A defect action for Wilson loops

Carlos Hoyos

Universidad de Oviedo

Holography and Extreme Chromodynamics
Santiago de Compostela,
July 2, 2018

Outline

- Introduction
- Effective action
- Circular Wilson loop
- Outlook
- A Wilson loop is the holonomy of the gauge field along a closed curve \mathcal{C}

$$
\left\langle W_{R}(\mathcal{C})\right\rangle=\left\langle\operatorname{Tr}_{R} \mathcal{P} e^{i \oint_{\mathcal{C}} A}\right\rangle
$$

- This can be generalized to closely related operators e.g. $\mathcal{N}=4$ 1/2-BPS loop

$$
\left\langle W_{B P S}(\mathcal{C})\right\rangle=\left\langle\operatorname{Tr}_{R} \mathcal{P} \exp \left(i \int d s\left(\dot{x}^{\mu} A_{\mu}+|\dot{x}| \phi^{i} \theta_{i}\right)\right)\right\rangle
$$

- Wilson loops are among the most fundamental observables in Yang-Mills theory

Holographic dual of a Wilson loop

- Two-dimensional surface $\sim A d S_{2}$ [Maldacena '98]

Holographic dual of a Wilson loop

- Dual of Wilson loop is a dynamical string \longrightarrow effective 1d theory? Connection to SYK models?

SYK $\quad 1 \mathrm{~d}$ fermions \rightarrow emergent 2d gravity
Wilson loop 1d effective theory $\xrightarrow{?} 2 d$ string

- Could be useful for semi-holographic phenomenology:
confining IR
asymptotically free UV 1d effective theory

Weak coupling calculation

A "brute-force" calculation of a Wilson loop can be quite involved

$$
\begin{gathered}
\langle W(\mathcal{C})\rangle=\operatorname{Tr}_{R}\left(1+i g \int d \tau \dot{x}^{\mu}(\tau)\left\langle A_{\mu}[x(\tau)]\right\rangle\right. \\
\left.+i^{2} g^{2} \int d \tau_{1} d \tau_{2} \dot{x}^{\mu}\left(\tau_{1}\right) \dot{x}^{\nu}\left(\tau_{2}\right)\left\langle A_{\mu}\left[x\left(\tau_{1}\right)\right] A_{\nu}\left[x\left(\tau_{2}\right)\right]\right\rangle \Theta\left(\tau_{1}-\tau_{2}\right)+\cdots\right)
\end{gathered}
$$

"Simple" and "complicated" diagrams at the same order Is there an organizing principle?

- A Wilson loop could also be seen as a defect or "impurity" with charged fields localized on it
- This is the case for $\mathcal{N}=4$ SYM BPS loops, that can be mapped to D-brane intersections [Gomis, Passerini ${ }^{\text {' }}{ }^{06]}$
- Antisymmetric: $D 5$ wrapping $S^{4} \subset S^{5}$
- Symmetric: $D 3$ wrapping $S^{2} \subset A d S_{5}$

- We can use actions of BPS loops directly as starting point
- Simplest case: fundamental representation of $(S) U(N)$
- Matter at the defect:
fermion in fundamental representation χ
Abelian $U(1)$ gauge field a_{τ}
- Action: $S_{\text {def }}=S_{W}+S_{C S}$

$$
\begin{gathered}
S_{W}=\int_{0}^{1} d \tau \chi^{\dagger} i\left(\partial_{\tau}-i a_{\tau}-i A_{\tau}\right) \chi, \quad A_{\tau}=\dot{x}^{\mu}(\tau) A_{\mu}[x(\tau)] \\
S_{C S}=\int_{0}^{1} d \tau k a_{\tau}, \quad k=-1
\end{gathered}
$$

- We can use actions of BPS loops directly as starting point
- Simplest case: fundamental representation of $(S) U(N)$
- Matter at the defect:
fermion in fundamental representation $\quad \chi$ Abelian $U(1)$ gauge field a_{τ}
- Action: $S_{\text {def }}=S_{W}+S_{C S}$

$$
\begin{gathered}
S_{W}=\int_{0}^{1} d \tau \chi^{\dagger} i\left(\partial_{\tau}-i a_{\tau}-i A_{\tau}\right) \chi, \quad A_{\tau}=\dot{x}^{\mu}(\tau) A_{\mu}[x(\tau)] \\
S_{C S}=\int_{0}^{1} d \tau\left(k a_{\tau}+\frac{1}{2} \operatorname{tr} A_{\tau}\right), \quad k=\frac{N}{2}-1
\end{gathered}
$$

- Proposal for expectation value of the Wilson loop

$$
\langle W(\mathcal{C})\rangle \stackrel{?}{=} \mathcal{N} \int \mathcal{D} A_{\mu} \mathcal{D} \Phi \mathcal{D} \chi \mathcal{D} \chi^{\dagger} \mathcal{D} a_{\tau} e^{i S_{Y M}\left[A_{\mu}, \Phi\right]+i S_{\mathrm{def}}}
$$

- Seems reasonable, but is it correct?
- Proposal for expectation value of the Wilson loop

$$
\langle W(\mathcal{C})\rangle \stackrel{?}{=} \mathcal{N} \int \mathcal{D} A_{\mu} \mathcal{D} \Phi \mathcal{D} \chi \mathcal{D} \chi^{\dagger} \mathcal{D} a_{\tau} e^{i S_{Y M}\left[A_{\mu}, \Phi\right]+i S_{\mathrm{def}}}
$$

- Seems reasonable, but is it correct?
- Most easily checked using Lorenz gauge on defect

$$
\partial_{\tau} a_{\tau}=0, \quad \partial_{\tau} A_{\tau}=0
$$

- Global $S U(N)$ transformation $\chi \rightarrow U \chi$,

$$
a_{\tau}=a_{0} \mathbb{1}, \quad A_{D}=U^{\dagger} A_{\tau} U=\operatorname{diag}\left(a_{1}, \cdots, a_{N}\right)
$$

- Integrating out the fermions

$$
\langle W(\mathcal{C})\rangle \stackrel{?}{=} \mathcal{N}\left\langle\int_{0}^{2 \pi} d a_{0} e^{i S_{C S}} \operatorname{det}\left(i \partial_{\tau}+a_{0}+A_{D}\right)\right\rangle
$$

Calculation of the determinant

- Expand in Fourier modes $\chi(\tau+1)=-\chi(\tau)$

$$
\chi(\tau)=\sum_{n=-\infty}^{\infty} e^{-2 \pi i\left(n+\frac{1}{2}\right) \tau} \chi_{n}
$$

- Using ζ-function regularization

$$
\operatorname{det}\left(i \partial_{\tau}+a_{\tau}+A_{\tau}\right)=e^{-i \frac{N}{2} a_{0}-\frac{i}{2} \sum_{j=1}^{N} a_{j}} \prod_{i=1}^{N}\left(1+e^{i a_{0}+i a_{i}}\right)
$$

Calculation of the determinant

- Expand in Fourier modes $\chi(\tau+1)=-\chi(\tau)$

$$
\chi(\tau)=\sum_{n=-\infty}^{\infty} e^{-2 \pi i\left(n+\frac{1}{2}\right) \tau} \chi_{n}
$$

- Using ζ-function regularization

$$
\operatorname{det}\left(i \partial_{\tau}+a_{\tau}+A_{\tau}\right)=\underbrace{e^{-i \frac{N}{2} a_{0}-\frac{i}{2} \sum_{j=1}^{N} a_{j}}}_{\text {cancels with } S_{C S}} \prod_{i=1}^{N}\left(1+e^{i a_{0}+i a_{i}}\right)
$$

$$
\langle W(\mathcal{C})\rangle \stackrel{?}{=} \mathcal{N}\left\langle\int_{0}^{2 \pi} d a_{0} e^{-i a_{0}} \prod_{i=1}^{N}\left(1+e^{i a_{0}+i a_{i}}\right)\right\rangle
$$

$$
\langle W(\mathcal{C})\rangle=\mathcal{N}\left\langle\int_{0}^{2 \pi} d a_{0} e^{-i a_{0}} \prod_{i=1}^{N}\left(1+e^{i a_{0}+i a_{i}}\right)\right\rangle=\mathcal{N}\left\langle\sum_{i=1}^{N} e^{i a_{i}}\right\rangle
$$

- Right formula up to the normalization
- Some subtleties in the gauge fixing: A_{μ} is defined on the whole spacetime

Constructing the effective action

- Rewrite the expectation value

$$
\langle W(\mathcal{C})\rangle=\int_{0}^{2 \pi} d a_{0} e^{i k a_{0}} \mathcal{D} \chi^{\dagger} \mathcal{D} \chi e^{i \tilde{S}_{W}}\left\langle e^{i \int d^{4} x J^{\mu} \cdot A_{\mu}}\right\rangle
$$

- Free defect action

$$
\tilde{S}_{W}=\int_{0}^{1} d \tau \chi^{\dagger} i\left(\partial_{\tau}-i a_{0}\right) \chi
$$

- $U(N)$ Current

$$
\begin{gathered}
J^{a \mu}(x)=\int_{0}^{1} d \tau \dot{x}^{\mu}(\tau) j^{a}(\tau) \delta^{(4)}(x-x(\tau)) \\
j^{a}(\tau)=\chi^{\dagger} T^{a} \chi+\frac{\sqrt{N}}{2 \sqrt{2}} \delta^{a 0}
\end{gathered}
$$

Constructing the effective action

- Interaction terms in defect action:

$$
\left\langle e^{i \int d^{4} x J^{\mu} \cdot A_{\mu}}\right\rangle=e^{i W[J]}
$$

$W[J]=$ Generating functional for external current J

- Renormalization scale μ such that $g \ll 1$
- Expansion in connected time-ordered correlators

$$
i W[J]=\frac{i^{2}}{2} \iint d^{4} x d^{4} y\left\langle T\left(A_{\mu}^{a}(x) A_{\nu}^{b}(y)\right)\right\rangle_{c} J^{a \mu}(x) J^{b \nu}(y)+\cdots
$$

Constructing the effective action

- Interaction terms in defect action: vertices of $U(N)$ defect currents

$$
i W[J]=\sum_{n=2}^{\infty} i W_{n}=\sum_{n=2}^{\infty} \frac{i^{n}}{n!} \int \prod_{i=1}^{n}\left(d \tau_{i} j^{a_{i}}\left(\tau_{i}\right)\right) K^{(n) a_{1} \cdots a_{n}}\left(\tau_{1}, \cdots, \tau_{n}\right)
$$

- Kernels: pullback of time-ordered correlators

$$
K^{(n) a_{1} \cdots a_{n}}\left(\tau_{1}, \cdots, \tau_{n}\right)=\dot{x}\left(\tau_{1}\right)^{\mu_{1}} \cdots \dot{x}\left(\tau_{n}\right)^{\mu_{n}} G_{\mu_{1} \cdots \mu_{n}}^{a_{1} \cdots a_{n}}\left(x\left(\tau_{1}\right), \cdots, x\left(\tau_{n}\right)\right)
$$

- Time-ordered correlators

$$
G_{\mu_{1} \cdots \mu_{n}}^{a_{1} \cdots a_{n}}\left(x_{1}, \cdots, x_{n}\right)=\left\langle T\left(A_{\mu_{1}}^{a_{1}}\left(x_{1}\right) \cdots A_{\mu_{n}}^{a_{n}}\left(x_{n}\right)\right)\right\rangle
$$

Leading order action

- To leading order, the 1PI action equals the classical action with renormalized couplings
- For a small Wilson loop $\mu=1 / L \Rightarrow$ weak coupling expansion valid for $g(1 / L) \ll 1$
- Propagator in R_{ξ} gauge

$$
G_{\mu \nu}\left(x_{12}\right)=\underbrace{\frac{g^{2}}{8 \pi^{2}\left|x_{12}\right|^{2}}\left[(1+\xi) \eta_{\mu \nu}-2(\xi-1) \frac{\left(x_{12}\right)_{\mu}\left(x_{12}\right)_{\nu}}{\left|x_{12}\right|^{2}}\right]}_{\text {"classical" }}+O\left(g^{4}\right)
$$

- Then, to $O\left(g^{2}\right)$ the effective action has a quartic fermion interaction

$$
S_{\mathrm{def}}=\int d \tau \chi^{\dagger} i\left(\partial_{\tau}-i a_{0}\right) \chi+\frac{i}{2} \int d \tau_{1} d \tau_{2} j^{a_{1}}\left(\tau_{1}\right) j^{a_{2}}\left(\tau_{2}\right) K_{\mathrm{cl}}^{(2) a_{1} a_{2}}\left(\tau_{1}, \tau_{2}\right)
$$

Divergences

- The two-current kernel has a divergence linear in the UV cutoff Λ

$$
S_{\mathrm{def}} \simeq(3-\xi) \Lambda \frac{i g^{2}}{4 \pi^{2}} \int d \tau e j^{a}(\tau) j^{a}(\tau), \quad e=|\dot{x}|
$$

- Can be removed by a local counterterm
- Divergence is absent in Yennie gauge $\xi=3$
- Analogous to BPS loops: divergence absent in Feynman gauge $\xi=1$ due to cancellations between gauge fields and scalars
[Drukker, Gross, Ooguri '99,Erickson, Semenoff, Zarembo '00]
- Wilson loops have only linear divergences (once the couplings are renormalized)

$$
\langle W(\mathcal{C})\rangle \sim e^{-\Lambda L}
$$

[Polyakov '80; Gervais, Neveu '80; Dotsenko, Vergeles '80]

- Effective action finite to all orders in Yennie gauge (?)

Divergences

- Divergences appear when endpoints of propagators at the Wilson loop become coincident
- One can argue that the leading divergence (all points coincident) always vanishes
- Bosonic symmetry
- Antisymmetric color structure
- Kernel at coincident points

$$
K^{(n)}=\underbrace{\dot{x}^{\mu_{1}} \cdots \dot{x}^{\mu_{1}}}_{\text {symmetric }} \underbrace{G_{\mu_{1} \cdots \mu_{n}}}_{\text {antisymmetric }} \rightarrow 0
$$

- Explicit check: subleading (log) divergences cancel at $O\left(g^{4}\right)$

What makes Yennie gauge special?

- Yennie gauge characterized for its IR finiteness: In QED wavefunction renormalization is IR finite
- Why does it remove UV divergence in Wilson loop?

The Yennie propagator is transvere to the separation vector

$$
x_{12}^{\mu} G_{\mu \nu}^{\xi=3}\left(x_{12}\right)=0
$$

This implies covariance under inversion

$$
\begin{gathered}
x_{12}^{\mu} \longrightarrow \frac{x_{12}^{\mu}}{\left(x_{12}\right)^{2}} \\
G_{\mu \nu}^{\xi} \longrightarrow \underbrace{\left(x_{12}\right)^{2} G_{\mu \nu}^{\xi=3}}_{\text {Yennie gauge propagator }}+\underbrace{\frac{\xi-3}{8 \pi^{2}} \eta_{\mu \nu}}_{\text {anomalous }}
\end{gathered}
$$

What makes Yennie gauge special?

Finite in Yennie gauge

Circular Wilson loop

- Spatial Wilson loop defined on a circle of radius R

$$
x^{\mu}=(0, R \cos (2 \pi \tau), R \sin (2 \pi \tau), 0)
$$

- Two-current kernel in Yennie gauge

$$
K^{(2) a_{1} a_{2}}=-\frac{g^{2}}{2} \delta^{a_{1} a_{2}}
$$

- Four-fermion interaction factorizes

$$
i W_{2}=\frac{g^{2}}{4}\left(\int d \tau j^{a}(\tau)\right)^{2}
$$

The interaction becomes "topological"

Circular Wilson loop

- Write the interaction in terms of a Hermitian matrix integral

$$
\begin{aligned}
e^{i W_{2}} & =\int[d \Sigma] \delta[\Sigma-\mathcal{O}] e^{-\frac{1}{4}\left(\operatorname{tr}\left(T^{a} \Sigma\right)\right)^{2}} \\
\mathcal{O}_{i j} & =(i g) \int d \tau\left(\chi_{i}^{\dagger} \chi_{j}+\frac{1}{2} \delta_{i j}\right)
\end{aligned}
$$

(This is for $U(N)$, generalization to $S U(N)$ is straightforward)

- Introduce a second Hermitian matrix for the delta

$$
\delta[\Sigma-\mathcal{O}]=\int[d M] e^{-i M_{i j}\left(\Sigma_{i j}-\mathcal{O}_{i j}\right)}
$$

- Integral for Σ is Gaussian and can be done trivially

$$
e^{i W_{2}}=\int[d M] e^{-g \int d \tau \chi^{\dagger} M \chi-2 \operatorname{tr} M^{2}-\frac{g}{2} \operatorname{tr} M}
$$

Circular Wilson loop

- Integrating out the fermions

$$
\langle W(R)\rangle=\mathcal{N} \int_{0}^{2 \pi} d a_{0} e^{i k a_{0}} \int[d M] \operatorname{det}\left(i \partial_{\tau}+a_{0}+i g M\right) e^{-2 \operatorname{tr} M^{2}-\frac{g}{2} \operatorname{tr} M}
$$

- Evaluating the determinant and doing the integral over a_{0}, $M=\operatorname{diag}\left(M_{1}, \cdots, M_{N}\right)$

$$
\begin{gathered}
\langle W(R)\rangle=\mathcal{N} \int\left(\prod_{i=1}^{N} d M_{i}\right) \Delta^{2}(M)\left(\sum_{i=1}^{N} e^{-g M_{i}}\right) e^{-2 \sum_{j=1}^{N} M_{j}^{2}} \\
\Delta^{2}(M)=\prod_{i<j}\left(M_{i}-M_{j}\right)^{2}
\end{gathered}
$$

- Same as the exact result of $\mathcal{N}=4$ SYM $1 / 2$-BPS loop!

[^0]
Outlook

- Map to holographic 2d string description
- NLO corrections: vertices and renormalization effects
- Effective theories for loops in different representations
- Large- N analysis
- Unbounded curves: straight line and accelerated particle
- Cusps: anomalus dimensions, connection with scattering amplitudes

[^0]: [Erickson, Semenoff, Zarembo '00; Drukker, Gross '00; Pestun '07]

