

≁ THE ≁

HoloQuark2018

GUANHUM GRHNCCAMPY GIVES VED BUILDERDARDS

OF CRETE

Matteo Baggioli

UOC & Crete Center for Theoretical Physics

THE GANG

Martin Ammon (University of Jena)

Philip Phillips (University of Illinois) Amadeo Jimenez (University of Jena)

Sebastian Möckel (University of Jena) Bikash Padhi (University of Illinois)

Chandan Setty (University of Illinois)

REFERENCES

arXiv:1407.7526

arXiv:1508.04435

arXiv:1708.05691

arXiv:1708.07243

WEYL SEMIMETAL

INSULATOR

YOU'RE MY FAVORITE

WEYL SEMIMETALS

Weyl semimetals are materials featuring crossing of bands at isolated, non degenerate points, *i.e.* Weyl nodes, in the Brillouin zone at the Fermi level

WEYL FERMIONS

ANOMALOUS TRANSPORT

See Karl's talk and review !

EFT for the Weyl QPT

$$(i\partial \partial - M + \gamma_5 \gamma_z b) \Psi = 0.$$

1.5

1.0

2.0

b: time reversal breaking parameter

0.5

 σ/B

0.04

0.03

0.02

0.01

$$p_{\text{eff}} = \sqrt{b^2 - M^2}.$$

2.5 b/M

gap $\Delta = \sqrt{M^2 - b^2}$

Order parameter: ANOMALOUS HALL CONDUCTIVITY

$$\sigma_{xy}(B=0) = \frac{b^2 - M^2}{2\pi^2} \Theta(|b| - |M|) .$$

WE CHOOSED OUR FAVORITE 2PT...

NOW ...

DISORDER AND HARRIS CRITERION

$$S = S_0 + \int d^d x \, g_i(x) \, \mathcal{O}_i(x)$$

HARRIS CRITERION :

$$\delta T_c \, < \, T - T_c$$

IS THAT ALL ?? RARE REGIONS!

The Harris criterion deals with averaged disorder and coarse graining... What about local effects ??

Local regions which are in A different phase with Respect to the global one

On quantum phase transitions They can have a strong impact !

SMEARING

[Vojta + ...]

Temperature: "similar" effects

SMEARING THE QPT

AN EXAMPLE

$$M \sim \exp\left[-C\frac{(x-x_c^0)^{2-d/\phi}}{x(1-x)}\right]$$

DISCRETE SCALE INVARIANCE

DISORDER

WHAT ARE THE SIGNATURES OF DSI?

Log-periodicity and complex exponents

$$\mathcal{O}_{DSI}(x) \propto x^{\alpha}, \quad \alpha = -\frac{\log \mu}{\log \lambda_0} + i \frac{2\pi n}{\log \lambda_0}, \quad n \in \mathbb{Z}.$$

[Sornette + ...]

$$\mathcal{O}_{DSI}(x) = \mu(\lambda_0)\mathcal{O}_{DSI}(\lambda_0 x)$$

Fractals, stock markets, earthquakes And of course PHYSICS!

QUANTUM CHAOS

$$\langle \left[\mathcal{V}(x,t) \, \mathcal{W}(0,0) \right]^2 \rangle_\beta \, \sim \, e^{\lambda_L (t-t^* - |x|/v_B)},$$

OUT-OF-TIME CORRELATOR

classical chaos \equiv exponential dependence on the initial conditions,

Holographic probe :

bulk shockwave

[Shenker, Stanford, Susskind, Swingle, Maldacena, Roberts, Douglas, ...] **CHAOTIC QPTs**

arXiv:1608.02438

" The Liapunov exponent displays a peak in the quantum critical region "

A MODEL FOR AN HOLOGRAPHIC QPT

$$\begin{split} \mathcal{L} &= -\frac{1}{4} H^{ab} H_{ab} - \frac{1}{4} F^{ab} F_{ab} + (D_a \Phi)^* (D^a \Phi) - \mathcal{V}(\Phi) \\ &+ \frac{\kappa}{3} \epsilon^{abcde} A_a \left(F_{bc} F_{de} + 3H_{bc} H_{de} \right) \,, \\ \end{split} \text{[Landsteiner, Liu, Sun]}$$

$$D_a \equiv \partial_a - iqA_a, F = dA, H = dV$$
 $\mathcal{V}(\Phi) = m^2 |\Phi|^2$

$$A_z(x,\rho) \sim b(x) \rho^0 + \dots,$$

$$\phi(x,\rho) \sim M(x) \rho^1 + \dots$$

In the homogeneous case:

Time reversal Breaking parameter

$$b/M \approx 1.40 \longrightarrow \text{QPT}$$

"Weyl nodes separation "

THE HOLOGRAPHIC WEYL SEMIMETAL

LET'S MAKE IT HOT

CROSSOVER

Finite temperature

$$\sigma \, \sim \, e^{- \, c \, M/T}$$

Outside the quantum Critical region

LET'S MAKE IT HOT : PART II

$$\sigma \, \sim \, \left(\frac{M}{T}\right)^{-\nu}$$

Inside the critical region

Power law, scale invariance

LET'S MAKE IT DIRTY

$$lpha = 0$$
 and $N o \infty$

GAUSSIAN DISORDER

DISORDERED BULK FIELDS

RARE REGIONS

They become less rare and larger Close to the quantum Critical point

SMEARING !

They become less rare and larger Increasing the disorder Strength !!!

SMEARED QPT

In agreement with CM expectations, e.g.

Composition-tuned smeared phase transitions

Fawaz Hrahsheh, David Nozadze, Thomas Vojta

DISORDER CORRELATION

Positive correlation increases the smearing We see indeed broader and less rare regions that have undergone the phase transition

cond-mat > arXiv:1109.4290

DISCRETE SCALE INVARIANCE

Appearance of Log-Oscillatory structures

DISORDER ----> DISCRETE SCALE INVARIANCE

cond-mat > arXiv:cond-mat/9707012

BUTTERFLY VELOCITIES

$$ds^{2} = -g_{tt}(r) dt^{2} + g_{rr}(r) dr^{2} + h_{\perp}(r) d\vec{x}_{\perp}^{2} + h_{\parallel}(r) d\vec{x}_{\parallel}^{2},$$

Similar results In anisotropic backgrounds arXiv:1708.05691

arXiv:1708.07243

OTHER OBSERVABLES

Same behaviour in the Viscosities VIOLATION OF KSS

ANISOTROPY

THE IDEA

$$ds^2 = -g_{tt}(r) dt^2 + g_{rr}(r) dr^2 + h_{\perp}(r) d\vec{x}_{\perp}^2 + h_{\parallel}(r) d\vec{x}_{\parallel}^2,$$

vB is affected by anisotropy via h(r)

$$v_B^{(\zeta)} = \frac{\lambda_L}{\mu \sqrt{h_{(\zeta)}(r_0)}} \quad , \quad \mu^2 = 2 \pi T \sum_{\eta} \frac{d_\eta}{2} \frac{h'_{(\eta)}(r)}{h_{(\eta)}(r)} \Big|_{r_0} \, .$$

that is the reason of the minimum (= KSS)

THE RESULTS

A CONJECTURE

Assume an anisotropy of the form (our case)

$$h(r) = h_0 r^{2\beta_0}$$

$$2\mathbf{L} \leq \frac{1}{D_{\perp} + \beta_0 D_{\parallel}}.$$

AND MAXIMUM AT THE QUANTUM CRITICAL POINT !!!

NEC forces
$$\beta_0 < 1$$
. Max at the critical point

Dependence on the IR near-horizon geometry ...

CONCLUSIONS

Discrete scale invariance

Disorder backreaction

Connection with c/a theorems ??

QCP with emergent isotropy ??

Definition of L from field theory ??

thegrumpyscientist

www.thegrumpyscientist.com

STAY GRUMPY, STAY SCIENTIST

The grumpy scientist

HoloQuark2018

