Neutron stars in need of holography

Niko Jokela

Holography and extreme chromodynamics
w/ Annala, Chesler, Ecker, Henriksson, Hoyos, Järvinen, Loeb,
Remes, Rodríguez Fernández, Vuorinen

This year's neutron star collision unlocks cosmic mysteries

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)

Phys. Rev. Lett. 119, 161101 - Published 16 October 2017 DOI:https://doi.org/10.1103/PhysRevLett.119.161101

- Nature was kind enough to give us a neutron star collider
- The measurement of squishiness solves for us QCD!
- Well, maybe not quite yet. . .

Simple questions from kindergarden

- Already in the 1930s Landau speculated about the existence of neutron stars (NS):

$$
\text { [Phys. Z. Sowjetunion 1, } 285 \text { (1932) p.288] }
$$

"... We expect that this must occur when the density of matter becomes so great that atomic nuclei come in contact, forming one gigantic nuclei."

- Yet, my astrophysicist friend posed these questions:
- How big are neutron stars?
- What is inside them?
- How does matter behave under immense pressure?
- I am not going to solve these problems today.

Outline

- Neutron star characteristics
- Anatomy of TOV
- Equation of state
- Holography
- Proof of principle
- More realistic models

Observables

Most neutron stars are observed as pulsars (highly magnetized rotating star). Observables

- Rotational period P, \dot{P}
- Mass ($\lesssim 2 M_{\odot}$), Radius ($9-13 \mathrm{~km}$)
- Luminosity
- Temperature $\lesssim k e V$
- Magnetic field
- Future: moment of inertia
- From gravitational waves: tidal deformability

GR is important

- Surface gravitational potential tells how compact the object is

$$
2 C \equiv \frac{2 G M}{c^{2} R}
$$

- GR is important macroscopically
- In fact, for any static stable star $2 M / R<8 / 9$
[Buchdahl'59]
Anywhere inside $2 m(r) / r<1$
- Coincidentally, limiting case for incompressible star

$$
(P(r)<\infty, \epsilon=\text { const. })
$$

- Causality: $2 M / R<0.69$
- For more realistic case, what is the maximum mass?

Neutron star mass measurements

Two accurate Shapiro de-

 lay measurements of two solar mass stars[Demorest et al.'10]
[Antoniadis et al.'13]

$$
\Rightarrow M_{\max }>2 M_{\odot}
$$

Radius measurements

- Radius very difficult to measure because
- small $\sim 10 \mathrm{~km}$
- at least hundreds of light years $\sim 10^{15} \mathrm{~km}$ away $\Rightarrow 10^{-14}$ radians ; angular resolution of Hubble $\sim 10^{-7}$
- A possible way to measure is observing cooling of thermonuclear X-ray bursts from NS-white dwarf binaries where NS accreates matter
\Rightarrow Controversial results from the thermal spectrum of 5 quiescent LMXB in globular clusters
[Steiner et al.' $14 R=12.0 \pm 1.4 \mathrm{~km}$] vs.

$$
\text { [Guillot et al.' } 14 \mathrm{R}=9.4 \pm 1.2 \mathrm{~km} \text {] }
$$

GW breakthrough of merging neutron stars

Novel features:

- EM signatures present if no immediate collapse to a BH
- Ringdown pattern, sensitive to EoS, but frequency too high for LIGO
- Tidal deformabilities of the NSs during inspiral provide a good measure of stellar compactness

- Tidal deformability

$$
Q_{i j}=-\Lambda E_{i j}
$$

- Affects the inspiral phase

Bounds on tidal deformability

- No detection by LIGO \Rightarrow upper bound on tidal deformability

$$
\Lambda_{1.4 M_{\odot}}<800 \text { (low spin prior) }
$$

at 90% confidence level
[Abbott et al.'17]

- Updated analysis
[Abbott et al.'18]

$$
70<\Lambda_{1.4 M_{\odot}}<580 \text { (low spin prior) }
$$

Tolman-Oppenheimer-Volkov

Neutron star structure equations

- GR important \rightarrow start with Einstein equations $(\Lambda=0)$

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G T_{\mu \nu}, \partial_{\mu} T_{\nu}^{\mu}=0
$$

- Non-rotating star with spherical symmetry (TOV equations):

$$
\begin{aligned}
& d s^{2}=-e^{2 \nu(r)} d t^{2}+\frac{d r^{2}}{1-\frac{2 G m(r)}{r}}+r^{2} d \Omega_{2}^{2}, T_{0}^{0}=\epsilon(r), T_{i}^{j}=P(r) \delta_{i}^{j} \\
& \frac{d P}{d r}=\underbrace{-G \frac{m(r) \epsilon(r)}{r^{2}}}_{\text {Newtonian }} \underbrace{\left(1+\frac{P(r)}{\epsilon(r)}\right)\left(1+\frac{4 \pi r^{3} P(r)}{m(r)}\right)\left(1-\frac{2 G M}{r}\right)^{-1}}_{G R \text { effects }} \\
& m(r)=4 \pi \int_{0}^{r} d r^{\prime} r^{\prime 2} \epsilon\left(r^{\prime}\right) \quad \text { mass inside of radius } r
\end{aligned}
$$

Neutron star structure equations

- Solve (numerically) from $r=0$ to $r=R$ with boundary conditions

$$
\begin{aligned}
P(0) & =P_{c}, m(0)
\end{aligned}=0 \quad \begin{aligned}
& P(R)=0, m(R)
\end{aligned}=M
$$

- Catch: need to know Equation of State $P=P(\epsilon)$
- Rotation breaks spherical symmetry and makes the structure equations "slightly" more complicated
- deforms the star
- increase of mass ($\sim 20 \%$) due rotation
- drag of local inertial frames (Lense-Thirring effect)
- numerical solvers available online
- can solve perturbatively

Constancy of chemical potential and temperature

- The metric function $\nu(r)$ is gravitational potential. In vacuum above the star glue it to Schwarzschild:

$$
e^{\nu(r)}=\left(1-\frac{2 G M}{r}\right)^{1 / 2}, r \geq R
$$

- Inside the star

$$
\frac{d \nu}{d r}=-\frac{1}{\epsilon(r)} \frac{d P(r)}{d r}\left(1+\frac{P(r)}{\epsilon(r)}\right)^{-1} \leftrightarrow-d \nu=\frac{d P}{P+\epsilon}
$$

- Baryon chemical potential is "constant" at any depth:

$$
-d \nu=\frac{d P}{\mu n}=\frac{d \mu}{\mu}
$$

- For idealized cold NS with iron surface ($\left.P_{F e^{56}}=0=\mu n-\epsilon\right)$

$$
\mu(r) e^{\nu(r)}=\text { const. }=\mu_{F e}\left(1-\frac{2 G M}{R}\right)^{1 / 2}, \mu_{F e} \approx \frac{m(F e)}{56} \sim 930 \mathrm{MeV}
$$

- For thermal equilibrium: $T(r) e^{\nu(r)}=$ const.

Solutions of TOV and stability

- Sols of TOV represent static equilibrium configurations
- Charge neutrality
- Beta equilibrium
- Given central density find a star
- Equation of state is observable!

Solutions of TOV and stability

- Stability is required, necessary:

$$
\frac{d M}{d \epsilon_{c}}>0 \leftrightarrow \frac{d M}{d R}<0
$$

- Sufficient: stable wrt small radial perturbations and convection

Equation of State

QCD phase diagram

Nuclear matter EoS

[Kurkela-Fraga-Schaffner-Bielich-Vuorinen '14]

- Low density pretty well-understood
- In order to reach and pass n_{s}, need to treat neutron interactions systematically: Chiral Effective Theory
[NNNLO Tews et al.'13,Hebeler et al.'13]
- High density pQCD at 3 loops for unpaired $m_{q} \neq 0$

Nuclear matter EoS

- CET
$n \leq n_{s} \sim 0.16 \mathrm{fm}^{-3}$: $n \sim 5 n_{s}$
- pQCD $\mu_{q}>1 \mathrm{GeV}$: $\mu_{q}<500 \mathrm{MeV}$
- Lattice $\mu_{q} \ll T$: $T \sim 0.1 \mathrm{MeV}$

Connecting the extremes

- Traditionally two methods:
- Pheno models, eg. MIT bag model, NJL
- Parametrize ignorance by a controlled interpolation: polytropes
- Realistic EoS needs to
- satisfy causality $d P / d \epsilon \leq 1$ \& stability $d P / d \epsilon>0$
- conform with $M_{\max }>2 M_{\odot} \& \Lambda_{1.4 M_{\odot}}=70 \ldots 580$ (slow-spin

$$
\text { prior }) \Rightarrow \text { likely stiff somewhere, } \frac{d P}{d \epsilon}>\frac{1}{\sqrt{3}} .
$$

Quark Chemical Potential $\mu-\mu_{\text {iron }} / 3(\mathrm{MeV})$

- Interpolation w/ piecewise polytropic EoSs

$$
p_{i}(n)=\kappa_{i} n^{\gamma_{i}}
$$

varying all relevant parameters

Require:
(1) Smooth matching to nuclear and quark matter EoS
(2) Continuity of p, n, possibly allow 1st order phase trans.
(3) Subluminality
(1) $M_{\text {max }}>2 M_{\odot}$
(LIGO bound
[Annala-Gorda-Kurkela-Vuorinen'17]

- Assuming no 1st order phase transition in the outer crust:
[Annala-Gorda-Kurkela-Vuorinen'17]

$$
\Lambda \leftrightarrow R
$$

- If transition, non-monotonic

Holography

Use holography to connect the dots

- Strongly coupled $\mathcal{N}=4$ good proxy for heavy ion physics [see list by Mateos' talk]
- However, to mimic cold and dense QCD:
- need finite density of fundamental flavors $N_{f} \neq 0$, while vanilla $\mathcal{N}=4$ only adjoints
- $N_{c}=3$ is actually very important for baryon structure, color superconductivity etc.
- need SUSY and conformality and impose confinement
- need different (bare) masses for the quarks
- No holographic dual to even come close to meet these criteria

The idea is

Compute EoS using AdS/CFT \Rightarrow use TOV equations to build the star in flat space

Choosing your model

- Top-down (correct calculation, wrong theory)
- Compact stars in $A d S_{5}$
[de Boer-Papadodimas-Verlinde'09]
- Quark stars in Sakai-Sugimoto and D44-D6
[Burikham-Hirunsirisawat-Pinkanjanarod'10]
[Kim-Lee-Shin-Wan'11\&'14]
[Ghoroku-Kubo-Tachibana-Toyoda'13]
- Add quenched flavors to $\mathcal{N}=4 \rightarrow$ D3-D7 models
[1603.02943,1711.06244]
- Stiff phases from consistent truncations; no NS yet
[U(1) $\left.)_{R}: 1609.03480,1707.00521\right]$
[$U(1)_{B}$:work in progress]
- Increasing number of papers on cold holographic EoS at finite μ, not stiff
[e.g. Noronha et al.]
- Bottom-up (less correct calculation, less wrong theory)
- V-QCD
- Family of models with stiff phases

Proof of principle

Proof of principle

- Start with the simplest model
- $\mathcal{N}=2$ SQCD theory: $\mathcal{N}=4 \operatorname{SU}\left(N_{c}\right)$ SYM $+N_{f}$ hypers in fundamental
- Gravity dual: probe D7-branes in $A d S_{5} \times S^{5}$
- Focus on black hole embeddings at finite density and $T \lll M_{q}<\mu_{q}$
- Identify as the quarkyonic phase in large- N_{c} QCD

Proof of -arinciple Fun digression

- Equation of state is analytic

$$
\begin{aligned}
& p=\kappa^{2}\left(\mu_{q}^{2}-m_{0}^{2}\right)^{2}+\mathcal{O}\left(\mu^{3} T, T^{4}\right) \\
& n=\frac{\partial p}{\partial \mu} \rightarrow \epsilon=\mu n-p=3 p+4 \kappa^{2} m_{0}^{2} \sqrt{p}
\end{aligned}
$$

- TOV is known to be soluble analytically e.g. for
[Buchdahl'67, Lattimer lecture notes, textbooks]

$$
\begin{aligned}
& \epsilon=-\sqrt{5} p+12 \sqrt{p_{*} p} \\
& \quad \text { and } \\
& \epsilon \propto p^{1 / \gamma} \rightarrow R \sim M^{\frac{\gamma-2}{\gamma-4}}
\end{aligned}
$$

- Here at low p we have $\gamma=2$ and can set up perturbation in terms of

$$
\varepsilon \equiv \frac{\mu_{c}-m_{0}}{m_{0}} \ll 1 \leftrightarrow \text { parametrically } \varepsilon \sim C=\frac{G M}{R} \ll 1
$$

Proof of principle Fun digression

- Scaling symmetry of TOV:
$p \rightarrow a^{2} p, \epsilon \rightarrow a^{2} \epsilon, r \rightarrow r / a, m \rightarrow m / a$
- Find

$$
c_{0} M=R^{(0)}-R-\frac{c_{1}}{c_{0} R^{(0)}}\left(R-R^{(0)}\right)^{2}+\ldots
$$

- For any m_{0}, good approx upto $C \approx 0.116$
- Equation of state

$$
\begin{aligned}
p & =\kappa^{2}\left(\mu_{q}^{2}-m_{0}^{2}\right)^{2}+\mathcal{O}\left(\mu_{q}^{3} T, T^{4}\right) \\
n_{q} & =\frac{\partial p}{\partial \mu_{q}} \rightarrow \epsilon=\mu_{q} n_{q}-p=3 p+4 \kappa^{2} m_{0}^{2} \sqrt{p} \\
\kappa^{2} & =\# \frac{N_{c} N_{f}}{\lambda_{Y M}}
\end{aligned}
$$

- Extrapolate to pQCD $\mu_{q} \rightarrow \infty: N_{c}=3=N_{f}, \lambda_{Y M} \approx 10.74$
- Maintain charge neutrality \& β-equilibrium:

$$
\mu_{e}=0, \mu_{u}=\mu_{d}=\mu_{s} \equiv \mu_{q}
$$

- Point of zero pressure as for Fe^{56} in vacuum:

$$
m_{0} \approx 310 \mathrm{MeV}
$$

Matching to state-of-the-art EoSs from CET

- Strong 1st order transitions at phenomenologically reasonable densities $2.4-6.9 n_{s}$, can support $2 M_{\odot}$
- No quark matter cores

Generalize, strange matter hypothesis

- Quarks in atomic nuclei are confined within nucleons:

$$
\frac{E_{u, d}}{A}>\frac{E\left(F e^{56}\right)}{56} \sim 930 \mathrm{MeV}
$$

- Strange matter hypothesis: three-flavor quark matter absolutely stable in vacuum $(p=0)$:
[Bodmer'71,Terazawa'79,Witten'84]

$$
\frac{E_{S Q M}}{A}=\frac{\epsilon}{n_{B}}<\frac{E\left(F e^{56}\right)}{56}
$$

- Point of zero pressure

$$
m_{0} \text { free parameter }
$$

- Other parameters as before

Equations of state, part dos

$$
\begin{aligned}
& \mu_{0}<\mu_{N} \text { quark matter } \\
& \mu_{0} \lesssim \mu_{N} \\
& \mu_{0} \lesssim \mu_{N} \\
& \mu_{0} \gtrsim \mu_{N} \\
& \mu_{0}>\mu_{N} \quad \text { nuclear matter }
\end{aligned} \text { both phases }^{2}
$$

Two crossings

- Dashed curve "intermediate" HLPS
- Can have 1st order phase transition both at low and high density

Hybrid stars with outer or inner crust made of QM

- QS \& HS2: three-flavor QM absolutely stable
- HS2 \& HS3 also found in some other pheno models
[Alford-Braby-Paris-Reddy'04]

- Tidal deformabilities fit GW observations
- Hydrid stars are actually "better fit" than neutron stars
- Heat up, numerics, $\eta\left(T, \mu_{q}\right)$ is on the correct ballbark for HS3 [Mateos-Myers-Thomson'06+ μ vs. Caballero-Postnikov-Horowitz-Prakash'08]
- How then can we distinguish our hydrid stars from NS?

Other characteristics

- Consider stars with small angular velocity
- Compute moment of inertia and quadrupole moment of mass distribution
[Glendenning's book,Hartle-Thorne'68,Raithel-Özel-Psaltis'16]
- Analytics for QM tails

$$
\begin{aligned}
& \bar{l} \approx 0.261 C^{-2} \\
& \bar{Q} \approx-30.35 C
\end{aligned}
$$

I-Love-Q relations

- Take a plethora of EoS
- Assume no 1st order phase transition in the crust
- They all obey universal relations to within $\sim \% 1$
[Yagi-Yunes'13]

Violation of I-Love-Q relations

- Hybrid stars can violate universal relations up to ~ 15\%
- Conjecture: violation if strong 1st order phase transition in the crust

More realistic model: V-QCD

V-QCD as a proxy for QCD

- For longer intro, see Matti Järvinen's talk
- Bottom-up holographic theory to mimic QCD as closely as possible
[Järvinen-Kiritsis'11]
- Three potentials to be fitted against available lattice QCD data at $\mu=0$
- Extrapolate from there to finite μ

V-QCD more details

Two bulk scalars $\lambda=e^{\phi} \leftrightarrow g^{2} N_{c}, \tau \leftrightarrow \bar{q} q$

- Model physics in chirally symmetric phase $\left(m_{q}=0\right)$, set $\tau=0$:

$$
\begin{aligned}
S_{V-Q C D}= & N_{c}^{2} M^{3} \int d^{5} x \sqrt{g}\left[R-\frac{4}{3} \frac{(\partial \lambda)^{2}}{\lambda^{2}}+V_{g}(\lambda)\right] \\
- & N_{f} N_{c} M^{3} \int d^{5} \times V_{f 0}(\lambda) \sqrt{-\operatorname{det}\left(g_{a b}+w(\lambda) F_{a b}\right)} \\
& F_{r t}=\Phi^{\prime}(r) \quad, \quad \Phi(\infty)=\mu_{q}
\end{aligned}
$$

- Functions $V_{g}, V_{f 0}, w$ and two parameters: M and the dynamical energy scale Λ to be determined
- Use both qualitative features (e.g. confinement, asymptotic freedom) and fit to lattice/experimental data
[Järvinen et al. work in progress]

Fitting to full QCD data at $\mu=0$

- Pressures automatically at the correct place

Matching with polytropes

- Low density use tritropes assuming no transition and no lower bound on M
- Conjecture: Strong 1st order phase transition is generic!
\Rightarrow Upper bound on M

Finite temperature: Choosing nuclear matter EoS

- Only few EoS (DD2,SFHx,IUF) available from nuclear side at $T \neq 0$ that survive LIGO/Virgo
[https://astro.physik.unibas.ch/people/matthias-hempel/equations-of-state.html]

Phase diagram

- Strong 1st order phase transition at $T=0$ as in D3-D7
- Critical point at the same ballbark for all EoS

Thank you!

