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Regge behaviour in QCD

• Hadronic resonances fall in 
linear trajectoriesChapter 1. Introduction

Figure 1.2: The Chew–Frautschi plot. Spin J of the isospin I = 1 even parity mesons against
their mass squared. (From reference [4])

String Theory was discovered forty years ago as an attempt to understand hadronic physics.

By that time, QCD and String Theory competed as models of the strong force. Of course, this

QCD/String dispute was decided long ago in favor of QCD. However, the modern viewpoint

replaces dispute by duality, and rephrases the main question: Is QCD a String Theory?

1.1 Hadronic Spectrum & Strings

Although the fundamental particles of QCD are quarks and gluons, the confinement mechanism

disallows their direct observation. Instead, the observed spectrum is characterized by a long

list of colorless bound states of the fundamental particles. Most of these bound states are

unstable and are found as resonances in scattering experiments. At the present day, we are still

unable to accurately predict the observed hadronic spectrum directly from the QCD dynamics1.

Nevertheless, from a phenomenological perspective, the hadronic spectrum has several inspiring

features.

In figure 1.2 we plot the spin J of the lighter mesons against their mass squared m2. The

result is well modeled by a linear Regge trajectory

J = α
(

m2
)

= α(0) + α′m2 ,

where α(0) and α′ are known as the intercept and the Regge slope, respectively. In fact, most

1See [2] and [3] and references therein for attempts using the lattice formulation of QCD and the AdS/CFT
correspondence.
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1.1. Hadronic Spectrum & Strings

Figure 1.3: Regge trajectory determined from the large energy (20–200 GeV ) behavior of the
differential cross section of the process π− + p → π0 + n. The straight line is obtained by
extrapolating the trajectory in figure 1.2. (From reference [4])

of the hadronic resonances fall on approximately linear Regge trajectories with slopes around

1(GeV )−2 and different intercepts. A linear relation between spin and mass squared suggests a

description of the bound states as string like objects rotating at relativistic speeds. Indeed, the

spin of a classical open string with tension T rotating as a straight line segment, with endpoints

traveling at the speed of light, is given by α′ = (2πT )−1 times its energy squared2.

A related stringy feature of QCD is the high energy behavior of scattering amplitudes.

Experimentally, at large center–of–mass energy
√

s, the hadronic scattering amplitudes show

Regge behavior

A(s, t) ∼ β(t)sα(t) ,

where t is the square of the momentum transferred. The appropriate Regge trajectory α(t)

that dominates a given scattering process is selected by the exchanged quantum numbers. For

example, the process

π− + p → π0 + n

is dominated by the exchange of isospin I = 1 even parity mesons, i. e. the Regge trajectory

in figure 1.2. In figure 1.3 we plot the Regge trajectory obtained from the behavior of the

differential cross section at large s. Elastic scattering is characterized by the exchange of the

vacuum quantum numbers. In this case the scattering amplitude is dominated by the Pomeron

2See section 2.1.3 of [5] for details.
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A(s, t) ⇠ �(t) s j(t)
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Figure 1.4: Total cross sections for elastic scattering at high energy. The cross sections rise
slowly due to pomeron exchange. (From reference [6])

trajectory[6, 4]

αP (t) ≃ 1, 08 + 0, 25 t , (GeV units) .

There is some evidence from lattice simulations that there are glueball states lying on this

trajectory starting from spin J = 2 [7, 8]. Furthermore, an even glueball state with spin 2

lying on the pomeron trajectory seems to have been found in experiments [9]. However, in real

QCD, glueball states mix with mesons and their identification is not clear [6]. An important

consequence of the pomeron intercept being larger than 1, is that hadrons effectively expand at

high energies. More precisely, the total cross section for elastic processes in QCD grows with

center–of–mass energy,

σ ∼ sαP (0)−1 ∼ s0.08 ,

as can be seen in figure 1.4. This expansion with energy reinforces the picture of hadrons as

stringlike objects. It is well known [10] that the average size of a fundamental string is given by

the divergent sum,

< R2 >∼ α′
∞
∑

n=1

1

n
,

coming from the contributions of zero point fluctuations of each string mode. However, in

a scattering experiment, only the modes with frequency smaller than the energy
√

s can be

4

�P � 1.08 + 0.25 t (GeV units)

[Landshoff-Donnachie]
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• Pomeron enters also in diffractive processes. For example DIS, where electron 
interacts with proton via exchange of off-shell photon

• Hadronic tensor W ab(x, Q, t) = i

�
d4y eiq·y⇤P |T{ja(y) jb(0)}|P ⇥⌅
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Is it the same Regge trajectory? One or two pomerons (soft and hard)?
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Hard Pomeron [BFKL - Balitsky, Fadin, Kuraev & Lipatov]

Two gluon exchange with ladder interactions

(�s ln 1/x)n
Resums                          contributions

Valid for hard probes                           (conformal limit) 
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• Breaking conformal symmetry, explains well DIS data outside the confining 
region [ Kowalski, Lipatov, Ross, Watt 10]Q > ⇤QCD
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• Perturbation theory will breakdown, 
even for small coupling, because there 
will be gluon saturation at very low x.

• AdS/CFT as starting point for pomeron physics 

Graviton Regge trajectory dual to pomeron trajectory [Brower, Polchinski, 
    Strassler, Tan 06]
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Eventually growth slows down (multi-pomeron, eikonal resummation)
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Summary so far

• QCD exhibits Regge behaviour. Elastic scattering (and related processes) 
dominated by exchange of pomeron Regge trajectory.

• Once dual description of pomeron well understood, can apply to low x physics 
in QCD starting from holographic QCD description, including confining region.
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ja =  ̄�a 
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y+y�

y1 y2

y3y4

• Regge kinematics is Lorentzian. Analytically continue from Euclidean theory 
(            ) to        on real axis.z̄ = z⇤ z, z̄

z̄

z

0 1

• Regge limit   

z, z̄ ! 0 with

z

z̄
fixed
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Constructed to match QCD perturbative beta function

Reproduces: heavy quark-antiquark linear potential; glueball spectrum from lattice simulations; 
thermodynamic properties of QGP (bulk viscosity, drag force and jet quenching parameters)
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Many Regge trajectories
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J

• Consider 5D exchange of spin J field in the Regge limit

AJ (s, t)

is the FT of integrated propagatorGJ(z, z
0, t)

GJ (z, z
0, l?) ⇠ i e(1�J)(A+A0)

Z
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Reduces to a Schrodinger problem (spectral representation)
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Test model agains low x DIS data from HERA

Truncated data to                 region. 
Has 249 data points and large range in Q  ⇣

0.1 < Q2 < 400 GeV2
⌘

x < 0.01

(GeV)2
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Test model agains low x DIS data from HERA

Kept the first 4 Regge trajectories 
(up to intercept of meson trajectory 
that will also contribute)

5 parameters from spin J equation; 
4 parameters from coupling of each pomeron

Truncated data to                 region. 
Has 249 data points and large range in Q  ⇣

0.1 < Q2 < 400 GeV2
⌘

x < 0.01

Parameters fixed with �2 = 1.7
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• Regge trajectories consistent with 
lattice               QCD glueball spectrum!

In green meson trajectories

[Meyer 05]

Shape matches [Caron-Huot, Komargodski, 
Sever, Zhiboedov et al 16]
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• Non-minimal coupling has dimensions 
and defines scale of 1-10 GeV. Matches 
order of magnitude of gap between spin 
4 and 2 glueballs [CEMZ 14]
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Concluding Remarks

• Include meson trajectories.

• Gauge/strings duality sheds light into long standing puzzle in QCD: the 
connection between hard and soft pomeron. They are just different Reggeons 
that arise form graviton Regge trajectory in dual 5D space. 

• Test this picture against other processes such as DVCS and VMP. 

• Coupling of Pomeron to gluon jets.

• How generic are our results? Should try other holographic QCD models...
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