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Introduction
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Relativistic heavy ion collisions

Heavy ion collision experiments as a means to study the properties of nuclear
matter at extremely high energies

Examples:
I Au+Au at RHIC, BNL with √sNN up tp 200 GeV.
I Pb+Pb at LHC, CERN with √sNN up tp 5 TeV.

Experimental data:
Number of particles, E and p distributions, ...
Flow coefficients vn, correlations, ...

should be explainable by theory!
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Relativistic heavy ion collisions

Image from ATLAS @ CERN (2010)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayHeavyIonCollisions
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Jets

I Highly energetic, focused particle “sprays”
I Jets originate from hard scatterings of partons

during the collision
I Seeds of jets are pairs of high energy partons
I Jets traversing a background/medium of soft

partons
I Interactions with the medium:

I momentum broadening
I energy loss (quenching)

Fig. from [arXiv:0902.2011]
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Jets

Momentum conservation: pairs of jets on opposite sides

Image from ATLAS @ CERN (2010)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayHeavyIonCollisions
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Jet quenching

Interactions with the medium: “quenching” of one of the jets

Image from ATLAS @ CERN (2010)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayHeavyIonCollisions
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The medium: stages of heavy ion collisions

Theoretical description of the medium:
a series of effective theories and models (“stages”)

Figure from [arXiv:1110.1544]
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Color Glass Condensate

CGC is an effective theory for high energy QCD

Nuclei are split into two types of degrees of freedom:
I quarks, high momentum gluons: classical color charges ρ
I low momentum gluons: classical color fields Aµ

Allows an effectively classical treatment of high energy nuclei and the earliest
stages of the collision

I F. Gelis, “Color Glass Condensate and Glasma”, Int. J. Mod. Phys. A 28,
1330001 (2013) [arXiv:1211.3327]
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Color Glass Condensate

Nucleus “A” described by color current J+(x−, xT ) = ρA(x−, xT ) in terms of
light cone coordinates x± = (x0 ± x3)/

√
2 and transverse coordinates

xT = (x , y)

x− x+

x0 = t

x3 = z

J+(x−, xT )

I Yang-Mills equations

DµFµν = Jν

I Use covariant gauge ∂µAµ = 0
I YM eqs. reduce to 2D Poisson eq.

−∆T A+(x−, xT ) = ρA(x−, xT )

I Solve in Fourier space with infrared
regulator m

A+(x) =
∫ d2pT

(2π)2
ρ̃A(x−, pT )
p2

T + m2 e−ipT ·xT
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Color Glass Condensate

Covariant gauge solution:

A+(x) =
∫ d2pT

(2π)2
ρ̃A(x−, pT )
p2

T + m2 e−ipT ·xT

All other components vanish (A− = Ai = 0).

Perform gauge transformation to light cone gauge A+ = 0

Ai (x) = 1
ig VA(x)∂iV †A(x)

with light like Wilson line

V †A(x) = P exp

−ig
x−∫
−∞

dx ′−A+(x ′−, xT )
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Color Glass Condensate

McLerran-Venugopalan (MV) model:
Gaussian probability functional W [ρ]

W [ρ] = Z−1 exp
(
−
∫

d2xT dx− ρ
a(x−, xT )ρa(x−, xT )

2g2µ2λ(x−)

)

〈O(Aµ)〉 =
∫
DρO(Aµ[ρ]) W [ρ]

〈
ρa(x−, xT )ρb(y−, yT )

〉
= g2µ2λ(x−)δabδ(x− − y−)δ(2)(xT − yT )

No notion of finite radius ⇒ suitable for central collisions of very large nuclei
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Glasma

Collision of two CGCs: Glasma

x−x− x+x+

x0 = tx0 = t

x3 = zx3 = z

(I)(I)

(II)(II) (III)(III)

(IV)(IV)
ρA(xT )δ(x

−)ρA(xT )δ(x
−)ρB(xT )δ(x

+)ρB(xT )δ(x
+)

Aµ = 0Aµ = 0

αiA = 1
igVA∂

iV †AαiA = 1
igVA∂

iV †A αiB = 1
igVB∂

iV †BαiB = 1
igVB∂

iV †B

Aµ(τ, xT )Aµ(τ, xT )

I Yang-Mills (YM) equations

DµFµν = JνA + JνB

I Analytic solutions in (I) - (III)
I Future light cone spanned by

τ =
√

2x+x−, η = 1
2 ln

(
x+

x−

)
I Analytic solution at boundary of

future light cone at τ = 0+

(“Glasma initial conditions”)

Ai = αi
A+αi

B , Aη = ig
2
[
αi

A, α
i
B
]
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Glasma

Color-electric and -magnetic longitudinal flux tubes with typical
transverse size of Q−1

s (saturation momentum)

Figs. from [arXiv:0803.0410] and [arXiv:hep-ph/0602189]

Flux tubes expand and decay according to the YM eqs. until energy density
components “equilibrate” (free streaming)
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Jets as probes of earliest stages

I Jets affected by all stages of the medium
I Created during the collision τ ≈ 0
I Models/simulations of jet evolution usually start

with the hydrodynamical QGP stage
(τ ≈ 0.6 fm/c)

I Strong color fields of the Glasma might affect
jets even before the hydrodynamical stage

Fig. from [arXiv:0902.2011]
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Jets as probes of earliest stages
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Momentum broadening
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General idea

Classical model of a jet moving through the medium:
I Highly energetic particle moving along x -axis

pµ0 = (|p0|, p0, 0, 0)µ

I Interaction with medium modeled as stochastic force Fµ(x)〈
Fµ(x)

〉
= 0,

〈
Fµ(x)Fν(y)

〉
6= 0

I Trajectory unaffected by medium, but particle accumulates transverse
momentum 〈

p2
⊥
〉
� |p0|2

I Diffusion in momentum space ⇒ momentum broadening
I Neglect backreaction
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General idea

Classical model of a jet moving through the medium:
Solve classical equations of motion to obtain p⊥

xµ(t) = vµt + xµ0 , vµ = (1, 1, 0, 0)µ

dpµ
dt = Fµ(x(t)) ⇔ pµ(t) = pµ(0) +

t∫
0

dt ′Fµ(x(t ′))

No initial transverse momentum p⊥(0) = 0

〈
p2

i (t)
〉

=
t∫

0

dt ′
t∫

0

dt ′′
〈
Fi (x(t ′))Fi (x(t ′′))

〉
(no sum over i)

Accumulated transverse momentum:
〈
p2
⊥(t)

〉
=
〈
p2

y (t)
〉

+
〈
p2

z (t)
〉



21

General idea

Classical model of a jet moving through the medium:
Transverse momentum broadening〈

p2
⊥(t)

〉
=
〈
p2

y (t)
〉

+
〈
p2

z (t)
〉

Longitudinal momentum broadening

〈
p2
‖(t)

〉
=
〈
p2

x (t)
〉

= p2
0 +

t∫
0

dt ′
t∫

0

dt ′′
〈
Fx (x(t ′))Fx (x(t ′′))

〉
Energy loss? 〈

px (t)
〉

= p0 +
t∫

0

dt ′
〈
Fx (x(t ′))

〉
= p0

Formalism only captures momentum broadening, not energy loss
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General idea

Classical model of a jet moving through the medium:
Transverse momentum broadening〈

p2
⊥(t)

〉
=
〈
p2

y (t)
〉

+
〈
p2

z (t)
〉

Longitudinal momentum broadening〈
p2
‖(t)

〉
=
〈
p2

x (t)
〉

Jet broadening parameter: squared momentum per unit time/length

q̂⊥ =
d
〈
p2
⊥(t)

〉
dt , q̂‖ =

d
〈
p2
‖(t)

〉
dt
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Abelian background field

Example: random Lorentz force acting on a charged particle

Fµ(x(t)) = q dxν
dt Fµν(x(t)) ≈ qvνFµν(x(t)) =

√
2qFµ+(x(t))

Introduce light cone coordinates w.r.t. particle velocity

x± = (x0 ± x1)/
√

2

Accumulated transverse momentum

〈
p2

i (t)
〉

= 2q2
t∫

0

dt ′
t∫

0

dt ′′
〈
Fi+(x(t ′))Fi+(x(t ′′))

〉
(no sum over i)

Correlation function of the background field determines transverse
momentum broadening ⇒ coherence time/length



24

Abelian background field: dipole approximation

Dipole approximation:
Momentum broadening related to expectation value of Wilson loop

Wy+ = Wy ,1W+,1Wy ,2W+,2

= exp
(
−iq

∮
C

dxµAµ(x)
)

〈
Re [Wy+]

〉
' exp

(
−

L2〈p2
y (t)

〉
2

)
, L� L+

(analogous for broadening along z)
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Abelian background field: dipole approximation

Use Stokes’ theorem:

Wy+ = exp
(
−iq

∮
C

dxµAµ(x)
)

= exp

iq
L+∫

0

dx+
L∫

0

dy Fy+(x)


Expand for L� L+ and re-parameterize integral over x+ with time t:

〈
Re [Wy+]

〉
' 1− q2L2

t∫
0

dt ′
t∫

0

dt ′′
〈
Fi+(x(t ′))Fi+(x(t ′′))

〉
+O(L4)

Compare to:

〈
Re [Wy+]

〉
= exp

(
−

L2〈p2
y (t)

〉
2

)
' 1−

L2〈p2
y (t)

〉
2 +O(L4)

coherence length in medium ∼ momentum broadening
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Non-Abelian background field

Generalization to non-Abelian fields: Wong equations

dpµ(t)
dt = g Qa(t)dxν(t)

dt F a,µν(x(t))

dQa(t)
dt = g dxµ(t)

dt f abcAb
µ(x(t))Qc(t)

Time-dependent color charge of the particle Qa(t)

Qa(t)Qa(t) = const.

General solution of the second Wong equation

Q(t) = U(t)Q(0)U†(t), U†(t) = P exp
(
− ig

x(t)∫
x(0)

dxµAµ(x)
)
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Non-Abelian background field

I Color charge of a parton (quark, gluon) is random color vector
I Modulus of Q depends on representation R (F =̂ quark, A =̂ gluon)

〈
p2

i (t)
〉

R = 2g2

DR

t∫
0

dt ′
t∫

0

dt ′′
〈
Tr
[
F̃i+(x(t ′))F̃i+(x(t ′′))

]
R

〉
DF = Nc , DA = N2

c − 1
I Parallel transported field strength tensor

F̃i+(x(t)) = U(t) Fi+(x(t)) U†(t)

U†(t) = P exp
(
− ig

x+(t)∫
x+(0)

dx ′+A+(x ′+)
)

I Manifestly gauge invariant result
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Non-Abelian background field: dipole approximation

Dipole approximation: non-Abelian Wilson loop

1
DR

〈
ReTr [Wi+]R

〉
' exp

(
−L2

2
〈
p2

i (t)
〉

R

)

Expansion L� L+ yields same result as integrating Wong’s equations

Representation R determines type of particle (quark, gluon)
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Results for the Glasma
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Momentum broadening in the Glasma

Glasma: classical model fits naturally,
〈
Fµ
〉

= 0

Problems:
I no analytic solutions Aµ for YM eqs.
I
〈
p2
⊥(t)

〉
is non-linear in Aµ

I medium average
〈
. . .
〉

often intractable to compute

Approximations:
I Weak field approximation:

I “gρ � 1”, dilute Glasma, linearized YM eqs.
I semi-analytical results (interpretability)
I analytical medium average

〈
. . .
〉

I not applicable to heavy ion collisions
I Lattice gauge theory:

I “gρ ∼ 1”, dense Glasma, lattice YM
I purely numerical results, crosscheck with dilute case
I medium average

〈
. . .
〉

using MC integration
I applicable to heavy ion collisions
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Momentum broadening in the Glasma

Figs. from [arXiv:0803.0410] and [arXiv:hep-ph/0602189]

At τ = 0:
I electric and magnetic longitudinal flux tubes
I roughly similar energy density
I Lorentz force for a particle moving along x :

I longitudinal electric EL: broadening in pz
I longitudinal magnetic BL: broadening in py
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Momentum broadening in the Glasma

Figs. from [arXiv:0803.0410] and [arXiv:hep-ph/0602189]

For τ > 0:
I flux tubes expand and decay, ε ∝ 1/τ
I EL generates BT : broadening in pz

I BL generates ET : broadening in py

I expect roughly isotropic broadening
I strong time dependence of

〈
p2
⊥(t)

〉
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Dilute Glasma: weak field limit

Weak field approximation:
assume color charges ρA/B of colliding nuclei are small

I allows expansion of Glasma initial conditions
I linearize Yang-Mills equations

DµFµν = 0, ⇒ ∂µFµν = 0

I effectively Abelian field equations
I medium average (MV model) can be performed analytically
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Dilute Glasma: momentum broadening

Result: accumulated transverse momenta

〈
p2

y (t)
〉

=
∞∫

0

dk g(τ, k)cB(k),
〈
p2

z (t)
〉

=
∞∫

0

dk g(τ, k)cE (k),

where g(τ, k) is function that describes the (linearized) time evolution of the
Glasma; no closed form but can be expressed as integral over Bessel functions

Initial correlators at τ = 0

cE (r) =
〈
Tr [Ez (xT )Ez (yT )]

〉
, cB(r) =

〈
Tr [Bz (xT )Bz (yT )]

〉
,

which can be computed analytically

Two separate contributions (polarization states)
I py determined by (Bz ,ET ) polarization
I pz determined by (Ez ,BT ) polarization
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Dilute Glasma: momentum broadening

0 2 4 6 8 10
0

0.5

1

1.5

2
·10−2

mτ

2m
2
〈 p

2 i
(m
τ
)〉 /

(Q
4
(N

2 c
−

1)
)

〈
p2y

〉
SU(2)〈

p2y
〉
SU(3)〈

p2y
〉
(weak)〈

p2z
〉
SU(2)〈

p2z
〉
SU(3)〈

p2z
〉
(weak)

I Very anisotropic momentum broadening
I More efficient broadening along z compared to y . Why?
I From analytic result: differences in the initial correlators!

cE (r) =
〈
Tr [Ez (xT )Ez (yT )]

〉
6= cB(r) =

〈
Tr [Bz (xT )Bz (yT )]

〉
,
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Dilute Glasma: initial flux tubes and broadening

Plots of initial correlators

0 1 2 3
−2

0

2

4

6
·10−3

mr

r m

∫ ∞ 0
d
k
k

2
π
c(

k m
,1
)J

0
(p

r)

〈
EzEz

〉
(weak)〈

BzBz

〉
(weak)

large k exp〈
EzEz

〉
(SU(2))〈

BzBz

〉
(SU(2))

I Color-electric correlator: positive correlation everywhere
I Color-magnetic correlator: negative correlations around r ≈ m−1

How does this affect the jet?
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Dilute Glasma: initial flux tubes and broadening

How structure of flux tubes affects jets:

Electric flux tubes are more efficient at accelerating particles compared to
magnetic flux tubes ⇒ momentum broadening anisotropy

Momentum broadening probes small-scale structure of color flux tubes!
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Dilute Glasma: summary

Quick summary:
I Momentum broadening is directly related to flux tube structure
I Two separate, independent polarization states (linearized YM)
I Differences in correlators lead to anisotropy in broadening
I Weak field limit / dilute Glasma is not realistic
I Strong infrared dependence (artificial scale)
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Dense Glasma: lattice gauge theory

In order to investigate a realistic Glasma, we need numerical simulations.
I Use standard real-time lattice gauge theory methods for boost-invariant

Glasma
I Discretize formulae derived earlier (for details see our paper)
I Allows us to investigate large color charge densities ρ, i.e. the relevant

physics for heavy ion collisions

Publicly available code (Python/CUDA):
curraun (https://gitlab.com/openpixi/curraun)

Repository includes code, working examples, plots, ...



40

Dense Glasma: momentum broadening

0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

Qsτ

〈 p
2 i
(Q

s
τ
)〉 /

Q
2 s

〈
p2y

〉
〈
p2z
〉

〈
p2⊥

〉

m/(g2µ) = 0

m/(g2µ) = 0.05

m/(g2µ) = 0.10

m/(g2µ) = 0.20

I Momentum broadening anisotropy also in the dense Glasma
I Infrared dependence of

〈
p2

z
〉

I Strong initial accumulation up until τ ≈ Q−1
s

I Details: 10242 lattice, Ns = 50 sheets, 50 random configurations
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Dense Glasma: initial correlations

0 1 2 3 4 5

−1

0

1

2

3

·10−4

Qsr

r
C
(r
)/
Q

3 s

〈
EzEz

〉
〈
BzBz

〉

m/(g2µ) = 0

m/(g2µ) = 0.05

m/(g2µ) = 0.10

m/(g2µ) = 0.20

I Connection between
〈
p2
⊥
〉

not as clear as in dilute Glasma
I Magnetic fields: anti-correlated regions around r ≈ 2Q−1

s
I Electric fields: small anti-correlations too for very strong fields
I Similar mechanism as in dilute Glasma
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Dense Glasma: quantitative results at τ = 0.6 fm/c

0

2

4

6

8

10

RHIC

LHC

〈 p
2 i
(τ

0
)〉 [G

eV
2
]

〈
p2⊥

〉
〈
p2z

〉
〈
p2y

〉

m/(g2µ) = 0.20

m/(g2µ) = 0.10

m/(g2µ) = 0.05

m/(g2µ) = 0

1 1.5 2 2.5 3
1.5

2

2.5

Qs [GeV]

〈 p
2 z
(τ

0
)〉 /

〈 p
2 y
(τ

0
)〉
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Dense Glasma: jet broadening parameter

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

τ [fm/c]

q̂
[G

eV
2 /
fm

]

q̂⊥ (Qs = 2.0GeV)
q̂⊥ (Qs = 1.5GeV)

m/(g2µ) = 0.20

m/(g2µ) = 0.10

m/(g2µ) = 0.05

m/(g2µ) = 0

I Jet broadening parameter

q̂⊥ =
d
〈
p2
⊥(t)

〉
dt

I Strong time dependence: most p⊥ accumulated within 0.1 fm/c
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Dense Glasma: summary

I Gauge-invariant method for jet broadening in dense Glasma
I Applied to boost-invariant MV model (central collisions, large nuclei)
I Transverse momentum:

〈
p2
⊥
〉
≈ Q2

s within τ = 0.6 fm/c
I Strong time dependence, largest broadening within τ < Q−1

s
I Anisotropic broadening: color-electric and color-magnetic flux tubes have

different structure (anti-correlated regions)

I Anisotropy:
〈
p2

z
〉
/
〈
p2

y
〉
≈ 1.5 ∼ 2.5
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Outlook
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Outlook

This work:
I Fixed, light like trajectory (infinite momentum limit)
I No energy loss
I 2+1D MV model: no centrality dependence, rapidity dependence

Possible extensions, open questions:
I More complicated initial conditions (IP-Glasma, JIMWLK, ...)
I Energy loss

I Change in momentum: gluon radiation (bremsstrahlung)
I Polarization of Glasma: backreaction
I Deviations from fixed trajectory: non-eikonal corrections

I How to integrate these methods with existing jet simulations?
I Is the momentum broadening anisotropy observable?

(also seen in anisotropic QGP)
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Thank you!
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