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State of the art

Hydrodynamics works way better than it should ...

Hydrodynamisation: damping of the the transient degrees of

freedom and leaving long-lived hydrodynamic modes

It is illustrated in a number of model computations

The ultimate question:

What is the meaning of the hydrodynamic expansion?
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The setup

Study late time dynamics of N = 4 SYM via holographic

methods

Use Bjorken symmetry to constrain system's dynamics

Consistent description via resurgent transseries expansion

Hydrodynamics series encodes all transient modes and their

couplings

Transient degrees of freedom re�ect the spectrum of

quasinormal modes of the AdS black hole
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Bjorken �ow

Boost invariant metric ds2 = −dτ2 + τ2dy2 + dx2⊥

Energy momentum tensor is diagonal

Tµν = diag{ε(τ),PL(τ),PT (τ),PT (τ)}

Conditions: ∇µTµν = 0 and Tµ
µ = 0 imply

PL = −ε− τ ε̇ , PT = ε+
1

2
τ ε̇

Evolution of the system is captured by a single function ε(τ)

Strict for an in�nite energy collision of in�nitely large nuclei

J. D. Bjorken, Phys. Rev. D 27, 140 (1983)

R. A. Janik, Lect. Notes Phys. 828, 147 (2011)
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Bjorken �ow

Energy density de�nes local e�ective temperature

ε(τ) =
3

8
N2
cπ

2Te�(τ)4

Universal, dimensionless variable

w = τTe�(τ)

J. D. Bjorken, Phys. Rev. D 27, 140 (1983)

R. A. Janik, Lect. Notes Phys. 828, 147 (2011)
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Ansatz and EoMs

Eddington-Finkelstein coordinates for large-τ expansion

ds2 = −r2Adτ2 + 2dτdr + (rτ + 1)2ebdy2 + r2e−
1
2
b+ddx2⊥

Einstein's equations Rab + 4gab = 0 with Λ = −6

Evolution equations are �rst order in time

S. Kinoshita, et al. Prog. Theor. Phys. 121, 121 (2009)

P. M. Chesler and L. G. Ya�e, JHEP 1407, 086 (2014)
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The scaling variable

Motivated by the naive localisation of the event horizon �x

s =
1

r
τ−

1
3

with 0 ≤ s ≤ 1

Gradient corrections are quanti�ed by 1
τT ∼ τ

− 2
3 so

u = τ
2
3

R. A. Janik, R. B. Peschanski, Phys. Rev. D 73, 045013 (2006)
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Large-τ expansion

A(r , τ) =
∑
n∈N∞

0

Ωn(u)
∞∑
i=0

u−iA
(n)
i (s)

b(r , τ) =
∑
n∈N∞

0

Ωn(u)
∞∑
i=0

u−ib
(n)
i (s)

d(r , τ) =
∑
n∈N∞

0

Ωn(u)
∞∑
i=0

u−id
(n)
i (s)

Ωn(u) = u−αn e−n·A u
A =

(
A1,A1,A2,A2, · · ·

)
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Hydrodynamic sector

n = 0 case is called hydrodynamic sector with the 0th order

solution

d
(0)
0 (s) = 0, A

(0)
0 (s) = 1− s4, b

(0)
0 (s) = 0

To �nd d
(0)
j (s), A

(0)
j (s), b

(0)
j (s) for j > 0 one solves a

hierarchy of coupled ODEs

Using holographic renormalization one gets the desired energy

density

M. P. Heller et al. Phys. Rev. Lett. 110, no. 21, 211602 (2013)

J. Casalderrey-Solana et al. JHEP 1804, 042 (2018)
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Leading transient sector

The modes obey

d
(e1)
0 (s) = 0, A

(e1)
0 (s) = 0, b

(e1)
0 (s) = Ze1(s)

where ek = (...0, 1︸︷︷︸
2k−1

, 0...) and Ze1(s) satis�es

(
s(1− s4)∂2s − (3+ s4− 2i e1 ·ω s)∂s − 3i e1 ·ω

)
Ze1(s) = 0

and ω = −2i
3
A and α = A

6

An eigenvalue problem with in�nitely many solutions

Spectrum re�ects QNMs of the AdS black hole

We identify Ze1(s = 1) = σ with transseries parameters
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Generic transient sectors

For i ≥ 1 and n = e1 or i ≥ 0 for n > e1 we have

Ldnd
(n)
i = jd ,ni

LAnA
(n)
i = jA,ni

Lbnb
(n)
i = jb,ni

with linear operators

Ldn = ∂2s

LAn = s∂s − 4

Lbn = s(1− s4)∂2s − (3 + s4 − 2i n · ω s)∂s − 3i n · ω
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Transseries expansion of energy density

The energy density admits an expansion

E (u,σ) =
∑
n∈N∞

0

σn e−n·A u Φ(n) (u)

where

Φ(n) (u) = u−βn
+∞∑
k=0

ε
(n)
k u−k

Using holographic renormalization

ε
(n)
i = − 1

σn
1

4!

d4

ds4
A
(n)
i (s = 0)

Each "instanton action"Ak comes with an independent

transseries parameter σk
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Sapmle sectors

Hydro sector

Φ(0) (u) = u−β0
∞∑
k=0

ε
(0)
k u−k

with β0 = 2. We have �rst 380 coe�cients

The �rst transient sector

Φe1 (u) = u−βe1
∞∑
k=0

ε
(e1)
k u−k

βe1 = −i ω0
4

+ 3 with ω0 = 3.1195 · · · − i 2.7467 · · ·
We have �rst 250 coe�cients
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Higher modes and non-linear e�ects

Higher transient mode (2nd QNM)

Φe2 (u) = u−βe2
∞∑
k=0

ε
(e2)
k u−k

where βe2 = −i ω1
4

+ 3 where ω1 = 5.16952 · · · − i 4.76357 · · ·
We have �rst 200 coe�cients

Multi-mode contributions

Φ2e1 (u) = u−β2e1
∞∑
k=0

ε
(2e1)
k u−k

where β2e1 = 2βe1 − 2. We have �rst 100 coe�cients
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High order coe�cients

For n� 1

ε
(0)
n ∼

Γ(n + β)

An+β
1

+ c.c.

with β = β0 − βe1 ∈ C and A1 ∈ C, (β0 = 2)

A1 = i3
2
ω0 is the frequency of the transient QNM mode

Im ω0 ∼ τ−10 where τ0 is the equilibration time

At RHIC and LHC τ0 ∼ 0.5− 1 fm/c

All information is stored in the coe�cients the hydrodynamic

gradient expansion: resurgence property
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Large order relations

For the hydrodynamic series at the leading singularity

ε
(0)
n ∼ −

S0→e1

2πi

Γ(n + β)

An+β
1

(
ε
(e1)
0 +

A1ε
(e1)
1

n + β − 1
+

+
A2
1ε

(e1)
2

(n + β − 1)(n + β − 2)
+ · · ·

)
+ c.c.+ · · ·

where S0→e1 is the Stokes constant (β = β0 − βe1)

Large order relations contain contributions from all sectors and

couplings between them

Every sector has an independent Stokes constant S0→ek
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The Borel transform

The Borel transform is de�ned

B [Φ] (ξ) =
∞∑
n=0

Fn
Γ(n + β)

ξn+β−1

if Fn ∼ Γ(n + β) and Φ(x) =
∑∞

n=1 Fnx
−n−β

Due to �nite number of terms we have to perform Borel-Padé

approximant

We analyse poles of the Borel-Padé approximant BPN [Φ] (ξ)
to estimate singularities of the Borel transform

First square root branch points appear at ξ = A1 and ξ = A1
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Leading hydrodynamic singularity
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Poles of the Borel-Padé approximant BP189 [εhydro], in the complex

ξ−plane ξ = A1,A1, 2A1, 2A1 ξ = A2,A2

S0→e1 = 0.01113 · · · − i0.03050 · · ·
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Leading hydrodynamic singularity
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Comparison of the resurgence predictions of the Borel-Padé

approximant (of order N = 189) of the hydrodynamic series, and

the predicted value of the expansion around the ξ = A1 singularity
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Sub-leading hydrodynamic singularity

Subtract the leading order contribution from the hydro

coe�cients

δ1ε
(0)
n = ε

(0)
n +

S0→e1

2πi

Γ(n + β)

An+β
1

(
ε
(e1)
0 +

A1ε
(e1)
1

n + β − 1
+

+
A2
1ε

(e1)
2

(n + β − 1)(n + β − 2)
+ · · ·

)
+ c.c.

The leading contribution to the δ1ε
(0)
n is determined by the

modes A2 and A2

We can perform the same analysis for the series

δ1Φ0(u) ' u−β0
+∞∑
n=1

δ1ε
(0)
n u−n = u−β0−1

+∞∑
n=0

δ1ε
(0)
n+1 u

−n
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Sub-leading hydrodynamic singularity
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Poles of the Borel-Padé approximant BP90 [δ1Φ0]

S0→e2 = 0.0183 · · · − i0.01161 · · ·

J. Jankowski Resurgence in N = 4 SYM



Sub-leading hydrodynamic singularity
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Comparison of the resurgence predictions of the Borel-Padé

approximant (of order N = 90) of the corrected hydrodynamic

series δ1Φ0, and the predicted value of the expansion around the

ξ = A2 singularity
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Leading behaviour in the �rst non-hydro sector

Poles of the Borel-Padé approximant BP135 [Φe1 ]
ξ = A1 − A1,A1,A1, ξ = A2 − A1

Se1→e2
= −0.91134− i 0.81107
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Leading behaviour in the �rst non-hydro sector
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Comparison of the resurgence predictions of the Borel-Padé

approximant (of order N = 135) of the series Φe1 , and the

predicted value of the expansion around the ξ = A2 −A1 singularity
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E�ects of the QNM couplings
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Comparison of the resurgence predictions of the Borel-Padé

approximant (of order N = 135) of the series Φe1 , and the

predicted value of the expansion around the ξ = A2 −A1 singularity

Se1→2e1 = 2S0→e1
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Summary

Numerical evidence for resurgence in ab-initio computed

strongly coupled QFT

Transeries antzats provides a uni�ed formalism to incorporate

hydro and transient modes and their coupling

Scaling limit is generalized to the whole time evolution

Initial conditions are encoded in the σ parameters

Possible implications for attractor ...
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