The holographic Pomeron and low-x physics

Miguel S. Costa

Faculdade de Ciências da Universidade do Porto

Holography and Extreme Chromodynamics - HoloQuark 2018 Santiago de Compostela, July 2017

Regge behaviour in QCD

Regge behaviour in QCD

- Hadronic resonances fall in linear trajectories

$$
J=j(t)=j(0)+\alpha^{\prime} t
$$

Regge behaviour in QCD

- Hadronic resonances fall in linear trajectories

$I=1$ even parity mesons exchanged for

$$
J=j(t)=j(0)+\alpha^{\prime} t
$$

$$
\begin{gathered}
A(s, t) \sim \beta(t) s^{j(t)} \\
(s \gg t)
\end{gathered}
$$

Regge behaviour in QCD

- Hadronic resonances fall in linear trajectories

$$
J=j(t)=j(0)+\alpha^{\prime} t
$$

$$
\sigma \sim s^{j(0)-1}
$$

Total cross section
$I=1$ even parity mesons exchanged for

(Soft) Pomeron trajectory

- For elastic scattering, exchanged trajectory has the vacuum quantum numbers.
- For elastic scattering, exchanged trajectory has the vacuum quantum numbers.

$$
\alpha_{P} \approx 1.08+0.25 t \quad(\mathrm{GeV} \text { units })
$$

[Landshoff-Donnachie]

- For elastic scattering, exchanged trajectory has the vacuum quantum numbers.

$$
\alpha_{P} \approx 1.08+0.25 t \quad(\mathrm{GeV} \text { units })
$$

[Landshoff-Donnachie]

Elastic cross sections in QCD

$$
\sigma \sim s^{\alpha_{P}(0)-1} \sim s^{0.08}
$$

- For elastic scattering, exchanged trajectory has the vacuum quantum numbers.

$$
\alpha_{P} \approx 1.08+0.25 t \quad(\mathrm{GeV} \text { units })
$$

[Landshoff-Donnachie]

Elastic cross sections in QCD

$$
\sigma \sim s^{\alpha_{P}(0)-1} \sim s^{0.08}
$$

Evidence from lattice QCD that there are glueballs on this trajectory with $J \geq 2$.

Regge theory

Regge theory

- t-channel partial wave expansion

$$
A(s, t)=\sum_{J} a_{J}(t) P_{J}\left(1+2 \frac{s}{t}\right)
$$

Regge theory

- t-channel partial wave expansion

$$
A(s, t)=\sum_{J} a_{J}(t) P_{J}\left(1+2 \frac{s}{t}\right) \longrightarrow \sim\left(\frac{s}{t}\right)^{J}
$$

Regge theory

- t-channel partial wave expansion

$$
A(s, t)=\sum_{J} a_{J}(t) P_{J}\left(1+2 \frac{s}{t}\right) \longrightarrow \sim\left(\frac{s}{t}\right)^{J}
$$

- Exchange of spin J field has pole at $t=m^{2}(J) \quad a_{J}(t) \approx \frac{r(J)}{t-m^{2}(J)}$

Regge theory

- t-channel partial wave expansion

$$
A(s, t)=\sum_{J} a_{J}(t) P_{J}\left(1+2 \frac{s}{t}\right) \longrightarrow \sim\left(\frac{s}{t}\right)^{J}
$$

- Exchange of spin J field has pole at $t=m^{2}(J) \quad a_{J}(t) \approx \frac{r(J)}{t-m^{2}(J)}$
- Sum exchanges in leading Regge trajectory and analytically continue in J (Sommerfeld-Watson transform)

$$
\sum_{J} \rightarrow \int_{\mathrm{C}} \frac{d J}{2 \pi i} \frac{\pi}{\sin (\pi J)}
$$

Rage theory

- t-channel partial wave expansion

$$
A(s, t)=\sum_{J} a_{J}(t) P_{J}\left(1+2 \frac{s}{t}\right) \longrightarrow \sim\left(\frac{s}{t}\right)^{J}
$$

- Exchange of spin J field has pole at $t=m^{2}(J) \quad a_{J}(t) \approx \frac{r(J)}{t-m^{2}(J)}$
- Sum exchanges in leading Reggae trajectory and analytically continue in J (Sommerfeld-Watson transform)

$$
\sum_{J} \rightarrow \int_{\mathrm{C}} \frac{d J}{2 \pi i} \frac{\pi}{\sin (\pi J)}
$$

- Pick leading pole

$$
a_{J}(t) \approx-\frac{j^{\prime}(t) r(j(t))}{J-j(t)}
$$

$$
A(s, t) \approx \beta(t) s^{j(t)}
$$

Deep Inelastic Scattering (DIS)

- Pomeron enters also in diffractive processes. For example DIS, where electron interacts with proton via exchange of off-shell photon

Deep Inelastic Scattering (DIS)

- Pomeron enters also in diffractive processes. For example DIS, where electron interacts with proton via exchange of off-shell photon
- Optical theorem

Deep Inelastic Scattering (DIS)

- Pomeron enters also in diffractive processes. For example DIS, where electron interacts with proton via exchange of off-shell photon
- Optical theorem

- Hadronic tensor

$$
W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle
$$

$$
s=-(q+P)^{2}
$$

$$
Q^{2}=q^{2}
$$

- Bjorken X

$p=x P$

$$
s=-(q+P)^{2}
$$

$$
Q^{2}=q^{2}
$$

- Bjorken x

large $s \Rightarrow$ small x

$$
\begin{aligned}
s & =-(q+P)^{2} \\
Q^{2} & =q^{2}
\end{aligned}
$$

- Bjorken x

- Transverse resolution $1 / Q$

$$
\text { large } S \Rightarrow \text { small } x
$$

- At low $x \lesssim 10^{-2}$ a steep x - dependence is observed $\sigma \sim x^{1-j_{0}}$

- At low $x \lesssim 10^{-2}$ a steep x - dependence is observed $\sigma \sim x^{1-j_{0}}$

Effective slop varies with Q

- At low $x \lesssim 10^{-2}$ a steep x - dependence is observed $\sigma \sim x^{1-j_{0}}$

Is it the same Regge trajectory? One or two pomerons (soft and hard)?

Two gluon exchange with ladder interactions
Resums $\left(\alpha_{s} \ln 1 / x\right)^{n}$ contributions
Valid for hard probes $Q \gg \Lambda_{Q C D} \quad$ (conformal limit)
Hard pomeron is a cut in J-plane

Hard Pomeron [BFKL - Balitsky, Fadin, Kuraev \& Lipatov]

Two gluon exchange with ladder interactions
Resums $\left(\alpha_{s} \ln 1 / x\right)^{n}$ contributions
Valid for hard probes $Q \gg \Lambda_{Q C D} \quad$ (conformal limit)
Hard pomeron is a cut in J-plane

- Breaking conformal symmetry, explains well DIS data outside the confining region $Q>\Lambda_{Q C D} \quad$ [Kowalski, Lipatov, Ross, Watt 10]
- Strong rise in $1 / x$, violating Froissart bound

$$
\sigma \lesssim m_{\pi}(\ln s)^{2}
$$

Eventually growth slows down (multi-pomeron, eikonal resummation)

- Strong rise in $1 / x$, violating Froissart bound

$$
\sigma \lesssim m_{\pi}(\ln s)^{2}
$$

Eventually growth slows down (multi-pomeron, eikonal resummation)

- Perturbation theory will breakdown, even for small coupling, because there will be gluon saturation at very low x .

- Strong rise in $1 / x$, violating Froissart bound

$$
\sigma \lesssim m_{\pi}(\ln s)^{2}
$$

Eventually growth slows down (multi-pomeron, eikonal resummation)

- Perturbation theory will breakdown, even for small coupling, because there will be gluon saturation at very low x .

- AdS/CFT as starting point for pomeron physics
- Strong rise in $1 / x$, violating Froissart bound

$$
\sigma \lesssim m_{\pi}(\ln s)^{2}
$$

Eventually growth slows down (multi-pomeron, eikonal resummation)

- Perturbation theory will breakdown, even for small coupling, because there will be gluon saturation at very low x .

- AdS/CFT as starting point for pomeron physics

Graviton Regge trajectory dual to pomeron trajectory

Summary so far

- QCD exhibits Regge behaviour. Elastic scattering (and related processes) dominated by exchange of pomeron Regge trajectory.

Summary so far

- QCD exhibits Regge behaviour. Elastic scattering (and related processes) dominated by exchange of pomeron Regge trajectory.
- For scattering of hadronic states, data very well described with phenomenological soft pomeron. With hard probe growth is steeper, and data better described with BFKL hard pomeron. One or two pomerons? Confinement effects?

Summary so far

- QCD exhibits Regge behaviour. Elastic scattering (and related processes) dominated by exchange of pomeron Regge trajectory.
- For scattering of hadronic states, data very well described with phenomenological soft pomeron. With hard probe growth is steeper, and data better described with BFKL hard pomeron. One or two pomerons? Confinement effects?
- Construct Regge theory for CFTs, or for the dual gravity (string theory). For the example of $\mathrm{N}=4$ SYM results are valid at any coupling.

Summary so far

- QCD exhibits Regge behaviour. Elastic scattering (and related processes) dominated by exchange of pomeron Regge trajectory.
- For scattering of hadronic states, data very well described with phenomenological soft pomeron. With hard probe growth is steeper, and data better described with BFKL hard pomeron. One or two pomerons? Confinement effects?
- Construct Regge theory for CFTs, or for the dual gravity (string theory). For the example of $\mathrm{N}=4$ SYM results are valid at any coupling.
- Once dual description of pomeron well understood, can apply to low x physics in QCD starting from holographic QCD description, including confining region.

Regge Kinematics in CFTs [Cornalba, MSC, Penedones, Schiappa 06]

- Consider correlator with EMG current $j^{a}=\bar{\psi} \gamma^{a} \psi$ and scalar operator \mathcal{O}

$$
A^{a b}\left(y_{i}\right)=\left\langle j^{a}\left(y_{1}\right) \mathcal{O}\left(y_{2}\right) j^{b}\left(y_{3}\right) \mathcal{O}\left(y_{4}\right)\right\rangle
$$

Regge Kinematics in CFTs [Cornalba, MSC, Penedones, Schiappa 06]

- Consider correlator with EMG current $j^{a}=\bar{\psi} \gamma^{a} \psi$ and scalar operator \mathcal{O}

$$
A^{\nless<}\left(y_{i}\right)=\left\langle j^{\chi}\left(y_{1}\right) \mathcal{O}\left(y_{2}\right) \mathcal{j}^{\nless}\left(y_{3}\right) \mathcal{O}\left(y_{4}\right)\right\rangle=\begin{array}{r}
\mathcal{A}(z, \bar{z}) \\
\left(y_{13}\right)^{2 \xi}\left(y_{24}\right)^{2 \Delta}
\end{array} \begin{array}{r}
z \bar{z}=\frac{y_{13} y_{24}}{y_{12} y_{34}} \\
(1-z)(1-\bar{z})=\frac{y_{14} y_{23}}{y_{12} y_{34}}
\end{array}
$$

Regge Kinematics in CFTs [Cornalba, MSC, Penedones, Schiappa 06]

- Consider correlator with EMG current $j^{a}=\bar{\psi} \gamma^{a} \psi$ and scalar operator \mathcal{O}

$$
A^{\nprec}\left(y_{i}\right)=\left\langle j^{\not ㇒}\left(y_{1}\right) \mathcal{O}\left(y_{2}\right) j^{\nVdash}\left(y_{3}\right) \mathcal{O}\left(y_{4}\right)\right\rangle=\frac{\mathcal{A}(z, \bar{z})}{\left(y_{13}\right)^{2 \xi}\left(y_{24}\right)^{2 \Delta}} \quad \begin{array}{r}
z \bar{z}=\frac{y_{13} y_{24}}{y_{12} y_{34}} \\
(1-z)(1-\bar{z})=\frac{y_{14} y_{23}}{y_{12} y_{34}}
\end{array} \begin{array}{r}
\\
(1)
\end{array}
$$

- Regge kinematics is Lorentzian. Analytically continue from Euclidean theory $\left(\bar{z}=z^{*}\right)$ to z, \bar{z} on real axis.

- Regge limit

$$
z, \bar{z} \rightarrow 0 \text { with } \frac{z}{\bar{z}} \text { fixed }
$$

Conformal Regge Theory [Cornalba 07; MSC, Penedones, Gonçalves 12]

- Expand in t-channel conformal partial waves

$$
\mathcal{A}(z, \bar{z})=\sum_{k} C_{13 k} C_{24 k} G_{\Delta_{k}, J_{k}}(z, \bar{z})
$$

Conformal Regge Theory [Cornalba 07; MSC, Penedones, Gonçalves 12]

- Expand in t-channel conformal partial waves

$$
\mathcal{A}(z, \bar{z})=\sum_{k} C_{13 k} C_{24 k} G_{\Delta_{k}, J_{k}}(z, \bar{z})
$$

- Euclidean OPE dominated by lowest dimension $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{\Delta}{2}} f_{E}(z / \bar{z})$

Conformal Regge Theory [Cornalba 07; MSC, Penedones, Gonçalves 12]

- Expand in t-channel conformal partial waves

$$
\mathcal{A}(z, \bar{z})=\sum_{k} C_{13 k} C_{24 k} G_{\Delta_{k}, J_{k}}(z, \bar{z})
$$

- Euclidean OPE dominated by lowest dimension $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{\Delta}{2}} f_{E}(z / \bar{z})$ but after analytic continuation highest spin dominates $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{1-\bar{z}}{2}} f_{L}(z / \bar{z})$

Conformal Regge Theory [Cornalba 07; MSC, Penedones, Gonçalves 12]

- Expand in t-channel conformal partial waves

$$
\mathcal{A}(z, \bar{z})=\sum_{k} C_{13 k} C_{24 k} G_{\Delta_{k}, J_{k}}(z, \bar{z})
$$

- Euclidean OPE dominated by lowest dimension $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{\Delta}{2}} f_{E}(z / \bar{z})$ but after analytic continuation highest spin dominates $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{1-\overline{2}}{2}} f_{L}(z / \bar{z})$
- Spectral representation $(h=d / 2)$

$$
\mathcal{A}(z, \bar{z})=\sum_{J} \int_{-\infty}^{\infty} d \nu \frac{C_{13 J} C_{24, J}}{\nu^{2}+(\Delta(J)-h)^{2}} F_{\nu, J}(z, \bar{z})
$$

Conformal Regge Theory [Cornalba 07; MSC, Penedones, Gonçalves 12]

- Expand in t-channel conformal partial waves

$$
\mathcal{A}(z, \bar{z})=\sum_{k} C_{13 k} C_{24 k} G_{\Delta_{k}, J_{k}}(z, \bar{z})
$$

- Euclidean OPE dominated by lowest dimension $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{\Delta}{2}} f_{E}(z / \bar{z})$ but after analytic continuation highest spin dominates $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{1-\overline{2}}{2}} f_{L}(z / \bar{z})$
- Spectral representation $(h=d / 2)$

$$
\begin{aligned}
\mathcal{A}(z, \bar{z}) & =\sum_{J} \int_{-\infty}^{\infty} d \nu \frac{C_{13 J} C_{24 J}}{\nu^{2}+(\Delta(J)-h)^{2}} F_{\nu, J}(z, \bar{z}) \\
& \sim \sum_{J} \sigma^{1-J} \int d \nu \alpha_{J}(\nu) \Omega_{i \nu}(\rho)
\end{aligned}
$$

$$
\sigma^{2}=z \bar{z}, \quad e^{2 \rho}=\frac{z}{\bar{z}}
$$

Conformal Regge Theory [Cornalba 07; MSC, Penedones, Gonçalves 12]

- Expand in t-channel conformal partial waves

$$
\mathcal{A}(z, \bar{z})=\sum_{k} C_{13 k} C_{24 k} G_{\Delta_{k}, J_{k}}(z, \bar{z})
$$

- Euclidean OPE dominated by lowest dimension $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{\Delta}{2}} f_{E}(z / \bar{z})$ but after analytic continuation highest spin dominates $\lim _{z, \bar{z} \rightarrow 0} G_{\Delta, J} \sim(z \bar{z})^{\frac{1-\bar{J}}{2}} f_{L}(z / \bar{z})$
- Spectral representation $(h=d / 2)$

$$
\sigma^{2}=z \bar{z}, \quad e^{2 \rho}=\frac{z}{\bar{z}}
$$

$$
\begin{aligned}
\mathcal{A}(z, \bar{z}) & =\sum_{J} \int_{-\infty}^{\infty} d \nu \frac{C_{13 J} C_{24 J}}{\nu^{2}+(\Delta(J)-h)^{2}} F_{\nu, J}(z, \bar{z}) \quad \text { Regge limit } \sigma \rightarrow 0, \quad \rho \text { fixed } \\
& \sim \sum_{J} \sigma^{1-J} \int d \nu \alpha_{J}(\nu) \Omega_{i \nu}(\rho)
\end{aligned} \text { Harmonic function on } \mathbb{H}_{d-1}\left(\nabla^{2} \Omega_{i \nu}=-\left(\nu^{2}+h-1\right) \Omega_{i \nu}\right) .
$$

- Sum over spin using Sommerfeld-Watson transform

$$
\mathcal{A}(\sigma, \rho)=\sigma \int d \nu \int_{C} \frac{d J}{2 \pi i} \frac{\pi}{2 \sin (\pi J)}\left(\sigma^{-J}+(-\sigma)^{-J}\right) \alpha_{J}(\nu) \Omega_{i \nu}(\rho)
$$

- Sum over spin using Sommerfeld-Watson transform

$$
\begin{array}{r}
\mathcal{A}(\sigma, \rho)=\sigma \int d \nu \int_{C} \frac{d J}{2 \pi i} \frac{\pi}{2 \sin (\pi J)}\left(\sigma^{-J}+(-\sigma)^{-J}\right) \alpha_{J}(\nu) \Omega_{i \nu}(\rho) \\
\alpha_{J}(\nu)=\frac{C_{13 J} C_{24 J}}{\nu^{2}+(\Delta(J)-h)^{2}} \approx-\frac{j^{\prime}(\nu) C_{13 j(\nu)} C_{24 j(\nu)}}{2 \nu(J-j(\nu))}
\end{array}
$$

Regge pole for $J=j(\nu)$ such that

$$
\nu^{2}+(\Delta(j(\nu))-h)^{2}=0
$$

- Sum over spin using Sommerfeld-Watson transform

$$
\begin{array}{r}
\mathcal{A}(\sigma, \rho)=\sigma \int d \nu \int_{C} \frac{d J}{2 \pi i} \frac{\pi}{2 \sin (\pi J)}\left(\sigma^{-J}+(-\sigma)^{-J}\right) \alpha_{J}(\nu) \Omega_{i \nu}(\rho) \\
\alpha_{J}(\nu)=\frac{C_{13 J} C_{24 J}}{\nu^{2}+(\Delta(J)-h)^{2}} \approx-\frac{j^{\prime}(\nu) C_{13 j(\nu)} C_{24 j(\nu)}^{2 \nu(J-j(\nu))}}{2,}
\end{array}
$$

Regge pole for $J=j(\nu)$ such that

$$
\nu^{2}+(\Delta(j(\nu))-h)^{2}=0
$$

$$
\mathcal{A}(\sigma, \rho)=\int_{-\infty}^{\infty} d \nu \alpha(\nu) \sigma^{1-\varrho(\nu)} \Omega_{i \nu}(\rho)
$$

N=4 Super Yang Mills

- Correlation functions that exchange vacuum quantum numbers are dominated in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)

$$
\begin{array}{ll}
\mathcal{A}(\sigma, \rho)=\int d \nu \alpha(\nu, \lambda) \sigma^{1-j(\nu, \lambda)} \Omega_{i \nu}(\rho) & \mathcal{O}_{J} \sim \operatorname{Tr}\left(F_{\alpha \beta_{1}} D_{\beta_{2}} \ldots D_{\beta_{J-1}} F_{\beta_{J}}{ }^{\alpha}\right) \\
J=j(\nu, \lambda)=j_{0}(\lambda)-\mathcal{D}(\lambda) \nu^{2}+\cdots & \Delta=\Delta(J) \text { or } J=j(\nu) \\
\hline
\end{array}
$$

N=4 Super Yang Mills

- Correlation functions that exchange vacuum quantum numbers are dominated in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)

$$
\begin{aligned}
& \mathcal{A}(\sigma, \rho)=\int d \nu \alpha(\nu, \lambda) \sigma^{1-j(\nu, \lambda)} \Omega_{i \nu}(\rho) \\
& J=j(\nu, \lambda)=j_{0}(\lambda)-\mathcal{D}(\lambda) \nu^{2}+\cdots
\end{aligned}
$$

$$
\mathcal{O}_{J} \sim \operatorname{Tr}\left(F_{\alpha \beta_{1}} D_{\beta_{2}} \ldots D_{\beta_{J-1}} F_{\beta_{J}}{ }^{\alpha}\right)
$$

- Weak coupling

$$
\Delta=\Delta(J) \quad \text { or } \quad J=j(\nu)
$$

N=4 Super Yang Mills

- Correlation functions that exchange vacuum quantum numbers are dominated in Regge limit by exchange of pomeron/graviton Regge trajectory (twist 2)

$$
\begin{aligned}
& \mathcal{A}(\sigma, \rho)=\int d \nu \alpha(\nu, \lambda) \sigma^{1-j(\nu, \lambda)} \Omega_{i \nu}(\rho) \\
& J=j(\nu, \lambda)=j_{0}(\lambda)-\mathcal{D}(\lambda) \nu^{2}+\cdots
\end{aligned}
$$

$$
\mathcal{O}_{J} \sim \operatorname{Tr}\left(F_{\alpha \beta_{1}} D_{\beta_{2}} \ldots D_{\beta_{J-1}} F_{\beta_{J}}{ }^{\alpha}\right)
$$

$$
\Delta=\Delta(J) \quad \text { or } \quad J=j(\nu)
$$

- Weak coupling
- Strong coupling

Graviton/Pomeron Regge trajectory at strong coupling [BPST 06]

Graviton/Pomeron Regge trajectory at strong coupling [BPST 06]

- At strong coupling pomeron trajectory described by graviton Regge trajectory of string theory in AdS (large N, conformal theory)

Exchange of spin J field in AdS
(symmetric, traceless and transverse)

$$
\begin{aligned}
& \left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \\
& \text { with } m^{2}=\Delta(\Delta-4)-J
\end{aligned}
$$

AdS scattering process

Graviton/Pomeron Regge trajectory at strong coupling [BPST 06]

- At strong coupling pomeron trajectory described by graviton Regge trajectory of string theory in AdS (large N, conformal theory)

Exchange of spin J field in AdS
(symmetric, traceless and transverse)

$$
\begin{aligned}
& \left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \\
& \text { with } m^{2}=\Delta(\Delta-4)-J
\end{aligned}
$$

- AdS impact parameter representation. In Regge limit [Cornalba, MSC, Penedones, Schiappa 07]

$$
A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q_{\perp} \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}\left(z^{\prime}\right) S^{J-1} G_{J}(L)
$$

Graviton/Pomeron Regge trajectory at strong coupling [BPST 06]

- At strong coupling pomeron trajectory described by graviton Regge trajectory of string theory in AdS (large N, conformal theory)

Exchange of spin J field in AdS
(symmetric, traceless and transverse)

$$
\begin{aligned}
& \left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \\
& \text { with } m^{2}=\Delta(\Delta-4)-J
\end{aligned}
$$

- AdS impact parameter representation. In Regge limit [Cornalba, MSC, Penedones, Schiappa 07]
$A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q_{\perp} \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}\left(z^{\prime}\right) S^{J-1} G_{J}(L)$
$S=z z^{\prime} s$, AdS energy squared $\quad \cosh L=\frac{z^{2}+z^{\prime 2}+l_{\perp}^{2}}{2 z z^{\prime}}$, impact parameter

$$
A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q_{\perp} \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}(z) S^{J-1} G_{J}(L)
$$

$A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q \perp \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}(z) S^{J-1} G_{J}(L)$

- $G_{J}(L)$ is the integrated propagator $\left(w=x-x^{\prime}=\left(w^{+}, w^{-}, l_{\perp}\right)\right)$

$$
G_{J}(L) \sim i\left(z z^{\prime}\right)^{(J-1)} \int d w^{+} d w^{-} \Pi_{+\ldots+.-\ldots-}\left(z, z^{\prime}, w\right)
$$

$A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q_{\perp} \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}(z) S^{J-1} G_{J}(L)$

- $G_{J}(L)$ is the integrated propagator $\left(w=x-x^{\prime}=\left(w^{+}, w^{-}, l_{\perp}\right)\right)$

$$
G_{J}(L) \sim i\left(z z^{\prime}\right)^{(J-1)} \int d w^{+} d w^{-} \Pi_{+\ldots+.-\ldots-}\left(z, z^{\prime}, w\right)
$$

and obeys scalar propagator equation in transverse space

$$
\left[\square_{H_{3}}-3-\Delta(\Delta-4)\right] G_{J}(L)=-\delta_{H_{3}}\left(y, y^{\prime}\right)
$$

$A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q \perp \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}(z) S^{J-1} G_{J}(L)$

- $G_{J}(L)$ is the integrated propagator $\left(w=x-x^{\prime}=\left(w^{+}, w^{-}, l_{\perp}\right)\right)$

$$
G_{J}(L) \sim i\left(z z^{\prime}\right)^{(J-1)} \int d w^{+} d w^{-} \Pi_{+\ldots+. \cdots-}\left(z, z^{\prime}, w\right)
$$

and obeys scalar propagator equation in transverse space

$$
\left[\square_{H_{3}}-3-\Delta(\Delta-4)\right] G_{J}(L)=-\delta_{H_{3}}\left(y, y^{\prime}\right)
$$

$G_{J}(L)=e^{i q_{\perp} \cdot l_{\perp}} \sqrt{z} \psi(z)$, reduces to Schrodinger problem

$$
\left(-\frac{d}{d z^{2}}+V(z)\right)=t \psi(z), \text { with } \quad V=\left(\frac{15}{4}+\Delta(\Delta-4)\right) \frac{1}{z^{2}}
$$

$A_{J}(s, t) \approx i V \kappa_{J} \kappa_{J}^{\prime} s \int d l_{\perp} e^{i q \perp \cdot l_{\perp}} \int \frac{d z}{z^{3}} \frac{d z^{\prime}}{z^{\prime 3}} \Phi_{1}(z) \Phi_{3}(z) \Phi_{2}\left(z^{\prime}\right) \Phi_{4}(z) S^{J-1} G_{J}(L)$

- $G_{J}(L)$ is the integrated propagator $\left(w=x-x^{\prime}=\left(w^{+}, w^{-}, l_{\perp}\right)\right)$

$$
G_{J}(L) \sim i\left(z z^{\prime}\right)^{(J-1)} \int d w^{+} d w^{-} \Pi_{+\ldots+. \cdots-}\left(z, z^{\prime}, w\right)
$$

and obeys scalar propagator equation in transverse space

$$
\left[\square_{H_{3}}-3-\Delta(\Delta-4)\right] G_{J}(L)=-\delta_{H_{3}}\left(y, y^{\prime}\right)
$$

$G_{J}(L)=e^{i q_{\perp} \cdot l_{\perp}} \sqrt{z} \psi(z)$, reduces to Schrodinger problem

$$
\left(-\frac{d}{d z^{2}}+V(z)\right)=t \psi(z), \text { with } \quad V=\left(\frac{15}{4}+\Delta(\Delta-4)\right) \frac{1}{z^{2}}
$$

$$
\Delta=\Delta(J)
$$

Application to low x physics in QCD

Application to low x physics in QCD

- Deep inelastic scattering (DIS)
[Hatta, Iancu, Mueller 07;
Cornalba, MSC 08;
Brower, Djuric, Sarcevic, Tan 10]

Application to low x physics in QCD

- Deep inelastic scattering (DIS)
[Hatta, Iancu, Mueller 07;
Cornalba, MSC 08;
Brower, Djuric, Sarcevic, Tan 10]

Optical theorem

Application to low x physics in QCD

- Deep inelastic scattering (DIS)
[Hatta, Iancu, Mueller 07;
Cornalba, MSC 08;
Brower, Djuric, Sarcevic, Tan 10]

Optical theorem

- DVCS \& VMP
[MSC, Djuric 12;
MSC, Djuric, Evans 13]

Hard and soft pomeron are distinct Regge trajectories [Donnachie, Landshoff]

Hard and soft pomeron are distinct Regge trajectories [Donnachie, Landshoff]

- Explain DIS data with two Regge trajectories

$$
\sigma\left(Q^{2}, x\right) \propto f_{0}\left(Q^{2}\right) x^{-j_{0}}+f_{1}\left(Q^{2}\right) x^{-j_{1}}
$$

Hard and soft pomeron are distinct Regge trajectories [Donnachie, Landshoff]

- Explain DIS data with two Regge trajectories

$$
\sigma\left(Q^{2}, x\right) \propto f_{0}\left(Q^{2}\right) x^{-j_{0}}+f_{1}\left(Q^{2}\right) x^{-j_{1}}
$$

- Let us apply this idea to gauge/string duality [Bayona, MSC, Quevedo 17]

$$
f_{k}\left(Q^{2}\right)=P_{k}\left(Q^{2}\right) \varphi_{k}\left(Q^{2}\right)
$$

Wave function of a 1D
Schrodinger problem in
Known function of Q^{2} and j_{k}
holographic direction

Hard and soft pomeron are distinct Regge trajectories [Donnachie, Landshoff]

- Explain DIS data with two Regge trajectories

$$
\sigma\left(Q^{2}, x\right) \propto f_{0}\left(Q^{2}\right) x^{-j_{0}}+f_{1}\left(Q^{2}\right) x^{-j_{1}}
$$

- Let us apply this idea to gauge/string duality [Bayona, MSC, Quevedo 17]

Holographic direction $z \sim 1 / Q$

DIS from gauge/string duality

- Hadronic tensor $\quad W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle$

DIS from gauge/string duality

- Hadronic tensor $\quad W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle$
- Strategy for DIS phenomenology: choose a holographic QCD model; analytically continue spin J equation in region below graviton pole $(J<2)$.

$$
W=\int d z d z^{\prime} \phi_{1}(z) \phi_{3}(z) \mathcal{K}_{P}\left(s, t, z, z^{\prime}\right) \phi_{2}\left(z^{\prime}\right) \phi_{4}\left(z^{\prime}\right)
$$

DIS from gauge/string duality

- Hadronic tensor $\quad W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle$
- Strategy for DIS phenomenology: choose a holographic QCD model; analytically continue spin J equation in region below graviton pole $(J<2)$.

$$
W=\int d z d z^{\prime}\left(\phi_{1}(z) \phi_{3}(z) \mathcal{K}_{P}\left(s, t, z, z^{\prime}\right) \phi_{2}\left(z^{\prime}\right) \phi_{4}\left(z^{\prime}\right)\right.
$$

DIS from gauge/string duality

- Hadronic tensor $\quad W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle$
- Strategy for DIS phenomenology: choose a holographic QCD model; analytically continue spin J equation in region below graviton pole $(J<2)$.

$$
W=\int d z d z^{\prime}\left(\phi_{1}(z) \phi_{3}(z) \mathcal{K}_{P}\left(s, t, z, z^{\prime}\right) \phi_{2}\left(z^{\prime}\right) \phi_{4}\left(z^{\prime}\right)\right.
$$

DIS from gauge/string duality

- Hadronic tensor $\quad W^{a b}(x, Q, t)=i \int d^{4} y e^{i q \cdot y}\langle P| T\left\{j^{a}(y) j^{b}(0)\right\}\left|P^{\prime}\right\rangle$
- Strategy for DIS phenomenology: choose a holographic QCD model; analytically continue spin J equation in region below graviton pole $(J<2)$.

$$
\left.W=\int d z d z^{\prime}\left(\phi_{1}(z) \phi_{3}(z)\right) \mathcal{K}_{P}\left(s, t, z, z^{\prime}\right) \phi_{2}\left(z^{\prime}\right) \phi_{4}\left(z^{\prime}\right)\right)
$$

Holographic QCD

- QCD dual is a 5D theory with a graviton and a dilaton

$$
\begin{aligned}
d s^{2} & =e^{2 A(z)}\left(d z^{2}+\eta_{\alpha \beta} d x^{\alpha} d x^{\beta}\right) \\
\Phi & =\Phi(z)
\end{aligned}
$$

AdS fields \leftrightarrow single trace operators $g_{a b} \leftrightarrow T_{\alpha \beta}$
$\Phi \leftrightarrow F^{2}$

Holographic QCD

- QCD dual is a 5D theory with a graviton and a dilaton

$$
\begin{aligned}
d s^{2} & =e^{2 A(z)}\left(d z^{2}+\eta_{\alpha \beta} d x^{\alpha} d x^{\beta}\right) \\
\Phi & =\Phi(z)
\end{aligned}
$$

AdS fields \leftrightarrow single trace operators

$$
g_{a b} \leftrightarrow T_{\alpha \beta}
$$

$$
\Phi \leftrightarrow F^{2}
$$

- Test our ideas with a 5D dilaton-gravity model [Gursoy, Kiritsis, Nitti 07$]$

$$
S=\frac{1}{2 \kappa^{2}} \int d^{5} x \sqrt{-g} e^{-2 \Phi}\left[R+4(\partial \phi)^{2}+V(\phi)\right]
$$

Judicious choice of potential with only 2 free parameters
Constructed to match QCD perturbative beta function
Reproduces: heavy quark-antiquark linear potential; glueball spectrum from lattice simulations; thermodynamic properties of QGP (bulk viscosity, drag force and jet quenching parameters)

Spin J field in holographic QCD [Bayona, MSC, Djuric, Quevedo 15]

- Construct spin J field dual to gluon operator $\mathcal{O}_{J} \sim \operatorname{Tr}\left(F_{\alpha \beta_{1}} D_{\beta_{2}} \ldots D_{\beta_{J-1}} F_{\beta_{J}}{ }^{\alpha}\right)$

Decompose symmetric, traceless, transverse field $h_{a_{1} \ldots a_{J}}$ with respect to global $S O(1,3)$ boundary symmetry. Propagating modes have boundary indices $h_{\alpha_{1} \ldots \alpha_{J}}$

Spin J equation must: • In AdS limit reduce to $\left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \quad m^{2}=\Delta(\Delta-4)-J, \quad \Delta=\Delta(J)$

- For $J=2$ reproduce TT metric fluctuations

Spin J field in holographic QCD [Bayona, MSC, Djuric, Quevedo 15]

- Construct spin J field dual to gluon operator $\mathcal{O}_{J} \sim \operatorname{Tr}\left(F_{\alpha \beta_{1}} D_{\beta_{2}} \ldots D_{\beta_{J-1}} F_{\beta_{J}}{ }^{\alpha}\right)$

Decompose symmetric, traceless, transverse field $h_{a_{1} \ldots a_{J}}$ with respect to global $S O(1,3)$ boundary symmetry. Propagating modes have boundary indices $h_{\alpha_{1} \ldots \alpha_{J}}$

Spin J equation must: • In AdS limit reduce to $\left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \quad m^{2}=\Delta(\Delta-4)-J, \quad \Delta=\Delta(J)$

- For $J=2$ reproduce TT metric fluctuations

Equation for propagating mode in effective field theory

$$
\begin{aligned}
& \left(\nabla^{2}-2 \dot{\Phi} \nabla_{z}+J \dot{A}^{2} e^{-2 A}-\Delta(\Delta-4)+\right. \\
& +(J-2) e^{-2 A}\left[\left(\ddot{\Phi}+(b) \dot{\Phi}^{2}+(C)\left(\ddot{A}-\dot{A}^{2}\right)\right]\right) h_{\alpha_{1} \ldots \alpha_{J}}=0
\end{aligned}
$$

- Construct spin J field dual to gluon operator $\mathcal{O}_{J} \sim \operatorname{Tr}\left(F_{\alpha \beta_{1}} D_{\beta_{2}} \ldots D_{\beta_{J-1}} F_{\beta_{J}}{ }^{\alpha}\right)$

Decompose symmetric, traceless, transverse field $h_{a_{1} \ldots a_{J}}$ with respect to global $S O(1,3)$ boundary symmetry. Propagating modes have boundary indices $h_{\alpha_{1} \ldots \alpha_{J}}$

Spin J equation must: • In AdS limit reduce to $\left(D^{2}-m^{2}\right) h_{a_{1} \ldots a_{J}}=0 \quad m^{2}=\Delta(\Delta-4)-J, \quad \Delta=\Delta(J)$

- For $J=2$ reproduce TT metric fluctuations

Equation for propagating mode in effective field theory

$$
\begin{gathered}
\left(\nabla^{2}-2 \dot{\Phi} \nabla_{z}+J \dot{A}^{2} e^{-2 A}-\Delta(\Delta-4)+\right. \\
+(J-2) e^{-2 A}\left[\left(\ddot{\Phi}+(b) \dot{\Phi}^{2}+(\square)\left(\ddot{A}-\dot{A}^{2}\right)\right]\right) h_{\alpha_{1} \ldots \alpha_{J}}=0 \\
\Delta(\Delta-4) \approx \underbrace{{\frac{2}{l_{s}^{2}}}_{\text {I }}(J-2)\left(1+(d) e^{-\Phi / 2}\right)}_{\begin{array}{c}
\text { IR described by } \\
\text { graviton trajectory }
\end{array}}+\underbrace{e^{-4 \Phi / 3}\left(J^{2}-4\right)}_{\begin{array}{c}
\text { UV free theory } \\
\text { unitarity bound }
\end{array}}
\end{gathered}
$$

Many Regge trajectories

- Consider 5D exchange of spin J field in the Regge limit

$$
\begin{aligned}
A_{J}(s, t)= & i V \frac{\kappa_{J} \kappa_{J}^{\prime}}{(-2)^{J}} s \int d z d z^{\prime} e^{3 A+3 A^{\prime}-\Phi-\Phi^{\prime}} \\
& \left|v_{1}\right|^{2}\left|v_{2}^{\prime}\right|^{2}\left(s e^{-A-A^{\prime}}\right)^{J-1} G_{J}\left(z, z^{\prime}, t\right)
\end{aligned}
$$

Many Regge trajectories

- Consider 5D exchange of spin J field in the Regge limit

$$
\begin{aligned}
A_{J}(s, t)= & i V \frac{\kappa_{J} \kappa_{J}^{\prime}}{(-2)^{J}} s \int d z d z^{\prime} e^{3 A+3 A^{\prime}-\Phi-\Phi^{\prime}} \\
& \left|v_{1}\right|^{2}\left|v_{2}^{\prime}\right|^{2}\left(s e^{-A-A^{\prime}}\right)^{J-1} G_{J}\left(z, z^{\prime}, t\right)
\end{aligned}
$$

$G_{J}\left(z, z^{\prime}, t\right)$ is the FT of integrated propagator

$$
G_{J}\left(z, z^{\prime}, l_{\perp}\right) \sim i e^{(1-J)\left(A+A^{\prime}\right)} \int d w^{+} d w^{-} \Pi_{+\ldots+.-\ldots-}\left(z, z^{\prime}, w\right)
$$

Many Regge trajectories

- Consider 5D exchange of spin J field in the Regge limit

$$
\begin{aligned}
A_{J}(s, t)= & i V \frac{\kappa_{J} \kappa_{J}^{\prime}}{(-2)^{J}} s \int d z d z^{\prime} e^{3 A+3 A^{\prime}-\Phi-\Phi^{\prime}} \\
& \left|v_{1}\right|^{2}\left|v_{2}^{\prime}\right|^{2}\left(s e^{-A-A^{\prime}}\right)^{J-1} G_{J}\left(z, z^{\prime}, t\right)
\end{aligned}
$$

$G_{J}\left(z, z^{\prime}, t\right)$ is the FT of integrated propagator

$$
G_{J}\left(z, z^{\prime}, l_{\perp}\right) \sim i e^{(1-J)\left(A+A^{\prime}\right)} \int d w^{+} d w^{-} \Pi_{+\cdots+.-\ldots-}\left(z, z^{\prime}, w\right)
$$

Reduces to a Schrodinger problem (spectral representation)

$$
G_{J}\left(z, z^{\prime}, t\right)=e^{\Phi-\frac{A}{2}+\Phi^{\prime}-\frac{A^{\prime}}{2}} \sum_{n} \frac{\psi_{n}(z) \psi_{n}^{*}\left(z^{\prime}\right)}{t_{n}(J)-t}
$$

- Sum over spin J exchanges in 5D dual theory $\sum_{J} \rightarrow \int \frac{d J}{\sin \pi J}$

$$
G_{J}\left(z, z^{\prime}, t\right)=e^{\Phi-\frac{A}{2}+\Phi^{\prime}-\frac{A^{\prime}}{2}} \sum_{n} \frac{\psi_{n}(z) \psi_{n}^{*}\left(z^{\prime}\right)}{t_{n}(J)-t}
$$

- Sum over spin J exchanges in 5D dual theory

$$
\sum_{J} \rightarrow \int \frac{d J}{\sin \pi J}
$$

$$
G_{J}\left(z, z^{\prime}, t\right)=e^{\Phi-\frac{A}{2}+\Phi^{\prime}-\frac{A^{\prime}}{2}} \sum_{n} \frac{\psi_{n}(z) \psi_{n}^{*}\left(z^{\prime}\right)}{t_{n}(J)-t}
$$

- At the end of the day, structure function is of the form

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n} g_{n} Q^{2 j_{n}(0)} \bar{P}_{13}\left(Q^{2}\right) x^{1-j_{n}(0)}
$$

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n} g_{n} Q^{2 j_{n}(0)} \bar{P}_{13}\left(Q^{2}\right) x^{1-j_{n}(0)}
$$

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n} g_{n} Q^{2 j_{n}(0)} \bar{P}_{13}\left(Q^{2}\right) x^{1-j_{n}(0)}
$$

- Dependence on virtual photon wave function

$$
\bar{P}_{13}\left(Q^{2}\right)=\int d z P_{13}\left(Q^{2}, z\right) e^{\left(1-j_{n}(0)\right) A(z)} e^{B(z)} \psi_{n}\left(j_{n}(0), z\right)
$$

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n} g_{n} Q^{2 j_{n}(0)} \bar{P}_{13}\left(Q^{2}\right) x^{1-j_{n}(0)}
$$

- Dependence on virtual photon wave function

$$
\bar{P}_{13}\left(Q^{2}\right)=\int d z P_{13}\left(Q^{2}, z\right) e^{\left(1-j_{n}(0)\right) A(z)} e^{B(z)} \psi_{n}\left(j_{n}(0), z\right)
$$

- Dependence on fixed target absorbed in coupling

$g_{n}=-2 \pi^{2} \frac{\kappa_{j_{n}(0)} \bar{\kappa}_{j_{n}(0)}}{2^{j_{n}(0)}} j_{n}^{\prime}(0) \int d z P_{24}\left(P^{2}, z\right) e^{\left(1-j_{n}(0)\right) A(z)} e^{B(z)} \psi_{n}^{*}\left(j_{n}(0), z\right)$

Test model agains low x DIS data from HERA

Truncated data to $x<0.01$ region.
Has 249 data points and large range in Q

$$
\left(0.1<Q^{2}<400 \mathrm{GeV}^{2}\right)
$$

Test model agains low x DIS data from HERA

Truncated data to $x<0.01$ region. Has 249 data points and large range in Q

$$
\left(0.1<Q^{2}<400 \mathrm{GeV}^{2}\right)
$$

Kept the first 4 Regge trajectories (up to intercept of meson trajectory that will also contribute)

5 parameters from spin J equation;
4 parameters from coupling of each pomeron

Test model agains low x DIS data from HERA

Truncated data to $x<0.01$ region. Has 249 data points and large range in Q

$$
\left(0.1<Q^{2}<400 \mathrm{GeV}^{2}\right)
$$

Kept the first 4 Regge trajectories (up to intercept of meson trajectory that will also contribute)

5 parameters from spin J equation;
4 parameters from coupling of each pomeron
Parameters fixed with $\chi^{2}=1.7$

Pomeron equation coefficients	coupling	Intercept
$a=-4.35$	$g_{0}=0.175$	$j_{0}=1.17$
$b=1.41$	$g_{1}=0.121$	$j_{1}=1.09$
$c=0.626$	$g_{2}=0.297$	$j_{2}=0.969$
$d=-0.117$	$g_{3}=-1.63$	$j_{3}=0.900$
$l_{s}=0.153 \mathrm{GeV}^{-1}$	-	-

- Reproduced long sought running of effective exponent

$$
\sigma \sim f(Q)\left(\frac{1}{x}\right)^{\epsilon_{e f f}(Q)}
$$

- consistent with universal behavior of soft pomeron 1.09 intercept observed for soft probes in elastic cross sections
- Reproduced long sought running of effective exponent

$$
\sigma \sim f(Q)\left(\frac{1}{x}\right)^{\epsilon_{e f f}(Q)}
$$

- consistent with universal behavior of soft pomeron 1.09 intercept observed for soft probes in elastic cross sections
- Regge trajectories consistent with lattice [Meyer 05] QCD glueball spectrum!

In green meson trajectories
Shape matches [Caron-Huot, Komargodski, Sever, Zhiboedov et al 16]

EMG current and Reggeon non-minimal coupling [Amorim, MSC, Quevedo 18]

- So far considered minimal coupling between $\mathrm{U}(1)$ gauge field and graviton trajectory. But for graviton perturbations in AdS there are two possible couplings

$$
\int d^{5} X \sqrt{-g} e^{-\Phi}\left(F_{a b} F^{a b}+\beta R_{a b c d} F^{a b} F^{c d}\right) \Longrightarrow F^{a c} F_{c}^{b} h_{a b}, \quad F^{a c} F^{b d} \nabla_{c} \nabla_{d} h_{a b}
$$

- So far considered minimal coupling between $\mathrm{U}(1)$ gauge field and graviton trajectory. But for graviton perturbations in AdS there are two possible couplings

$$
\int d^{5} X \sqrt{-g} e^{-\Phi}\left(F_{a b} F^{a b}+\beta R_{a b c d} F^{a b} F^{c d}\right) \Longrightarrow F^{a c} F_{c}^{b} h_{a b}, \quad F^{a c} F^{b d} \nabla_{c} \nabla_{d} h_{a b}
$$

- Generalized to spin J field in graviton Regge trajectory [Robert talk]

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n}\left(f_{n}^{\mathrm{MC}}\left(Q^{2}\right)+f_{n}^{\mathrm{NMC}}\left(Q^{2}\right)\right) x^{1-j_{n}}
$$

$f_{n}^{\mathrm{MC}}\left(Q^{2}\right)=g_{n} Q^{2 j_{n}} \int d z e^{-\left(j_{n}-\frac{3}{2}\right) A}\left(f_{Q}^{2}+\frac{\dot{f}_{Q}^{2}}{Q^{2}}\right) \psi_{n}$

$$
A_{\mu}^{\lambda}(X ; k)=n_{\mu}^{\lambda} f_{k}(z) e^{i k \cdot x}
$$

$f_{n}^{\mathrm{NMC}}\left(Q^{2}\right)=\tilde{g}_{n} Q^{2 j_{n}} \int d z e^{-\left(j_{n}-\frac{3}{2}\right) A}\left(f_{Q}^{2} \tilde{\mathcal{D}}_{\perp}+\frac{\dot{f}_{Q}^{2}}{Q^{2}} \tilde{\mathcal{D}}_{\|}\right) \psi_{n}$

- So far considered minimal coupling between $\mathrm{U}(1)$ gauge field and graviton trajectory. But for graviton perturbations in AdS there are two possible couplings

$$
\int d^{5} X \sqrt{-g} e^{-\Phi}\left(F_{a b} F^{a b}+\beta R_{a b c d} F^{a b} F^{c d}\right) \quad F^{a c} F_{c}^{b} h_{a b}, \quad F^{a c} F^{b d} \nabla_{c} \nabla_{d} h_{a b}
$$

- Generalized to spin J field in graviton Regge trajectory [Robert talk]

$$
F_{2}\left(x, Q^{2}\right)=\sum_{n}\left(f_{n}^{\mathrm{MC}}\left(Q^{2}\right)+f_{n}^{\mathrm{NMC}}\left(Q^{2}\right)\right) x^{1-j_{n}}
$$

$f_{n}^{\mathrm{MC}}\left(Q^{2}\right)=g_{n} Q^{2 j_{n}} \int d z e^{-\left(j_{n}-\frac{3}{2}\right) A}\left(f_{Q}^{2}+\frac{\dot{f}_{Q}^{2}}{Q^{2}}\right) \psi_{n}$

$$
A_{\mu}^{\lambda}(X ; k)=n_{\mu}^{\lambda} f_{k}(z) e^{i k \cdot x}
$$

$$
\left.f_{n}^{\mathrm{NMC}}\left(Q^{2}\right)=\tilde{g}_{n} Q^{2 j_{n}} \int d z e^{-\left(j_{n}-\frac{3}{2}\right) A}\left(f_{Q}^{2} \overparen{\mathbb{D}_{1}}\right)+\frac{\dot{f}_{Q}^{2}}{Q^{2}} \overparen{\mathbb{D}_{\|}}\right) \psi_{n}
$$

$$
\begin{array}{r}
\tilde{\mathcal{D}}_{\perp}=e^{-2 A}\left(\dot{A} \partial_{z}+\dot{A}^{2}+\dot{A} \dot{B}\right) \\
\tilde{\mathcal{D}}_{\|}=e^{-2 A}\left(\partial_{z}^{2}-(\dot{A}-2 \dot{B}) \partial_{z}+\ddot{B}+\ddot{A}+\dot{B}^{2}-\dot{A} \dot{B}\right)
\end{array}
$$

- Quality of fit improved significantly!

$$
\chi_{\text {d.o.f. }}^{2}=1.1
$$

- Quality of fit improved significantly!

$$
\chi_{\text {d.o.f. }}^{2}=1.1
$$

- Non-minimal coupling has dimensions and defines scale of $1-10 \mathrm{GeV}$. Matches order of magnitude of gap between spin 4 and 2 glueballs [CEMZ 14]

Concluding Remarks

Concluding Remarks

- Gauge/strings duality sheds light into long standing puzzle in QCD: the connection between hard and soft pomeron. They are just different Reggeons that arise form graviton Regge trajectory in dual 5D space.

Concluding Remarks

- Gauge/strings duality sheds light into long standing puzzle in QCD: the connection between hard and soft pomeron. They are just different Reggeons that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.

Concluding Remarks

- Gauge/strings duality sheds light into long standing puzzle in QCD: the connection between hard and soft pomeron. They are just different Reggeons that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.
- Include meson trajectories.

Concluding Remarks

- Gauge/strings duality sheds light into long standing puzzle in QCD: the connection between hard and soft pomeron. They are just different Reggeons that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.
- Include meson trajectories.
- Coupling of Pomeron to gluon jets.

Concluding Remarks

- Gauge/strings duality sheds light into long standing puzzle in QCD: the connection between hard and soft pomeron. They are just different Reggeons that arise form graviton Regge trajectory in dual 5D space.
- Test this picture against other processes such as DVCS and VMP.
- Include meson trajectories.
- Coupling of Pomeron to gluon jets.
- How generic are our results? Should try other holographic QCD models...

THANK YOU

