the Ioffe time PDF

z3 → 0⇒Mp(ν, z
2
3) =M(ν, z2

3) +O(z2
3)

But.... large O(z2
3) corrections prohibit the extraction.

Conservation of the vector current implies Mp(0, z
2
3) = 1 +O(z2

3) ,

but in a ratio z2
3 corrections (related to the transverse structure of the

hadron) might cancel Radyushkin (2017)

M(ν, z2
3) ≡ Mp(ν, z

2
3)

Mp(0, z2
3)

Much smaller O(z2
3) corrections and therefore this ratio could be used to

extract the Ioffe time PDFs

All UV singularities are exactly cancelled and when computed in lattice

QCD it can be extrapolated to the continuum limit at fixed ν and z2.
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Numerical implementation

First case study in an unphysical setup Karpie, Orginos, Radyushkin SZ, Phys.Rev. D96 (2017) no.9, 094503

Quenched approximation

323 × 64 lattices with a = 0.093fm.

mπ = 601MeV and mN = 1411MeV

Now employing dynamical ensembles

a(fm) Mπ(MeV) β L3 × T
0.127(2) 415 6.1 243 × 64

0.127(2) 415 6.1 323 × 96

0.094(1) 390 6.3 323 × 64

0.094(1) 280 6.3 323 × 64

0.094(1) 172 6.3 643 × 128

Table: Parameters for the lattices generated by the JLab/W&M collaboration using 2+1 flavors of clover Wilson
fermions and a tree-level tadpole-improved Symanzik gauge action. The lattice spacings, a, are estimated using the
Wilson flow scale w0. Stout smearing implemented in the fermion action makes the tadpole corrected tree-level clover
coefficient cSW used, to be very close to the value determined non-pertubatively with the Schrödinger functional method
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Results for the Re and Im parts of M(ν, z2
3)

0 5 10 15
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0
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Re M(ν, z2
3)
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0.4
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0.8

1

ν

Im M(ν, z2
3)

Curves represent Re and Im Fourier transforms of qv(x)= 315
32

√
x(1− x)3.

Considering CP even and odd combinations

I even: q−(x) = f(x) + f(−x) = q(x)− q̄(x) = qv(x)

I odd: q+(x) = f(x) = f(−x) = q(x) + q̄(x) = qv(x) + 2q̄(x)
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Results for the Im part of M(ν, z2
3)
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⌫

Curves represent the Im Fourier transforms of qv(x) = q(x)− q̄(x) and

q+(x) = q(x) + q̄(x) = qv(x) + 2q̄(x) respectively.

The agreement with the data is strongly improved if we use a non-vanishing

antiquark contribution, namely q̄(x) = ū(x) + d̄(x) = 0.07[20x(1− x)3].
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Results for the Re and Im parts of M(ν, z2
3)
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Data as function of the Ioffe time. A residual z3-dependence can be seen.

This is more visible when, for a particular ν we have several data points

corresponding to different values of z3.

Different values of z2
3 for the same ν correspond to the Ioffe time

distribution at different scales.
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Residual z3-dependence

Is the residual scatter in the data points consistent with evolution? By

solving the evolution equation at LO, the Ioffe time PDF at z′3 is related to

the one at z3 by

M(ν, z′
2
3)=M(ν, z2

3) − 2

3

αs
π

ln(z′3
2
/z2

3)

∫ 1

0

duB(u)M (uν, z2
3)

Only applicable at small z3
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Before and after evolution
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ν

The ratio M(ν, z2
3) for for z3/a = 1, 2, 3, and 4. LHS: Data before evolution.

RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Before and after evolution
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The ratio M(ν, z2
3) for for z3/a = 1, 2, 3, and 4. LHS: Data before evolution.

RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Comparison to global fits
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Re�M(ν, z2
0)

ν
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µ2=1GeV2

µ2=4GeV2

CJ µ2=4GeV2

MMHT µ2=4GeV2

NNPDF µ2=4GeV2

uv(x) − dv(x)

x

Karpie, Orginos, Radyushkin, S.Z. (2017)

Evolved points fitted with cosine FT of

qv(x) = N(a, b) xa (1− x)b

a = 0.36(6), b = 3.95(22)

Evolved data can be exploited to build

uv(x)− dv(x)

Results compared with predictions from

global fits
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Sanity checks vs other lattice results

Extract lowest PDF moments from our data Karpie, Orginos, S.Z., JHEP 1811 (2018)

and compare with the lattice literature QCD-SF collaboration (1996)

MS moments up to O(α2
s, z

2) directly from the reduced function M(ν, z2)

an+1(µ) = (−i)n 1

cn(z2µ2)

∂nM(ν, z2)

∂νn

∣∣∣∣
ν=0

+O(z2, α2
s)

Our method avoids mixing and allows the extraction of any moment
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The pertinent systematics in PDF extraction

Parton distribution functions or distribution amplitudes may be defined in

lattice QCD by inverting the quasi-Fourier transform of a certain class of

hadronic position-space matrix elements

One example are the Ioffe-time PDFs, MR, related to the physical PDF

qv(x, µ
2) via the integral relation

MR(ν, µ2) ≡
∫ 1

0

dx cos(νx) qv(x, µ
2)

Karpie, Orginos, Rothkopf, S.Z. JHEP 1904 (2019) 057
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MR(ν, µ2) ≡
∫ 1

0

dx cos(νx) qv(x, µ
2)

Only a handful

of lattice data

Cosine not or-

thogonal in [0,1]

The task at hand is then to reconstruct the PDF qv(x, µ
2) given a limited

set of simulated data for MR(ν, µ2).

The extraction is highly ill-posed, so one has to resort to regularization

strategies in order to find a way to reliably estimate the PDF from the data

at hand
Karpie, Orginos, Rothkopf, S.Z. JHEP 1904 (2019) 057
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Naive Reconstruction

Discretize the integral, employing the trapezoid rule

MR(ν) =
1

2
cos(νx0) qv(x0)+

Nx−1∑

k=1

δx cos(νxk) qv(xk)+
1

2
cos(νxNx) qv(xNx)

Casting our problem in a matrix equation m = C · q,
The conditioning of the problem is easily elucidated by considering the

eigenvalues of the matrix C.
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Karpie, Orginos, Rothkopf, S.Z. - arXiv:1901.05408 - JHEP 1904 (2019) 057
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Naive Reconstruction
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Results for the direct inversion for different discretization intervals
(left ν = [0, 40π], center ν = [0, 100], right ν = [0, 20]).
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Advanced PDF Reconstructions
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New results with Nf = 2 + 1 fermions for the nucleon
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 )

The nucleon valence distribution obtained from the ensemble a127m415 fit
to the form used by the JAM collaboration. The χ2/d.o.f. for the fit with all
the data is 2.5(1.5). The uncertainty band is obtained from the fits to the
Jackknife samples of the data.
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New results with Nf = 2 + 1 fermions for the nucleon
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The nucleon valence distribution obtained from the ensemble a127m415L fit
to the form used by the JAM collaboration. The χ2/d.o.f. for the fit with all
the data is 2.1(6). The uncertainty band is obtained from the fits to the
Jackknife samples of the data.
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New results with Nf = 2 + 1 dynamical fermions
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The nucleon valence distribution obtained from the ensemble a094m390 fit
to the form used by the JAM collaboration. The χ2/d.o.f. for the fit with all
the data is 2.0(5). The uncertainty band is obtained from the fits to the
Jackknife samples of the data.
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New results with Nf = 2 + 1 fermions for the nucleon
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Results with Nf = 2 + 1 fermions for the pion
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qπv (x) =
xα(1− x)β(1 + γx)

B(α+ 1, β+ 1)

α= − 0.48(14)
β= 1.08(41)

  qπv (x) (µ= 2 GeV)

Reduced pseudo-ITD obtained from ensembles a127m415 and a127m415L
after 1-loop perturbative matching at µ = 2 GeV. The circle (◦) symbols
indicate the reduced pseudo-ITD matrix elements M0 extracted from the
a127m415 ensemble and the diamond (�) symbols denote those for the
a127m415L ensemble. The red band is obtained from a simultaneous fit to
the matched ITDs on these two ensembles in the limit of infinite volume
(LHS). The pion valence distribution (RHS).
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Results with Nf = 2 + 1 flavors for the pion
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(LHS) Comparison of the pion xqπv (x)-distribution with the LO extraction
from DY data (gray data points), NLO fits (green, maroon, and blue). This
lattice QCD calculation of qπv (x) is evolved from an initial scale µ2

0 = 4 GeV2

at NLO. All the results are evolved to an evolution scale of µ2 = 27 GeV2.
Similar comparison of the pion qπv (x)-distribution (RHS).
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Results with Nf = 2 + 1 flavors for the pion
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Lattice impact in the precision of global fits
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The comparison is with the results of including lattice-QCD pseudo-data

for moments of PDFs (left) and info from lattice-QCD pseudo-data on

x-space PDFs (right). Lin et al. (2018)
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Conclusions and outlook

PDFs are needed as theoretical inputs to all hadron scattering experiments

and in some cases are the largest theory uncertainty.

The lattice community is by now able to provide ab-initio determinations of

PDFs without theoretical obstructions.

The interplay between lattice QCD and global fits is very important

Also important in the search of New Physics Gao, Harland-Lang, Rojo (2018)

What next? Polarized, Transversity, gluon PDFs and GPDs eventually

Many thanks for your attention!!!
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Formalism

The quasi-PDF Q(x, p2) is related to Mp(ν, z
2
3) by

Q(x, p2) =
1

2π

∫ ∞

−∞
dν e−ixνMp(ν, [ν/p]

2)

Quasi PDF mixes invariant scales until pz is effectively large enough

While the pseudo-PDF has fixed invariant scale dependence

P (x, z2
0) =

1

2π

∫ ∞

−∞
dν e−ixνMp(ν, z

2
0)
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Comparison to global fits
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x
LHS: Data points for Re M (ν, z23) with z3 ≤ 10a evolved to z3 = 2a. By fitting
these evolved points with a cosine FT of qv(x) = N(a, b)xa(1− x)b we obtain
a = 0.36(6) and b = 3.95(22) (statistical errors). RHS: Curve for uv(x)− dv(x)
built from the evolved data shown in the left panel and treated as corresponding to
the µ2 = 1 GeV2 scale; then evolved to the reference point µ2 = 4 GeV2 of the
global fits. 1-loop matching to MS still to be done on our data
A. Radyushkin 1710.08813, Zhang et al 1801.03023, Izubuchi et al 1801.03917
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More on evolution

� � � � � �� �� ������

����

����

����

����

����

z3/a

Re M(⌫, z2
3)

LO evolution cannot be extended to very low scales.

It is known that evolution stops below a certain scale (by observing our

data we infer that this is the case for z3 ≥ 6a.)

Adopt an evolution that leaves the PDF unchanged for length scales above

z3 = 6a and use the leading perturbative evolution formula to evolve to

smaller z3 scales.
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Numerical implementation

Following C. Bouchard et.al Phys. Rev. D 96, no. 1, 014504 (2017) , we compute a regular nucleon two

point function

Cp(t) = 〈Np(t)N p(0)〉 ,

C
O0(z)
p (t) =

∑
τ 〈Np(t)O0(z, τ)N p(0)〉

with O0(z, t) = ψ(0, t)γ0τ3Ê(0, z;A)ψ(z, t)

Proton momentum and displacement of the quark fields along the ẑ axis

Meff(z3p, z
2
3 ; t) =

C
O0(z)
p (t+ 1)

Cp(t+ 1)
− C

O0(z)
p (t)

Cp(t)

Extract the desired ME J at large Euclidean time separation as
J (z3p,z

2
3)

2p0 = limt→∞Meff(z3p, z
2
3 ; t) , where p0 is the energy of the nucleon.
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Results for the nucleon dispersion relation

pa

Ea

Energies and momenta are in lattice units. The solid line is the continuum
dispersion relation (not a fit) while the errorband is an indication of the
statistical error of the lattice nucleon energies
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Results

t/a t/a

Typical fits used to extract the reduced matrix element (here p = 2π/L · 2 and
z = 4 (LHS) and p = 2π/L · 3 and z = 8 (RHS)). The average χ2 per degree of
freedom was O(1). All fits are performed with the full covariance matrix and the
error bars are determined with the jackknife method.
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Renormalization

In a series of articles Dotsenko Nucl.Phys. B169 (1980) 527, Ishikawa et al. Phys. Rev. D 96, 094019 (2017), Chen et al.

Nucl.Phys. B915 (2017) and A. V. Radyushkin Phys.Lett. B781 (2018) 433-442 the one loop renormalizability of

Mα(z, p, a) has been discussed

by analyzing the pertinent diagrams one can see that there is a linear

divergence from the link self-energy contribution and a logarithmic

divergence associated to the anomalous dimension 2γend due to two

end-points of the link.

z t1z t2z 0• •• • z tz 0

z1
k

• • •

•

z tz 0

z1
k

• • •

•
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Renormalization

M has been shown to renormalize multiplicatively as

MR(ν, z2, µ) = Z−1
j Z−1

j̄
e−δm|z|MB(ν, z2, a), where δm = CF

αs
2π

π
a , is an

effective mass counterterm removing power divergences in the Wilson line

and Z−1
j , Z−1

j̄
are renormalization constants (RCs) associated with the

endpoints of the Wilson line independent of z, p.

The entire renormalization is independent of the external momentum

Forming the ratio, the RCs cancel and thus the reduced Ioffe time

distribution has a great potential to reduce systematic effects related to

renormalization.The UV divergences generated by the link-related and

quark-self-energy diagrams cancel in the ratio.

Savvas Zafeiropoulos Lattice studies of pseudo-PDFs 8/32



Numerical implementation

Renormalization of the ME?

For z3 = 0 M(z3p, z
2
3)→ the local iso-vector current, should be = 1 (but

...) lattice artifacts...

Introduce an RC Zp = 1

J (z3p,z23)|
z3=0

Zp has to be independent from p. But lattice artifacts or potential fitting

systematics ...

renormalize the ME for each momentum with its own Zp → maximal

statistical correlations to reduce statistical errors, and cancellation of lattice

artifacts in the ratio
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Numerical implementation

in practise use the double ratio

M(ν, z2
3) = lim

t→∞
Meff(z3p, z

2
3 ; t)

Meff(z3p, z2
3 ; t)|z3=0

×
Meff(z3p, z

2
3 ; t)

∣∣
p=0,z3=0

Meff(z3p, z2
3 ; t)|p=0

,

infinite t limit is obtained with a fit to a constant for a suitable choice of a

fitting range.
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Matching to MS

In 1801.02427 it was shown by Radyushkin that at 1-loop evolution and

matching to MS can be done simultaneously.

This establishes a direct relation between the Ioffe time distribution

function (ITDF) and pseudo-ITDF.

Scales are needed as such that we are in a regime dominated by

perturbative effects

I(ν, µ2) =M(ν, z2
3) +

αs
π
CF

∫ 1

0

dwM(wν, z2
3)

×
{
B(w) ln

[
(1− w)z3µ

eγE+1/2

2

]

+ [(w + 1) ln(1− w)− (1− w)]+

}
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Comparison to global fits after converting to the MS

scheme
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Bayesian Reconstruction

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

The likelihood probability P [M|q, I] denotes how probable it is to find the

data M if q were the correct PDF.

Finding the most probable q by maximizing the likelihood is nothing but a

χ2 fit to the M data, which as we saw from the direct inversion is by itself

ill-defined.

The prior probability P [q|I], which quantifies, how compatible our test

function q is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of q(x) at the boundaries of the x interval).

P [M|I], the so called evidence is a q independent normalization.
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Bayesian Reconstruction

For sampled data, due to the central limit theorem, the likelihood

probability may be written as the quadratic distance functional

P [M|q, I] = exp[−L] with L = 1
2

∑
k,l(Mk −Mq

k)C−1
kl (Ml −Mq

l ).

Mq
k are the Ioffe-time data arising from inserting the test function q into

the cosine Fourier trafo and Ckl denotes the covariance matrix of the Nm

measurements of simulation data Mh
k .

We then specify an appropriate prior probability P [q|I] = exp[αS[I]].

Prior information enters in two ways here. On the one hand we deploy a

particular functional form of the regularization functional

SBR[q,m] =
∑

n

∆xn

(
1− qn

mn
+ log

( qn
mn

))

which may be obtained by requiring positive definiteness of the resulting q,

smoothness of q.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

What happens in the case of non-guaranteed positive definiteness?

We need to change the regulator!

Often the quadratic regulator is used

SQDR[q,m] =
∑

n

∆xn

(
qn −mn

)2

It is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.

Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRg[q,m] =
∑

n

∆xn

(
− |qn −mn|

hn
+ log

( |qn −mn|
hn

− 1
))

keeping the advantageous properties of the original BR prior at the price of

having to introduce another default model related function h.
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Often the quadratic regulator is used

SQDR[q,m] =
∑

n

∆xn

(
qn −mn

)2

It is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.

Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.
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Bayesian Reconstruction

once L, S and m have been provided, the most probable PDF q, given

simulation data and prior information is obtained by numerically finding the

extremum of the posterior

δP [q|M, I]

δq

∣∣∣∣
q=qBayes

= 0.

It has been proven that if the regulator is strictly concave, as is the case for

all the regulators discussed above, there only exists a single unique

extremum in the space of functions q on a discrete ν interval.

With positive definiteness is imposed on the end result, the space of

admissible solutions is significantly reduced. Regulators admitting also q

functions with negative contributions have to distinguish between a

multitude of oscillatory functions, which if integrated over, resemble a

monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.
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Advanced PDF Reconstructions

A versatile approach is Bayesian inference Y. Burnier and A. Rothkopf Phys.Rev.Lett. 111 (2013)

It acknowledges the fact that the inverse problem is ill-defined and a unique

answer may only provided, once further information about the system has

been made available.

Formulated in terms of probabilities, one finds in the form of Bayes theorem

that

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

It states that the so called posterior probability P [q|M, I] for a test function

q to be the correct x-space PDF, given our simulated Ioffe-time PDF M and

additional prior information may be expressed in terms of three quantities.
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Bayesian Reconstruction

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

The likelihood probability P [M|q, I] denotes how probable it is to find the

data M if q were the correct PDF.

Finding the most probable q by maximizing the likelihood is nothing but a

χ2 fit to the M data, which as we saw from the direct inversion is by itself

ill-defined.

The prior probability P [q|I], which quantifies, how compatible our test

function q is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of q(x) at the boundaries of the x interval).

P [M|I], the so called evidence is a q independent normalization.
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Bayesian Reconstruction

For sampled data, due to the central limit theorem, the likelihood

probability may be written as the quadratic distance functional

P [M|q, I] = exp[−L] with L = 1
2

∑
k,l(Mk −Mq

k)C−1
kl (Ml −Mq

l ).

Mq
k are the Ioffe-time data arising from inserting the test function q into

the cosine Fourier trafo and Ckl denotes the covariance matrix of the Nm

measurements of simulation data Mh
k .

We then specify an appropriate prior probability P [q|I] = exp[αS[I]].

Prior information enters in two ways here. On the one hand we deploy a

particular functional form of the regularization functional

SBR[q,m] =
∑

n

∆xn

(
1− qn

mn
+ log

( qn
mn

))

which may be obtained by requiring positive definiteness of the resulting q,

smoothness of q.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

What happens in the case of non-guaranteed positive definiteness?

We need to change the regulator!

Often the quadratic regulator is used

SQDR[q,m] =
∑

n

∆xn

(
qn −mn

)2

It is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.

Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRg[q,m] =
∑

n

∆xn

(
− |qn −mn|

hn
+ log

( |qn −mn|
hn

− 1
))

keeping the advantageous properties of the original BR prior at the price of

having to introduce another default model related function h.
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Bayesian Reconstruction

once L, S and m have been provided, the most probable PDF q, given

simulation data and prior information is obtained by numerically finding the

extremum of the posterior

δP [q|M, I]

δq

∣∣∣∣
q=qBayes

= 0.

It has been proven that if the regulator is strictly concave, as is the case for

all the regulators discussed above, there only exists a single unique

extremum in the space of functions q on a discrete ν interval.

With positive definiteness is imposed on the end result, the space of

admissible solutions is significantly reduced. Regulators admitting also q

functions with negative contributions have to distinguish between a

multitude of oscillatory functions, which if integrated over, resemble a

monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Neural Network Reconstruction

The ensemble average of data is obtained in two steps

I Starting from random [w, b], minimize χ2 to find [w, b].

I Repeat 10 times to find 10 different Neural Nets (replicas).

For each Neural Net, the minimizer is re-run for each jackknife sample to

obtain a jackknife estimate q(x) for each replica.

Central value of q(x) is the average over jackknife samples and replicas.

Error by combining the fluctuations over the jackknife sample and replicas.

Neural Net

tanh(x)

tanh(x)

tanh(x)

tanh(x)

in out

w x + b

x q(x)

�2 =
X

k

✓
M(⌫k) �

Z 1

0

dx q[✓](x)cos(⌫kx)

◆
�2

k

✓
M(⌫k) �

Z 1

0

dx q[✓](x)cos(⌫kx)

◆

[✓] = {w, b}
min
[✓]

⇥
�2

⇤
! [w, b]

[θ] = {w, b} min
[θ]

[χ2]→ [w, b]

χ2 =
∑
k

(
M(νk)−

∫ 1

0
dxq[θ](x) cos (νkx)

)
σ2
k

(
M(νk)−

∫ 1

0
dxq[θ](x) cos (νkx)

)
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Lattice QCD requirements

Largest momentum on the lattice aPmax = π/2 ∝ O(1)

a = 0.1fm → Pmax = 10Λ where Λ = 300 MeV

a = 0.05fm → Pmax = 20Λ

Large momentum is required to suppress high twist effects (quasi-PDFs) and

to provide a wide coverage of the Ioffe time ν

Pmax = 3 GeV easily achievable with moderate values of the lattice spacing

but still demanding due to statistical noise

Pmax = 6 GeV exponentially harder requiring very fine values of the lattice

spacing
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Signal to Noise

N̄
π

π

π

〈|CN (t)|2〉 ∼ e−3mπt

N

〈CN (t)〉 ∼ e−mN t

N N

Statistical accuracy drops exponentially with increasing momentum P

StN(O) =
〈O〉√
var(O)

∝ e−[EN (P )−3/2mπ ]t

G. Parisi (1984) P. Lepage (1989)
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Determination of PDFs from Experiment
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Figure 2.4: The PDF4LHC15 NLO PDFs at a low scale µ2 = Q2 = 4 GeV2 (left plot) and at µ2 = Q2 =
102 GeV2 (right plot) as a function of x. We show the uv and dv valence combinations, the ū, d̄, s and c sea
quark PDFs, and the gluon (note that the latter is divided by a factor 10).

are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z 1

0

dx�T3(x, µ2) = h1i�u+ � h1i�d+ = 1.2723 ± 0.0023 , (2.53)

a8 =

Z 1

0

dx�T8(x, µ2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585 ± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [205] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [206].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)
with charged lepton beams and nuclear targets. As photon scattering does not distinguish quarks and
antiquarks, inclusive DIS data constrain only the total quark combinations �q+, while SIDIS data
with identified pions or kaons in the final state constrain individual quark and antiquark flavors. In
principle, both DIS and SIDIS are also sensitive to the gluon distribution �g, as it directly enters the
factorized expressions of the corresponding structure functions beyond LO, and indirectly via DGLAP
evolution. In practice, the constraining power of DIS and SIDIS data on �g is rather weak because the
Q2 range covered by the data is limited, especially if one restricts to the kinematic region not a↵ected
by power-suppressed corrections and very precise data from JLab are therefore excluded.

Note that, in the case of SIDIS, a reliable knowledge of fragmentation functions (FFs) is required
in the factorized expressions of the corresponding observables. Since FFs are nonperturbative objects

27

Fits to experimental data

Determination of Parton distribution functions from Experiment

Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv:

1711.07916
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Determination of PDFs from Experiment
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Figure 2.6: Same as Fig. 2.4, but for the polarized NNPDFpol1.1 NLO PDFs [16].
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Figure 2.7: (Left) The polarized gluon momentum distribution x�g from the DSSV14 (with 90% C.L. uncer-
tainty band) and NNPDFpol1.1 PDF sets at Q2 = 10 GeV2. The NNPDF3.1 positivity bound is also shown.
(Right) 90% C.L. areas in the plane spanned by the truncated moments of �g computed for 0.05  x  1 and
0.001  x  0.05 at Q2 = 10GeV2 [27].

• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of
a positive �ū distribution and a negative �d̄ distribution, with |�d̄| > |�ū| [16]. The size of the
flavor symmetry breaking for polarized sea quarks is quantified by the asymmetry �ū��d̄, which,
in the NNPDFpol1.1 analysis, turn out to be roughly as large as its unpolarized counterpart (in
absolute value) [11], though much more uncertain [234]. Even within this uncertainty, polarized

30

Fits to experimental data

Determination of Parton distribution functions from Experiment

Global fits to experimental data Parton distributions and lattice QCD calculations: a community white paper arXiv:

1711.07916
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Backus-Gilbert Reconstruction

The Backus-Gilbert (BG) method instead of imposing a smoothing

condition on the resulting PDF q(x) it imposes a minimization condition on

the variance of the resulting function. G. Backus and F. Gilbert. Geophysical Journal of the Royal

Astronomical Society, 16:169205, (1968)

Let us define a rescaled kernel and rescaled PDF h(x)

Kj(x) ≡ cos(νjx)p(x) and , h(x) ≡ qv(x)

p(x)

where p(x) corresponds to an appropriately chosen function that makes the

problem easier to solve.

We wish to incorporate into p(x) most of the non-trivial structure of q(x)

apriorily, such that h(x) is a slowly varying function of x and contains only

the deviation of q(x) from p(x).
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Backus-Gilbert Reconstruction

Starting from the preconditioned expression with a rescaled PDF h(x) that

is only a slowly varying function of x our inverse problem becomes

dj ≡MR(νj) =

∫ 1

0

dxKj(x)h(x) .

BG introduces a function ∆(x− x̄) =
∑
j qj(x̄)Kj(x), where qj(x̄) are

unknown functions to be determined.

It then estimates the unknown function as a linear combination of the data

ĥ(x̄) =
∑

j

qj(x̄)dj , or q̂v(x̄) =
∑

j

qj(x̄)djp(x̄)

If ∆(x− x̄) were to be a δ−function then ĥ(x̄) = h(x̄). If ∆(x− x̄)

approximates a δ-function with a width σ, then the smaller σ is the better

the approximation of ĥ(x) to h(x).
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Backus-Gilbert Reconstruction

In other words if ĥσ(x) is the approximation resulting from ∆(x) with a

width σ then limσ→0 ĥσ(x) = h(x) .

With this in mind BG minimizes the width σ given by

σ =

∫ 1

0

dx(x− x̄)2∆(x− x̄)2 .

Furthermore, if ∆(x) approximates a δ-function then one has to impose the

constraint
∫ 1

0
dx∆(x− x̄) = 1. Using a Lagrange multiplier λ one can

minimize the width and impose the constraint by minimizing

χ[q] =

∫ 1

0

dx(x−x̄)2
∑

j,k

qj(x̄)Kj(x)Kk(x)qk(x̄)+λ

∫ 1

0

dx
∑

j

Kj(x)qj(x̄) .

But let’s see all this in practise ...
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