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=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)

• Cosmology (early Universe, signatures of physics beyond SM)

=⇒ Standard tools:

kinetic theory pertubative QFT lattice formulation

⇑ ⇑ ⇑

quasiparticle weak coupling static aspects



=⇒ Advocate: gauge theory/string theory (holographic) correspondence:

a tool to study quantum gauge theories at strong coupling

There is huge literature devoted to the subject, including:

computation of the equation of state of QGP-like theories

(conformal/non-conformal)

hydrodynamics transport coefficients (viscosities, conductivities, · · · )
hydrodynamics as an effective theory (higher order derivative expansion,

resummation, effective transport coefficients)

dynamical simulations of out-of-equilibrium (holographic) QGP plasma

(quantum quenches, approach to equilibrium, turbulence)

gauge theory dynamics in de Sitter



=⇒ Most (but all not) analysis are done when the holographic duality

between the gauge theory and string theory reduced to the correspondence

with classical supergravity

For this to be true:

• quantum string loop corrections must be suppressed, i.e.,

N → ∞ & g2YM → 0 with Ng2YM = const (string loop corrections

∝ 1
N2 )

c− a ∝ 1
N2 → 0 at the UV fixed point of the theory

• Ng2YM = ∞ (higher derivative corrections to 10D type IIB SUGRA

∝ (Ng2YM )−3/2)

=⇒ Recently, there has been renewed interest in exploring conformal

holographic QGP models with c− a 6= 0

=⇒ I report on results for non-conformal holographic QGP models



Outline:

• Non-conformal Gauss-Bonnet (GB) holographic model

how does c− a 6= 0 come about

holographic renormalization, EOS, speed of sound

• Hydrodynamic transport

shear viscosity

bulk viscosity

• Homogeneous and isotropic expansion of GB QGP

check on bulk viscosity

large-order behavior of the hydrodynamic expansion

• Causality of the GB hydrodynamics

• Conclusions and future directions

holographic viscoelastic materials (with Matteo Baggioli)



=⇒ Consider RG flows close to UV fixed point, with Lagrangian density

LCFT perturbed by a relevant operator of O∆ of dimension ∆:

L = LCFT + λ4−∆O∆

• UV CFT has finite (non-infinitesimal) c− a 6= 0

• by ’close’ I mean
|λ4−∆|
T 4−∆

≪ 1

i.e., , the effects of the conformal symmetry breaking in thermal plasma

state are small.

this is a simplifying technical assumption.

=⇒ It is important to emphasize that we are discussing holographic models,

rather than a top-down string theory construction — in real holography is in

inconsistent to be within SUGRA approximation with finite c− a 6= 0

=⇒ The reason such model are nonetheless interesting, as they allow to

explore effects of microscopic causality on the hydrodynamics



=⇒ Gravitational holographic model:

I =
1

2ℓ3P

∫

M5

d5x
√−g [LCFT + δL]

with

LCFT =
12

L2
+R +

λGB

2
L2
(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

δL = −1

2
(∂φ)2 − 1

2
m2φ2

• LCFT is the bulk Lagrangian of the UV conformal fixed point

• δL is the conformal symmetry breaking perturbation, φ ↔ O∆ with

m2L2β2 = ∆(∆− 4) , β2 ≡ 1

2
+

1

2

√

1− 4λGB

• λGB — Gauss-Bonnet coupling constant

• L — asymptotic AdS curvature radius, related to the central charge

(# of UV DOF, rank of the gauge group)



=⇒ Encoding gauge theory parameters in the model

LCFT :

〈Tµ
µ〉CFT =

c

16π2
I4 −

a

16π2
E4

where {a, c} are the two central charges, and the Euler density E4 and the

square of Weyl curvature I4,

E4 = RννρλR
µνρλ − 4RµνR

µν +R2 , I4 = RµνρλR
µνρλ − 2RµνR

µν +
1

3
R2

In our model

c =
π2

23/2
L3

ℓ3P
(1 +

√

1− 4λGB)
3/2
√

1− 4λGB

a =
π2

23/2
L3

ℓ3P
(1 +

√

1− 4λGB)
3/2

(

3
√

1− 4λGB − 2
)



δL:
To study equilibrium thermal states of the model we use the bulk metric

ansatz

ds25 =
r2h
x

(

−f1β2 dt2 +

3
∑

i=1

dx2
i

)

+
1

f2

dx2

4x2
, x ∈ [0, 1]

where x = 1 is the AdS Schwarzschild horizon and x → 0+ is the asymptotic

AdS5 (Poincare) boundary

• rh determines the Hawking temperature of the horizon/plasma

T =
κ

2π
=

rhβ
1/2
2

π

√

f ′
1f

′
2

2

∣

∣

∣

∣

x=1

• asymptotically near the boundary

φ = δ∆ ×







x1/2 +O(x3/2) , ∆ = 3 ,

x lnx+O(x) , ∆ = 2

λ4−∆ = δ∆r
4−∆
h ⇐⇒ LCFT + λ4−∆O∆



=⇒ Holographic renormalization (cut-off at x = ǫ):

I → Irenom,cut−off ≡ Icut−off + SGB,cut−off + Sc.t,cut−off

• generalized Gibbons-Hawking term (K ≡ K µ
µ , J ≡ J µ

µ ):

SGH = − 1

ℓ3P

∫

∂M5

d4x
√−γ

[

K + (β2 − β2
2)
(

J − 2Gµν
γ Kµν

)]

Kµν = −1

2
(∇µnν +∇νnµ)

Jµν =
1

3
(2KKµρK

ρ
ν) +KρσK

ρσKµν − 2KµρK
ρσKσν −K2Kµν ,

• counter-terms:

Sc.t. =
1

ℓ3P

∫

∂M5

d4x
√−γ [Lc.t.,CFT + Lc.t.,∆]



with (known)

Lc.t.,CFT = −
(

2β
1/2
2 + β

−1/2
2

)

+

(

1

2
b
3/2
2 − 3

4
β
1/2
2

)

Rγ

+

(

1

8
β
5/2
2 − 1

16
β
3/2
2

)

P2,γ ln ǫ

P2,γ = Pµν
γ Pµν,γ − (γµνPµν)

2
, Pµν

γ = Rµν
γ − 1

6
Rγγ

µν

and (previously unknown)

Lc.t.,∆ =







− 1
4β

−1/2
2 φ2 − β

−1/2
2

48(2β2−1)φ
4 ln ǫ− β

1/2
2

48 Rγφ
2 ln ǫ , ∆ = 3 ,

− 1
2β

−1/2
2 φ2 − 1

2β
−1/2
2 φ2 1

ln ǫ , ∆ = 2

=⇒ removing the cut-off, i.e., , ǫ → 0, produces finite results of physics

interest



Results:

(we focus on ∆ = {2, 3} conformal symmetry breaking deformations)

• EOS

c2s =
∂P

∂E

c2s −
1

3
=

(

λ4−∆

T 4−∆

)2

F∆(λGB)
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Notice that

c2s <
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3
= c2s,CFT



Results:

(we focus on ∆ = {2, 3} conformal symmetry breaking deformations)

• shear viscosity

η

s
=

(2β2 − 1)2

4π

(

1 + η∆(λGB)

(

λ4−∆

T 4−∆

)2
)
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Notice:

η∆(λGB = 0) = 0 ⇐⇒ universality at a = c

η

s
≶

1

4π
and

η

s
≶

η

s

∣

∣

∣

∣

CFT



Results:

(we focus on ∆ = {2, 3} conformal symmetry breaking deformations)

• bulk viscosity

ζ

η
=

(

λ4−∆

T 4−∆

)2

ζ∆(λGB)
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=⇒ Bulk viscosity bound:

ζ

η
≥ 2

(

1

3
− c2s

)



=⇒ reparameterized bulk viscosity bound

ζ

η
= 2

(

1

3
− c2s

)

( 1 + B∆(λGB) ) , B∆ ≥ 0
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red dots demonstrate check on previously known result
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λGB=0

=







π
2 − 1 , ∆ = 3 ,

π2

4 − 1 , ∆ = 2

violation of bulk viscosity bound occurs for a− c > 0 ∼ O(c) ; while shear

viscosity bound is violated for c− a > 0 ∼ o(c)



A question:

Why in all plots λGB ∈ (−0.2, 0.1)?

The answer:



Causality of GB holographic plasma

=⇒ Consider a plasma at thermodynamic equilibrium. A spectrum of

fluctuations in the plasma:

w = w(q)

The speed with which a wave-front propagates out from a discontinuity in

any initial data is governed by

lim
|q|→∞

Re(w)

q
= vfront

=⇒ Statement of causality:

vfront ≤ 1

for all branches of the excitations in plasma



=⇒ Early studies (Hofman-Maldacena & Buchel-Myers) found that for

LCFT , dual to GB gravity, causality in the bulk graviton QNM towers lead to

− 7

36
≤ λGB ≤ 9

100
⇐⇒ −1

2
≤ c− a

c
≤ 1

2

=⇒ Can this result be changed when

LCFT → L = LCFT + δL ?



=⇒ The question of micro-causality is the question of the deep UV

properties of the theory; thus one expects:

breaking the scale invariance with ∆ ≤ 4 operator, should not affect the

UV CFT result

causality should not depend on the state of the theory, for example, the

temperature compare to the coupling strength λ4−∆.

=⇒ However, in principle,

• If several relevant couplings are present, causality can be affected by the

dimensionless ratio of these couplings

• different channels of the fluctuations in plasma affect causality differently:

the scalar channel of the bulk graviton fluctuations constraints

λGB ≤ λscalar
GB =

9

100

while the shear and the sound channels constraint correspondingly:

λGB ≥ λshear
GB = −3

4
, λGB ≥ λsound

GB = − 7

36



• it is only the union of all the constraints that determines full causality

range

• if the theory is non-conformal, additional branches of the QNMs appear

which can further constraint the microscopic causality of the model.



=⇒ Analysis of the new towers of QNMs due to δL shows that

there are no further constrains

on λGB on top of the one provided by graviton QNM towers of LCFT

∗
Interplay of different relevant O∆ operators on causality is an open question



Homogeneous and isotropic expansion of GB plasma

Motivation:

we would like to have an independent computation of the bulk viscosity;

we would like to understand the interplay between the large-order

behavior of the hydrodynamic expansion and causality

Methodology:

• put GB plasma in expanding FLRW Universe, i.e., , the background

metric is (a(t) is the scale factor)

ds24 = ĝαβdx
αdxβ = −dt2 + a(t)2

3
∑

i=1

dx2
i

• In the FLRW geometry the matter expansion is locally static

uα = (1, 0, 0, 0) but Θ ≡ ∇αu
α = 3ȧ/a

• effective hydrodynamic expansion is the series in Θn and dn/dtn(Θ);

when a(t) = exp(Ht) (de Sitter), the hydrodynamic expansion

is a series in Hn



• The corresponding gravitational geometry is:

ds25 = 2dt (dr −Adt) + Σ2
3
∑

i=1

dx2
i

where A,Σ, φ are functions of {t, r}

• AdS-boundary asymptotics encode the data:

Σ = a r +O(r−1) , A =
r2

2β2
− ȧr

a
+O(r0)

φ = λ4−∆







1
r +O

(

r−2
)

, ∆ = 3 ,

− ln r2

r2 +O
(

r−2
)

, ∆ = 2



• An interesting observable to focus is the dynamical/non-equilibrium

co-moving entropy density

a(t)3s(t)

identified with the Bekenstein-Hawking entropy density of the apparent

horizon in the bulk geometry

a3s =
2π

ℓ3P
Σ3

∣

∣

∣

∣

r=rh

• From the holographic bulk Einstein equations, the co-moving entropy

production rate is

d(a3s)

dt
=

4π

ℓ3P
(Σ3)′

(d+φ)
2

24−m2φ2

∣

∣

∣

∣

r=rh

where ′ ≡ ∂r and d+ ≡ ∂t +A∂r

=⇒ To be specific, from now on we focus on de Sitter expansion

(generalization to other a(t) is straightforward)

a(t) = eHt , H = constant



• Contribution to the production rate in plasma of local temperature

T = T0

a(t) from operator of dimension ∆ in de-Sitter cosmology reads:

d(a3s)

dt
= N2(aT )2 a7−2∆ × Ω2

∆

where

Ω∆ ≡
∞
∑

n=0

cn(∆)

(

H

T

)n

• c0 coefficient describes entropy production due to bulk viscosity;

explicitly

d

dt
ln
(

a3s
)

∣

∣

∣

∣

hydro

≈ 1

T
(∇ · u)2 ζ

s
=

1

T
(3H)2

ζ

s

• holography allows to express Ω∆ (semi-analytically) through the

behavior of φ at the apparent horizon



=⇒ Computation of Ω∆

• to order O(λ4−∆), the bulk geometry is known analytically:

A = −rȧ

a
+

r2

4β2(1− β2)

(

1−
√

(2β2 − 1)2 − 4β2(β2 − 1)(πT0)4

r4a4

)

Σ = ra

Note, apparent horizon is located at

rh =
πT0

a(t)

so

r ∈ (rh,+∞) ⇐⇒ z ≡ πT0

ra(t)
∈ (0, 1)



• to order O(λ4−∆), the scalar field equation

φ = φ

(

t, z ≡ πT0x

a

)

on the above geometry is

0 =
∂2φ

∂z2
+

4aβ2(β2 − 1)

µ(1−
√
G)

∂2φ

∂t∂z
+

(
√
G(3−

√
G)− 2(2β2 − 1)2)

z(
√
G− 1)

√
G

∂φ

∂z

+
6β2a(β2 − 1)

zµ(
√
G− 1)

∂φ

∂t
− 2∆(∆− 4)(β2 − 1)

(
√
G− 1)z2

φ

where

G ≡ (2β2 − 1)2 − 4z4β2(β2 − 1)

=⇒ turns out scalar PDE can be organized into a series of successive

(coupled) ODEs



• A general solution for φ can be represented as a series expansion in the

successive derivatives of the FLRW boundary metric scalar factor a(t):

φ = δ̂∆ a4−∆
∞
∑

n=0

T∆,n[a]

(πT0)n
F∆,n(z) , δ̂ ≡ λ4−∆

(πT0)4−∆
,

with T∆,0 = 1 and

T∆,n =
1

4

(

aṪ∆,n−1 + (4−∆)ȧT∆,n−1

)

, n ≥ 1

and

0 = F ′′
∆,0 +

√
G(3−

√
G)− 2(2β2 − 1)2

z(
√
G− 1)

√
G

F ′
∆,0 −

2∆(∆− 4)(β2 − 1)

(
√
G− 1)z2

F∆,0

0 = F ′′
∆,n +

√
G(3−

√
G)− 2(2β2 − 1)2

z(
√
G− 1)

√
G

F ′
∆,n − 2∆(∆− 4)(β2 − 1)

(
√
G− 1)z2

F∆,n

−16β2(β2 − 1)√
G− 1

(

F ′
∆,n−1 −

3

2z
F∆,n−1

)

, n ≥ 1



with boundary conditions

F∆,0 =







z +O(z2) , ∆ = 3 ,

z2 ln z2 +O(z2) , ∆ = 2 ,
F∆,n≥1 = O (zF∆,0)

• in de Sitter, we find analytically

T∆,n =
Γ(n+ 4−∆)Hnan

4nΓ(4−∆)
, n ≥ 0

• the equations for F∆,n has to be solved numerically

• at the end of the day:

Ω∆ =
∞
∑

n=0

cn(∆)

(

H

T

)n

, cn =
Γ(n+ 4−∆)Hnan

(8π)nΓ(4−∆)
F∆,n(z ≡ 1)

Note that

cn ∝ n! F∆,n(1)

so unless F∆,n(1) dies off factorially fast (it does not!) hydrodynamic

expansion is divergent
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Comparison of the bulk viscosity coefficient ζ∆, extracted from the sound

waves dispersion relation and the corresponding coefficient ζ̂∆, extracted

from the leading hydrodynamic contribution in the entropy production rate

for the FLRW flow.



=⇒ Hydrodynamic expansion is Borel summable, and the Borel transform of

Ω∆(ξ ≡ H
T ) → ΩB

∆ has poles at complex ξ = ξ0:

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-50 -40 -30 -20 -10
Re ξ0

-60

-40

-20

20

40

60

Im ξ0

QNMs and leading singularities on the Borel plane for the ∆ = 2 RG flow

with β2 = 1 (or λGB = 0):

filled circles — poles

green crosses — QNMs (non-hydrodynamics modes in plasma)

What if λGB 6= 0? and in particular outside causal regime?
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QNMs and leading singularities on the Borel plane for the ∆ = 2 RG flow

with β2 = 3 (or λGB = −6) (left panel) and β2 = 5 (or λGB = −20) (right

panel):

orange lines show the ’flow of QNMs’ from λGB = 0 to λGB 6= 0

(corresponding QNMs red crosses)

hydrodynamic expansion stays asymptotic, even when we are driven out of

causal regime

note the accumulation of poles as β2 increases: poles → branch-cuts?



Conclusions and future directions

please refer to the paper for some phenomenological application of the

results

Work with Matteo Baggioli:



=⇒ from the last part of the talk:

• hydrodynamic expansion for fluids has zero radius of convergence

• the series in the derivative expansion can be Borel-resummed

• the poles in the Borel transform identify that the physical reason for the

asymptotic character of the hydrodynamics are the

non-hydrodynamic

excitation in fluids (black brane QNMs in the dual holographic picture )

=⇒ this is an old story [Michal Heller+Romuald Janik+. . . , 2013]

=⇒ Now, an even older story [Alex Buchel+Jim Sethna, 1996]:



=⇒ Recall the Hooke’s Law:

F = k x

where k is a spring constant

Of course, if can not be a full story:

F = k x+ k2 x2 + k3 x3 + · · ·

where ki are non-linear elastic coefficients

=⇒ We argued that in brittle materials (those that can develop cracks under

the stress), the Hooke’s Law is the first term in otherwise asymptotic series,

i.e.,

Elastic theory has zero radius of convergence



=⇒ Specifically,

• consider the fully non-linear in external pressure P expression for the

bulk modulus K of a solid:

1

K(P )
= − 1

V

(

∂V

∂P

)

T

= c0 + c1 P + c2 P 2 + · · ·

• c0 represents the Hooke’s Law and ci , i ≥ 1 are higher-order coefficients

• as n → ∞, for 2D elastic materials at temperature T , the crack surface

tension α, Yong’s modulus Y and the Poisson’s ratio σ,

cn+1

cn
−→ −n1/2

(

πT (1− σ2)

8Y α2

)1/2

or

cn ∝ Γ(
n+ 1

2
) ∼ (

n

2
)!



=⇒ Elastic theory and hydrodynamics are similar:

• both have a well-defined effective description, akin to derivative

expansion in EFT;

• both expansions are asymptotic series (gradient expansion in fluids,

powers of strain expansion in solids)

• both have ’non-perturbative’ effects responsible for zero radius of

convergence of effective description

=⇒ Elastic theory and hydrodynamics are different:

• non-perturbative effects in hydrodynamics: non-hydro modes in plasma

• non-perturbative effects in theory of elasticity: cracks



=⇒ BUT solids and fluids are rather different:

• there is no shear in fluids; as a result the transverse long-wave length

fluctuations are non-propagating, i.e., purely dissipative:

ω = −iD q2

where D is the diffusive constant, TD = η
s

• on the contrary, in solids we have transverse sound waves:

ω = c⊥q , c2⊥ =
µ

ǫ+ P

where µ is the shear elastic modulus



=⇒
solids+fluids = viscoelastic materials

• Embed viscoelastic materials in holography

• Have a control parameter k = 1
lattice spacing that interpolates from

more solid like—to—more fluid like

• study all-derivative viscoelastic hydrodynamics

• signature of holographic cracks?



=⇒k = 0 case (fluid)
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• blue filled circles: poles of the (Pade approximation of the) Borel

transform of Ω∆=2

• green crosses: Starinets-Nunez QNMs



=⇒ k
T = 100 case (viscoelastic)
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• red crosses: QNMs in the model at k
T = 100

• orange lines: spectral flows of QNMs from k
T = 0 to k

T = 100



=⇒ k
T = 1000 case (solid)
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