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The cross-section for inclusive φ meson production in pp collisions at a centre-of-mass energy of√
s = 7 TeV has been measured with the LHCb detector at the Large Hadron Collider. The differential

cross-section is measured as a function of the φ transverse momentum pT and rapidity y in the region
0.6 < pT < 5.0 GeV/c and 2.44 < y < 4.06. The cross-section for inclusive φ production in this kinematic
range is σ(pp → φ X) = 1758 ± 19(stat)+43

−14(syst) ± 182(scale) μb, where the first systematic uncertainty
depends on the pT and y region and the second is related to the overall scale. Predictions based on the
Pythia 6.4 generator underestimate the cross-section.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Two specific regimes can be distinguished in hadron produc-
tion in pp collisions: the so-called hard regime at high trans-
verse momenta, which can be described by perturbative QCD; and
the soft regime, which is described by phenomenological mod-
els. The underlying event in pp processes falls into the second
category. Therefore soft QCD interactions need careful study to
enable tuning of the models at a new centre-of-mass energy.
Strangeness production is an important ingredient of this effort.
Measurements of φ production have been reported by various ex-
periments [1–7] in different collision types, for different centre-
of-mass energies and different kinematic coverage. LHCb is fully
instrumented in the forward region and thus yields unique results
complementary to previous experiments and to the other LHC ex-
periments.

A measurement of the inclusive differential φ cross-section in
pp collisions at

√
s = 7 TeV is presented in this Letter. The anal-

ysis uses as kinematic variables the φ meson transverse momen-
tum pT and the rapidity y = 1

2 ln[(E + pz)/(E − pz)] measured in
the pp centre-of-mass system.1 φ mesons are reconstructed using
the K+K− decay mode and thus the selection relies strongly on
LHCb’s RICH (Ring Imaging Cherenkov) detectors for particle iden-
tification (PID) purposes. Their performance is determined from
data with a tag-and-probe approach. The measured cross-section
is compared to two different Monte Carlo (MC) predictions based
on Pythia 6.4 [8].

✩ © CERN, for the benefit of the LHCb Collaboration.
1 The detector reference frame is a right handed coordinate system with +z

pointing downstream from the interaction point in the direction of the spectrome-
ter and the +y axis pointing upwards.

2. LHCb detector and data set

Designed for precise measurements of B meson decays, the
LHCb detector is a forward spectrometer with a polar angle cover-
age with respect to the beam line of approximately 15–300 mrad
in the horizontal bending plane, and 15–250 mrad in the verti-
cal non-bending plane. The tracking system consists of the Vertex
Locator (VELO) surrounding the pp interaction region, a tracking
station upstream of the dipole magnet, and three tracking stations
downstream of the magnet.

Particles travelling from the interaction region to the down-
stream tracking stations are deflected by a dipole field of around
4 Tm, whose polarity can be switched. For this study, roughly
the same amount of data was taken with both magnet polari-
ties.

The detector has a dedicated PID system that includes two Ring
Imaging Cherenkov detectors. RICH1 is installed in front of the
magnet and uses two radiators (Aerogel and C4F10), and RICH2
is installed beyond the magnet, with a CF4 radiator. Combining
all radiators, the RICH system provides pion-kaon separation in a
momentum range up to 100 GeV/c. Downstream of the tracking
stations the detector has a calorimeter system, consisting of the
Scintillating Pad Detector (SPD), a preshower, the electromagnetic
and the hadronic calorimeter, and five muon stations. Details of
the LHCb detector can be found in Ref. [9].

The study described in this note is based on an integrated lumi-
nosity of 14.7 nb−1 of pp collisions collected in May 2010, where
the instantaneous luminosity was low.

The trigger system consists of a hardware based first level trig-
ger and a high level trigger (HLT) implemented in software. The
first level trigger was in pass-through mode, whereas at least one
track, reconstructed with VELO information, was required to be
found by the HLT. On Monte Carlo simulated events, this trigger
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Fig. 1. Fit to the tag (left) and the probe (right) sample in the bin 0.6 < pT < 0.8 GeV/c, 3.34 < y < 3.52 for one of the two magnet polarities. Shown are the data points,
the fit result (thick solid line) as well as the signal (thin solid line) and the background component (dash-dotted line).
configuration is found to be 100% efficient for reconstructed φ can-
didates. However, to limit the acquisition rate, a prescaling was
applied.

The luminosity was measured by two van der Meer scans [10]
and a novel method measuring the beam geometry with the VELO,
as described in Ref. [11]. Both methods rely on the measurement
of the beam currents as well as the beam profile determination.
Using these results, the absolute luminosity scale is determined,
using the method described in Ref. [12], with a 3.5% uncertainty,
dominated by the knowledge of the beam currents. The instan-
taneous luminosity determination is then based on a continuous
recording of the hit rate in the SPD, which has been normalized
to the absolute luminosity scale. The probability for multiple pp
collisions per bunch-crossing was negligibly low in the data taking
period considered here.

As the RICH detectors are calibrated separately for the two
magnet polarities, the measurement is carried out separately for
each sample before combining them for the final result.

Trigger and reconstruction efficiencies are determined using a
sample of 1.25 · 108 simulated minimum bias events. These have
been produced in the LHCb MC setting, which is based on a custom
Pythia tune for the description of pp collisions, while particle de-
cays are generally handled by EvtGen [13]. The total minimum bias
cross-section in LHCb MC simulation is 91.05 mb, composed of the
following Pythia process types: 48.80 mb inelastic-non-diffractive,
2 × 6.84 mb single diffractive, 9.19 mb double diffractive and
19.28 mb elastic. Details on the LHCb MC setting can be found
in Ref. [14].

3. Data selection and efficiencies

Two oppositely charged tracks, each of which are required to
have hits in both the VELO and the main tracking system, are com-
bined to form φ → K +K − candidates. The RICH system provides
kaon-pion separation for reconstructed tracks, which is crucial for
the inclusive φ production analysis. As a first step, at least one
kaon is required to pass a tight cut based on the RICH response
during the selection. In a second step, both kaons have to pass
this criterion. The samples of φ candidates passing the cuts of the
first and second steps are referred to as “tag” and “probe” sam-
ples, respectively. They are used to measure the PID efficiency in
the selection as explained below. The reconstructed K +K − mass
is required to be between 995 MeV/c2 and 1045 MeV/c2 in both
samples.

No cut designed to discriminate prompt and non-prompt φ

mesons is applied in the selection, so the measurement includes

both. However, due to the high minimum bias cross-section com-
pared to charm or beauty production, the non-prompt contribution
is small; in MC simulation it is found to be 1.6%.

The region of interest 0.6 < pT < 5.0 GeV/c and 2.44 < y <

4.06 is divided into 9 bins in y and 12 bins in pT . The differential
cross-section per bin in pT and y is determined by the equation:

d2σ

dy dpT
= 1

�y �pT
· Ntag

L · εreco · εpid · B(φ → K+K−)
, (1)

where Ntag is the number of reconstructed φ candidates in the tag
sample, L the integrated luminosity and B(φ → K+K−) = (49.2 ±
0.6)% the branching fraction taken from Ref. [15]. The selection
efficiency is split up into two parts in Eq. (1): reconstruction εreco,
including the geometrical acceptance, and the PID efficiency εpid.
Both efficiencies are a function of the pT and y values of the φ

meson and thus determined separately for each bin.
In the centre of the kinematic region, the reconstruction effi-

ciency is of the order of 65–70%. It drops to 30–40% with low
transverse momenta and high or low rapidity values. The PID ef-
ficiency is above 95% in the centre of the kinematic region and
drops to 60–70% at the edges of the considered kinematic region.

The reconstruction efficiency is determined from simulation. To
limit the MC dependence, the PID efficiency is determined from
data using the tag-and-probe method: in the φ selection, at least
one of the two kaons is required to pass the PID criterion. The
number of φ candidates passing this requirement is given by Ntag.
In a subsequent step, both kaons must pass the PID criterion. The
number of φ candidates passing this step is given by Nprobe. The
efficiency εpid that at least one of the two kaons from a φ can-
didate fulfils the kaon PID requirement for each bin is thus given
by:

εpid = 1 −
(

Ntag − Nprobe

Ntag + Nprobe

)2

. (2)

This formula is valid only if the efficiencies that the two kaons
satisfy the requirements are independent. However, owing to the
variation of the RICH efficiency with track multiplicity, corre-
lations between the values of the discriminant variable of the
RICH are observed and are accounted for in the systematic uncer-
tainty.

4. Signal extraction

Simultaneous maximum likelihood fits to the φ candidate mass
distributions on the tag and the probe samples are performed
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Fig. 2. Inclusive differential φ production cross-section as a function of pT (top)
and y (bottom), measured with data (points), and compared to the LHCb default
MC tuning (solid line) and Perugia 0 tuning (dashed line). The error bars represent
the statistical uncertainty, the braces show the bin dependent systematic errors, the
overall scale uncertainty from Table 1 is not plotted. The lower parts of the plots
show the ratio data cross-section over Monte Carlo cross-section. Error bars in the
ratio plots show statistical uncertainties only.

in each bin of pT and y to extract the signal yields. The num-
ber of reconstructed candidates without PID requirements Nreco =
Ntag/εpid is a free parameter in the fit. A Breit–Wigner distribution
convolved with a Gaussian resolution function is used to describe
the signal shape

fsig = 1

(m − m0)2 + 1
4 Γ 2/c4

⊗ exp

(
−1

2

m′2

σ 2

)
(3)

while the background shape is described by

fbkg = 1 − exp
(
c1 · (m − c2)

)
(4)

containing two free parameters.
The fitted φ mass and the Gaussian width σ are common pa-

rameters for both tag and probe sample, while the Breit–Wigner
width Γ is fixed to the value 4.26 MeV taken from Ref. [15]. In
Fig. 1, fit results to the two samples in a given pT /y bin are shown
for illustration purposes.

5. Systematic uncertainties

The uncertainties in this analysis are dominated by system-
atic contributions, divided into the ones which are common to all
bins and the ones which vary from bin to bin. The former are
Table 1
Summary of relative systematic uncertainties
that are common to all bins.

Source (%)

Tracking efficiency 8
Luminosity (normalization) 4
Track multiplicity 3
Fit systematics 3
MC association 2
Doubly identified candidates 2
Branching fraction 1
Bin migration 1
Material interactions 1

Total 10

Table 2
Binned differential cross-section, in μb/MeV/c, as function of pT (GeV/c) and y.
The statistical and the bin-dependent systematic uncertainties are quoted. There is
an additional bin-independent uncertainty of 10% related to the normalization (Ta-
ble 1).

pT /y 2.44–2.62 2.62–2.80 2.80–2.98

0.6–0.8 1.001 ± 0.140+0.076
−0.026 0.853 ± 0.114+0.081

−0.022 1.069 ± 0.108+0.093
−0.027

0.8–1.0 0.959 ± 0.112+0.129
−0.015 0.797 ± 0.084+0.074

−0.012 0.819 ± 0.079+0.053
−0.012

1.0–1.2 0.758 ± 0.043+0.089
−0.009 0.776 ± 0.038+0.063

−0.009 0.795 ± 0.026+0.042
−0.009

1.2–1.4 0.648 ± 0.033+0.067
−0.009 0.627 ± 0.028+0.049

−0.008 0.604 ± 0.026+0.024
−0.008

1.4–1.6 0.469 ± 0.023+0.037
−0.008 0.511 ± 0.022+0.033

−0.008 0.521 ± 0.022+0.023
−0.008

1.6–1.8 0.422 ± 0.020+0.039
−0.008 0.381 ± 0.017+0.021

−0.007 0.409 ± 0.018+0.015
−0.007

1.8–2.0 0.334 ± 0.016+0.027
−0.007 0.323 ± 0.015+0.014

−0.007 0.276 ± 0.012+0.009
−0.005

2.0–2.4 0.209 ± 0.008+0.010
−0.004 0.192 ± 0.007+0.006

−0.003 0.201 ± 0.007+0.003
−0.003

2.4–2.8 0.127 ± 0.005+0.003
−0.003 0.112 ± 0.005+0.002

−0.003 0.111 ± 0.004+0.002
−0.002

2.8–3.2 0.078 ± 0.004+0.002
−0.002 0.069 ± 0.003+0.002

−0.002 0.063 ± 0.003+0.002
−0.002

3.2–4.0 0.040 ± 0.002+0.001
−0.001 0.038 ± 0.002+0.001

−0.001 0.034 ± 0.001+0.001
−0.001

4.0–5.0 0.014 ± 0.001+0.001
−0.001 0.014 ± 0.001+0.001

−0.000 0.011 ± 0.001+0.000
−0.000

pT /y 2.98–3.16 3.16–3.34 3.34–3.52

0.6–0.8 1.171 ± 0.100+0.058
−0.029 1.060 ± 0.092+0.027

−0.043 1.131 ± 0.146+0.029
−0.176

0.8–1.0 1.032 ± 0.080+0.049
−0.015 0.862 ± 0.080+0.014

−0.013 1.170 ± 0.082+0.018
−0.058

1.0–1.2 0.818 ± 0.034+0.031
−0.009 0.851 ± 0.033+0.010

−0.010 0.781 ± 0.031+0.009
−0.009

1.2–1.4 0.648 ± 0.026+0.016
−0.008 0.693 ± 0.026+0.009

−0.008 0.661 ± 0.023+0.011
−0.008

1.4–1.6 0.484 ± 0.019+0.013
−0.006 0.499 ± 0.018+0.009

−0.007 0.470 ± 0.017+0.013
−0.006

1.6–1.8 0.408 ± 0.016+0.008
−0.007 0.382 ± 0.015+0.008

−0.006 0.348 ± 0.013+0.009
−0.005

1.8–2.0 0.320 ± 0.014+0.006
−0.007 0.308 ± 0.008+0.009

−0.006 0.255 ± 0.010+0.009
−0.004

2.0–2.4 0.206 ± 0.006+0.004
−0.004 0.194 ± 0.006+0.006

−0.003 0.169 ± 0.005+0.005
−0.003

2.4–2.8 0.109 ± 0.004+0.003
−0.002 0.106 ± 0.004+0.003

−0.002 0.106 ± 0.004+0.005
−0.002

2.8–3.2 0.065 ± 0.003+0.002
−0.002 0.057 ± 0.003+0.002

−0.001 0.053 ± 0.003+0.003
−0.001

3.2–4.0 0.031 ± 0.001+0.001
−0.001 0.029 ± 0.001+0.001

−0.001 0.025 ± 0.002+0.001
−0.001

4.0–5.0 0.010 ± 0.001+0.001
−0.000 0.010 ± 0.001+0.000

−0.000 0.009 ± 0.001+0.000
−0.000

pT /y 3.52–3.70 3.70–3.88 3.88–4.06

0.6–0.8 1.341 ± 0.158+0.034
−0.207 1.164 ± 0.157+0.030

−0.065 1.341 ± 0.193+0.120
−0.036

0.8–1.0 0.816 ± 0.075+0.013
−0.035 1.065 ± 0.075+0.018

−0.059 0.975 ± 0.115+0.018
−0.070

1.0–1.2 0.785 ± 0.032+0.010
−0.012 0.690 ± 0.031+0.010

−0.011 0.760 ± 0.039+0.013
−0.039

1.2–1.4 0.609 ± 0.023+0.012
−0.008 0.561 ± 0.022+0.010

−0.008 0.531 ± 0.027+0.012
−0.010

1.4–1.6 0.484 ± 0.018+0.016
−0.007 0.433 ± 0.017+0.011

−0.007 0.409 ± 0.021+0.016
−0.008

1.6–1.8 0.336 ± 0.013+0.008
−0.006 0.315 ± 0.014+0.011

−0.006 0.279 ± 0.014+0.011
−0.006

1.8–2.0 0.231 ± 0.010+0.006
−0.004 0.228 ± 0.011+0.009

−0.005 0.213 ± 0.011+0.007
−0.005

2.0–2.4 0.164 ± 0.005+0.007
−0.003 0.140 ± 0.005+0.006

−0.002 0.131 ± 0.006+0.003
−0.003

2.4–2.8 0.082 ± 0.002+0.004
−0.002 0.078 ± 0.004+0.003

−0.002 0.070 ± 0.004+0.004
−0.002

2.8–3.2 0.059 ± 0.003+0.004
−0.002 0.049 ± 0.003+0.002

−0.001 0.039 ± 0.003+0.006
−0.001

3.2–4.0 0.022 ± 0.001+0.001
−0.001 0.019 ± 0.001+0.002

−0.000 0.022 ± 0.002+0.003
−0.001

+0.001 +0.001 +0.000
4.0–5.0 0.008 ± 0.001−0.000 0.007 ± 0.001−0.000 0.007 ± 0.002−0.002
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summarized in Table 1, whereas the latter are plotted with the
data in Fig. 2 and listed in Table 2. The bin-dependent uncertain-
ties consist of the reconstruction efficiency uncertainty due to the
limited simulation sample size and to the modelling of a diffrac-
tive contribution, as well as the uncertainty of the tag-and-probe
PID determination due to correlations. The combined uncertainties
contribute 3–7% for the statistically dominant bins.

The largest shared systematics are the uncertainty on the track-
ing efficiencies, which have been discussed in Ref. [16], and the
luminosity normalization. The track multiplicity in data is higher
than in the simulation. Studies of the track multiplicity depen-
dence of the reconstruction efficiency result in an uncertainty of
3% due to this multiplicity difference.

Two major effects contribute to the uncertainty due to the fit
procedure. Fixing the Gaussian width to the same value on tag-
and-probe sample introduces only a 1% systematic uncertainty,
since the distribution is dominated by the Breit–Wigner width.
A larger systematic effect (2–3%) is observed when varying the
mass range of the fit, which results in a total uncertainty of 3%.

In the simulation, the reconstructed track is required to match
the true generated track to determine the reconstruction efficiency.
A 2% uncertainty is assigned due to this procedure. A small frac-
tion of doubly identified candidates is found: it is possible that
the detector hits from one particle are reconstructed as more than
one track. The rate difference of these doubly identified candidates
between data and simulation is found to be 2%, which is the sys-
tematic uncertainty assigned due to this effect. The φ → K +K −
branching fraction contributes a 1% systematic uncertainty. Migra-
tion of candidates between different bins due to resolution ef-
fects is found to be small, and is accounted for by assigning a
1% uncertainty. Uncertainties from the modelling of the material
budget and the material interaction cross-section are estimated to
be 1%.

6. Results

The cross-sections determined with the two magnet polarities
agree within their statistical uncertainties. All results given here
are unweighted averages of the two samples. Comparisons to sim-
ulation samples generated with two different Pythia tunings are
made, namely Perugia 0 [17] and the LHCb default Monte Carlo
tuning.

The integrated cross-section in the region 0.6 < pT < 5.0 GeV/c
and 2.44 < y < 4.06 is

σ(pp → φ X) = 1758 ± 19(stat)+43
−14(syst) ± 182(scale) μb,

where the first systematic uncertainty arises from the bin-depend-
ent contribution, while the second one is the common systematic
uncertainty, as described in Section 5. The differential cross-section
values are given in Table 2 and projections on the y and pT axes
within the same kinematic region are shown in Fig. 2.

The simulations underestimate the measured φ production in
the considered kinematic region by a factor 1.43 ± 0.15 (LHCb
MC) and 2.06 ± 0.22 (Perugia 0). Additionally, the shape of the
pT spectrum and the slope in the y spectrum differ between
the data and the simulation (see Fig. 2). Fitting a straight line
dσ

dy
= a · y + b to the y spectrum, the slope is a = −44 ± 27 μb

on data, but a = −181 ± 2 μb for the default LHCb MC tuning and
a = −149 ± 3 μb for the Perugia 0 tuning. Uncertainties given on a
are statistical only.

The mean pT in the range 0.6 < pT < 5.0 GeV/c is 1.24 ±
0.01 GeV/c (data, stat. error only), 1.077 GeV/c (LHCb MC) and
1.238 GeV/c (Perugia 0 MC).

7. Conclusions

A study of inclusive φ production in pp collisions at a centre-
of-mass energy of 7 TeV at the Large Hadron Collider is reported.
The differential cross-section as a function of pT and y mea-
sured in the range 0.6 < pT < 5.0 GeV/c and 2.44 < y < 4.06 is
σ(pp → φ X) = 1758±19(stat)+43

−14(syst)±182(scale) μb, where the
first systematic uncertainty depends on the pT and y scale and
the second is related to the overall scale. Predictions based on the
Pythia 6.4 generator underestimate the cross-section.
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