
Detecting photon-photon scattering in vacuum at exawatt lasers

Daniele Tommasini,1 Albert Ferrando,2 Humberto Michinel,1 and Marcos Seco3

1Departamento de Física Aplicada, Universidade de Vigo, As Lagoas E-32004 Ourense, Spain
2Interdisciplinary Modeling Group, InterTech., Departament d’Òptica, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot

(València), Spain
and IUMPA, Universitat Politècnica de València, E-46022 València, Spain

3Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
�Received 1 February 2008; published 1 April 2008�

In a recent paper, we have shown that the QED nonlinear corrections imply a phase correction to the linear
evolution of crossing electromagnetic waves in vacuum. Here, we provide a more complete analysis, including
a full numerical solution of the QED nonlinear wave equations for short-distance propagation in a symmetric
configuration. The excellent agreement of such a solution with the result that we obtain using our perturba-
tively motivated variational approach is then used to justify an analytical approximation that can be applied in
a more general case. This allows us to find the most promising configuration for the search of photon-photon
scattering in optics experiments. In particular, we show that our previous requirement of phase coherence
between the two crossing beams can be released. We then propose a very simple experiment that can be
performed at future exawatt laser facilities, such as ELI, by bombarding a low power laser beam with the
exawatt bump.
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I. INTRODUCTION

Radiative corrections in quantum electrodynamics �QED�
have been studied for 70 years, both theoretically and experi-
mentally �1�. Nevertheless, in the last decade they have
gained an increasing interest, following the extraordinary ad-
vancements in the fields of quantum and nonlinear optics. On
one hand, it has been noted that a fundamental uncertainty in
the number of photons is unavoidably generated by QED
radiative corrections �2�, eventually competing with the ex-
perimental errors. On the other hand, the interchange of vir-
tual electron-positron pairs can produce classically forbidden
processes such as photon-photon scattering in vacuum.

Although it is a firm prediction of QED, photon-photon
scattering in vacuum has not yet been detected, not even
indirectly. The rush for its discovery is then wide open. A
hammer strategy will be to build a photon-photon collider
�3�, based on an electron laser producing two beams of pho-
tons in the MeV range �i.e., having wavelengths in the range
of a few fm�. This will maximize the cross section for the
process. A second approach will be to perform experiments
using ultrahigh power optical lasers, such as those that will
be available in the near future �8�, in such a way that the high
density of photons will compensate the smallness of the
cross section. In this case, the photon energies are well below
the electron rest energy, and the effect of photon-photon col-
lisions due to the interchange of virtual electron-positron
pairs can be expressed in terms of the effective Euler-
Heisenberg nonlinear Lagrangian �4,5�. This modifies Max-
well’s equations for the average values of the electromag-
netic quantum fields �6� and affects the properties of the
QED vacuum �7�.

Ultraintense photon sources are available thanks to the
discovery of chirped pulse amplification �CPA� �9� in the late
1980s and optical parametric chirped pulse amplification
�OPCPA� �10� in the 1990s. These techniques opened the

door to a field of research in the boundary between optics
and experimental high-energy physics, where lots of novel-
ties are expected to come in the next years. In fact, several
recent works propose different configurations that can be
used to test the nonlinear optical response of the vacuum,
e.g., using harmonic generation in an inhomogeneous mag-
netic field �11�, QED four-wave mixing �12�, resonant inter-
actions in microwave cavities �13�, or QED vacuum birefrin-
gence �14� which can be probed by x-ray pulses �15�, among
others �16�.

In a recent paper �17�, we have shown that photon-photon
scattering in vacuum implies a phase correction to the linear
evolution of crossing electromagnetic waves, and we have
suggested an experiment for measuring this effect in pro-
jected high-power laser facilities like the European Extreme
Light Infrastructure �ELI� project �18� for near infrared �IR�
radiation. Here, we provide a more complete analysis, in-
cluding a full numerical solution of the QED nonlinear wave
equations for short-distance propagation in a symmetric con-
figuration. The excellent agreement of such a solution with
the result that we obtain using a perturbatively motivated
variational approach is then used to justify an approximation
that can be applied in a more general case. This allows us to
find the most promising configuration for the search of
photon-photon scattering in optics experiments. In particular,
we show that our previous requirement of phase coherence
between the two crossing beams can be released. We then
propose a very simple experiment that can be performed at
future exawatt laser facilities, such as ELI, by bombarding a
low power laser beam with the exawatt bump. The effect of
photon-photon scattering will be detected by measuring the
phase shift of the low power laser beam, e.g., by comparing
it with a third low power laser beam. This configuration is
simpler, and significantly more sensitive, than the one pro-
posed in our previous paper. Even in the first step of ELI, we
find that the resulting phase shift will be at least ���2
�10−7 rad, which can be easily measured with present tech-
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nology. Finally, we discuss how the experimental parameters
can be adjusted to further improve the sensitivity.

The paper is organized as follows: In Sec. II, following
Ref. �17�, we present the nonlinear equations that replace the
linear wave equation when the QED vacuum effect is taken
into account. In Sec. III, we consider a linearly polarized
wave, describing the scattering of two counterpropagating
plane waves that have the same intensity and initial phase at
the origin �symmetric configuration�. In this case, we per-
form a numerical simulation for short-distance propagation,
which provides the first known solution to the full QED non-
linear wave equation. In Sec. IV, we study the same configu-
ration as in Sec. III by using a variational approximation.
This allows us to obtain an analytical solution which is valid
even for a long evolution. After showing that this variational
solution is in good agreement with the numerical simulation
of Sec. III, we give a method to study different configura-
tions that cannot be integrated numerically in a simple and
direct way. In Sec. V, we apply our variational approximation
to the case of the scattering of a relatively low power wave
with a counterpropagating high power wave, both traveling
along the z axis. We allow an arbitrary initial phase relation
between the two waves, and obtain an analytical solution
showing a phase shift of the low power wave.

In Sec. VI, we discuss the possibility of detecting photon
scattering by measuring the phase shift of two counterpropa-
gating waves at ELI. We show that an asymmetric configu-
ration, in which only one high power laser beam is used and
the phase is measured on the low power laser beam, is not
only simpler to realize, but it also gives a better sensitivity
than the symmetric configuration. The resulting proposed ex-
periment will then allow us to detect photon-photon scatter-
ing as originated by QED theory. In Sec. VII, we resume our
conclusions, and discuss why we think that our proposed
experiment will be the simplest and most promising way to
detect photon-photon scattering with optical measurements
in the near future.

II. THE NONLINEAR EQUATION FOR LINEARLY
POLARIZED WAVES IN VACUUM

In this section we introduce the equations that govern the
evolution of the electromagnetic fields E and B when the
QED effects are taken into account. We assume that the pho-
ton energy is well below the threshold for the production of
electron-positron pairs, 2mec

2�1 MeV. This means that we
will only consider radiation of wavelengths ��2
�10−13 m, which is always the case in optical experiments.
In this case, the QED effects can be described by the Euler-
Heisenberg effective Lagrangian density �5�,

L = L0 + �LQ = L0 + ��L0
2 +

7�0
2c2

4
�E · B�2� , �1�

being

L0 =
�0

2
�E2 − c2B2� �2�

the linear Lagrangian density and �0 and c the dielectric con-
stant and the speed of light in vacuum, respectively. As it can

be appreciated in Eq. �1�, QED corrections are introduced by
the parameter

� =
8�2�3

45me
4c5 � 6.7 � 10−30m3

J
. �3�

This quantity has dimensions of the inverse of an energy
density. This means that significant changes with respect to
linear propagation can be expected for values around 	�L0	

1, corresponding to beam fluxes with electromagnetic en-
ergy densities given by the time-time component of the
energy-momentum tensor,

T00 =
�L

���tA�
�tA − L 	 2/� � 3 � 1029 J/m3. �4�

While such intensities may have an astrophysical or cosmo-
logical importance, they are not achievable in the laboratory.
The best high-power lasers that are being projected for the
next few decades will be several orders of magnitude
weaker, eventually reaching energy densities of the order 


1023 J /m3 �8�. Therefore we will study here the “pertur-
bative” regime, in which the nonlinear correction is very
small, 	�L0	�1. As we shall see, even in this case measur-
able effects can be accumulated in the phase of beams of
wavelength � traveling over a distance of the order �	�L0	−1.
Thus current sensitive techniques could be used to detect
traces of QED vacuum nonlinearities.

Once the electromagnetic fields are expressed in terms of
the four-component gauge field A�= �A0 ,A� as B=�∧A and
E=−c�A0− �A Õ �t , the equations of motion are given by the
variational principle:

�

�A� = 0, �5�

where ��Ld4x is the QED effective action. Instead of
studying the resulting equations for the fields E and B, that
can be found in the literature �6,19�, for the present purposes
it is more convenient to consider the equations for the gauge
field components A�. In general, these four equations cannot
be disentangled. However, after some straightforward alge-
bra it can be seen that they admit solutions in the form of
linearly polarized waves, e.g., in the x direction, with A0=0
and A= �A ,0 ,0�, provided that �i� the field A does not depend
on the variable x �a transversality condition� and �ii�
A�t ,y ,z� satisfies the single equation:

����A + ��0c2�����A��A��A + 2��A��
�A��A� = 0, �6�

where we have used the convention g��=diag�1,−1,−1,
−1� for the metric tensor. In nonrelativistic notation, Eq. �6�
can be written as

0 = �y
2A + �z

2A − �t
2A + ��0c2���tA�2 − 3��yA�2 − ��zA�2��y

2A

+ ���tA�2 − ��yA�2 − 3��zA�2��z
2A − �3��tA�2 − ��yA�2

− ��zA�2��t
2A + 4��zA�tA�z�tA − �zA�yA�z�yA

+ �yA�tA�y�tA�� , �7�

where �y � � / �y , �z� � / �z , and �t� � / c�t .
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Hereafter, we will restrict our discussion to this case of
linearly polarized solution. The orthogonality relation E ·B
=0 is then automatically satisfied, and the effective Lagrang-
ian Eq. �1� reduces to L=L0�1+�L0�. Note that the plane-
wave solutions of the linear Maxwell equations, such as
A cos�k ·r−�t�, where A is a constant, k= �0,ky ,kz�, and
�=c	k	, are still solutions of Eq. �6�. However, we expect
that the nonlinear terms proportional to �, due to the QED
correction, will spoil the superposition principle.

III. A NUMERICAL SOLUTION OF THE FULL
NONLINEAR EQUATION (SYMMETRIC

CONFIGURATION)

In general, the numerical solution of a nonlinear wave
equation such as Eq. �7� is a formidable problem. In fact, it is
of a higher order �and is much more complicated� than the
nonlinear Shrödinger equation in three dimensions, which is,
nevertheless, a highly nontrivial and rich system �20�. There
are two main difficulties in dealing with Eq. �7�. First of all,
the direct numerical integration is practically impossible
when the integrating interval is much larger than the wave-
length. Second, one has to find convenient boundary condi-
tions.

In this section, we will study a particular configuration for
which a numerical solution of the full nonlinear equation �7�
can be found. Let us first consider two counterpropagating
plane waves that travel along the z axis, for simplicity having
the same phase at the space-time origin. The corresponding
analytical solution of the linear wave equation �that can be
obtained by setting �=0 in Eq. �7�� would be

Alin�t,z� =
A
2

�cos�kz − �t� + cos�kz + �t��

= A cos��t�cos�kz� , �8�

where A is a constant amplitude, k= �0,0 ,k� is the wave
vector, and �=ck is the angular frequency. It is easy to see
that Eq. �8� can also be considered as the analytical solution
of the linear wave equation satisfying the boundary condi-
tions

A�t,0� = A cos��t� ,

A�−
�

�
,z� = A��

�
,z� ,

�zA�t,0� = 0, �9�

where for convenience we chose as the integration interval a
“small” cuboid of time dimension 2� /� and space dimen-
sion 2� /k. With such a choice, the linear wave equation can
also be integrated numerically, obtaining a result that coin-
cides �within the numerical error� with the analytical one.

Of course, in the case of the linear equation this result is
trivial. However, we will use it here as a guide in order to
find a solution of the nonlinear Eq. �7�. In fact, although we
do not know any analytical solution of the latter equation, we
can find its numerical solution that satisfies the same bound-
ary conditions of Eq. �9� using the same small cuboid as the
integration interval.

With these conditions, the result of the numerical integra-
tion of Eq. �7� is shown in Figs. 1 and 2 for a choice of
parameters such that ��0A2�2=0.01. The corresponding en-
ergy density, obtained as


 = T00 =
�0

2
�E2 + c2B2� +

�

4
�0

2�E2 − c2B2��3E2 + c2B2� ,

�10�

is plotted in Fig. 3.
As far as we know, this is the first time that a numerical

solution of the full nonlinear wave equation Eq. �7� is ob-
tained. Of course, it corresponds to a very simple particular
case and a short space-time evolution. However, we will see
later that this solution will allow us to reach very important
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FIG. 1. �Color online� Numerical solution Anum /A of Eqs. �7�
and �9� for ��0A2�2=0.01, as a function of the adimensional time
and space coordinates ���t and ��kz.
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FIG. 2. Zero-time plot of Anum /A, as a function of the adimen-
sional space coordinate ��kz.
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FIG. 3. �Color online� Energy density �multiplied by �� corre-
sponding to the solution Anum, as a function of the adimensional
time and space coordinates ���t and ��kz.
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conclusions and prove the viability of useful approximation
methods.

For the moment, we note that our numerical solution, as
given in Figs. 1–3, shows an oscillatory behavior. However,
the time average of the energy density turns out to be ap-
proximately constant along the z evolution, giving �
̄
= � / 2���−�/�

�/� 
dt=0.002 52. As we have discussed above, this
value of the product �
 is several orders of magnitude larger
than what can be achieved in the laboratory in the next de-
cades. Of course, we will use realistic values of 
 when we
will present our proposals of experiments in the last sections.
For the moment, it is interesting to note that even such an
enormous energy density is still small enough so that the
effect of the nonlinear terms gives a small correction to the
linear evolution in the short distance. In fact, we see from
Fig. 4 that the relative difference between the linear and the
nonlinear evolution, in our integration interval which is of
the order of the wavelength, is of the order of few percent,
i.e., of the same order as the adimensional parameter
��0A2�2=0.01. This result is not surprising, and will provide
a justification for the perturbatively motivated variational ap-
proach that we will use in the next sections.

However, from Fig. 4 itself, we can also appreciate that
the difference between the linear and nonlinear behavior
tends to increase along the z evolution, so that it can be
expected that it will eventually become large after a distance
much larger than the wavelength. In the next section, we will
see an analytical argument that confirms this expectation.

Finally, in Fig. 5 we compare the z evolution of the solu-
tions Anum and Alin in a greater detail for values of z around
the second zero of the solutions. We see that Anum anticipates

Alin, and the corresponding phase shift can be evaluated nu-
merically if we define an effective wave vector component kz
by computing the value z0 corresponding to Alin�0,z0�=0,
and setting kzz0=3� /2. The numerical determination of the
zero gives �0=kz0=4.688 85, so that kz=1.0050k. We will
provide a full explanation for this result in the following
section.

IV. VARIATIONAL APPROXIMATION (SYMMETRIC
CONFIGURATION)

Although it can be considered as an interesting achieve-
ment due to its simplicity and lack of previous approxima-
tions, in practice the numerical solution that has been dis-
cussed above can only be obtained in the special
configuration of two counterpropagating, in-phase waves,
and for short propagation �of the order of the wavelength�. In
this section, we will consider the same configuration, and we
will look for a variational approximation that will provide an
analytical solution which is valid even for a long evolution.
After showing that this variational solution is consistent with
the numerical one of the previous section, we will obtain a
method to study different configurations that cannot be inte-
grated numerically in a simple and direct way.

We will thus consider again the two counterpropagating
waves, that would be described by Eq. �8� in the linear case.
Note that any of the two crossing waves, A / 2cos�kz−�t� and
A / 2cos�kz+�t�, when taken alone, would be a solution of
both the linear and nonlinear equations, provided that �
=ck. However, their superposition would only solve the lin-
ear equations of motion.

As we discussed in Ref. �17�, in all the experimental con-
figurations that can be studied in the present and the near
future, the product �
 will be so small that the nonlinear
correction will act in a perturbative way, progressively modi-
fying the form of A�t ,y ,z� as the wave proceeds along the z
direction. We will therefore make the ansatz

A = A���z�cos�kz� + ��z�sin�kz��cos��t� , �11�

allowing for the generation of the other linearly independent
function sin�kz� �we will take ��0�=1 and ��0�=0�. Note
that the invariance of Eq. �7� under time reversal guarantees
that, if the initial behavior is proportional to cos��t�, which
is even under time inversion, no uneven term proportional to
sin��t� will be generated.

According to the variational method, the best choice for
the functions ��z� and ��z� corresponds to a local minimum
of the effective action , after averaging out the time depen-
dence as follows:

 = �
−�

�

dz� �

2�
�

0

2�/�

dtL� . �12�

The expression that is obtained by this procedure is still quite
complicated, due to the presence of the trigonometric func-
tions of multiples of kz. However, as we shall see below,
when �
�1 this z dependence is much faster than that of the
envelope functions � and �. Therefore it is a very good
approximation to perform the z integral in two steps: first, we
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FIG. 4. �Color online� Relative error �Anum−Alin� /A of the lin-
ear approximation, as a function of the adimensional time and space
coordinates ���t and ��kz.
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FIG. 5. Detail of the zero-time functions Anum /A �upper curve�
and Alin /A �lower curve�, for values of the adimensional space
coordinate ��kz close to the second zero.
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average over a period, treating � and � as if they were con-
stant. In this way, we get rid of the trigonometric functions.
At this point, we allow again the z dependence of the enve-

lope functions. If we call ̄ the average action that is ob-
tained by this procedure, we will then minimize it with re-
spect to the functions � and � by solving the equations

�̄ /��=0 and �̄ /��=0.
After a long but straightforward computation, and ne-

glecting the nonlinear terms involving derivatives of the
functions � and �, since they give a smaller contribution as
we discussed in Ref. �17�, these two equations can be written
as

��

2k
+ �� + ���2 + �2�� = 0, �13�

and

��

2k
− �� + ���2 + �2�� = 0, �14�

where �=��0A2c2k3 /2 is a parameter that describes the lead-
ing nonlinear effects.

Now, in the perturbative regime in which � is small, we
can also neglect the second derivatives in the previous Eqs
�17�, so that an �approximate� analytical solution for Eqs.
�13� and �14� is given by ��z�=cos��z� and ��z�=−sin��z�.
Substituting this result into the variational ansatz �11�, and
using elementary trigonometry, we obtain

A = A cos��t�cos��k + ��z� . �15�

As a result, we find that the phase of the wave is shifted by
a term

�� = �z . �16�

Note that the solution of Eq. �15� can also be written as

A =
A
2

cos��k + ��z − �t� +
A
2

cos��k + ��z + �t� , �17�

therefore we see that each of two scattering waves is phase
shifted according to Eq. �16�, due to the crossing with the
other wave. A similar behavior can also be found in a non-
linear medium �21�, although the analogy cannot be pushed
too far, as we have discussed in Ref. �17�, where we have
shown that the vacuum does not present the usual ac Kerr
effect.

Note also that the result of Eq. �15� can be stated equiva-
lently by defining a wave vector as kz=k+�, that satisfies a
modified dispersion relation, �=c�kz−��.

In order to make definite numerical predictions, it is con-
venient to express the amplitude A in terms of the energy
density, as given by Eq. �10�. In our perturbative regime,
after time and space average, this gives 
��0A2�2 /4 with a
very good approximation. Thus we get ��2�
k, so that the
phase shift accumulated after a distance �z is

�� � 2�
k�z . �18�

We see now that the slow varying envelope approximation
was justified as far as ��k.

For the same choice of parameters that was considered in
the previous section, �
���0A2�2 /4=0.0025, in agreement
with the numerical simulation. Thus we get �=0.005k, which
is two orders of magnitude smaller than k. Our approxima-
tions can then be expected to be reasonably good even for
the extremely large of 
 that we have chosen here. Note also
that this corresponds to a value kz=k+�=1.005k, in agree-
ment with the result that we obtained from the numerical
simulation in the previous section.

In Fig. 6 we compare the corresponding analytical solu-
tion Avar, given in Eq. �15�, with the numerical solution Anum
of the QED wave equations that we have found in the pre-
vious section. Comparing with Fig. 4, we see that the varia-
tional solution is an order of magnitude closer to the numeri-
cal simulation than the linear evolution, Eq. �8�, that was
obtained by completely neglecting the nonlinear terms. This
is a significant improvement in such a short distance. How-
ever, according to the previous discussion, in the perturbative
regime corresponding to small values of the product �
, the
variational solution is expected to be a good approximation
even when a longer propagation distance is considered along
the z axis. In fact, this expectation is confirmed by Fig. 6
itself, that shows that the error of the variational solution
oscillates without any substantial increment in the integration
interval. As we have observed in the previous section, this
was not the case for the linear solution, which was increasing
its error even in the short distances. Of course, this is due to
the fact that it does take into account the phase shift, which is
the leading effect due to the nonlinear terms according to our
variational method. On the other hand, the agreement of the
variational solution with the numerical simulation can be
used as an additional, a posteriori justification for our ana-
lytical approach.

V. VARIATIONAL APPROXIMATION (ASYMMETRIC
CONFIGURATION)

In the previous section, we have proved the reliability of a
perturbatively motivated variational approach in the search
for approximate solutions of the QED nonlinear wave equa-
tion, Eq. �7� In that case, we studied a symmetric configura-
tion in order to compare the result with the numerical inte-
gration of the full equation. With this strong justification in
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FIG. 6. �Color online� Relative error �Anum−Avar� /A of the
variational approximation, as a function of the adimensional time
and space coordinates ���t and ��kz.
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mind, we can now apply the variational method to different
configurations, that do not allow for a direct integration of
the full Eq. �7�.

In this section, we will study the case of the scattering of
a relatively low power wave with a counterpropagating high
power wave, both traveling along the z axis. In this case, the
main effect will be the modification of the low power beam
due to the crossing with the high power one, which would be
unaffected in a first approximation.

Using our variational approach, we will describe the high
power field by a wave polarized in the x direction, having the
x component of the vector potential given by

Ah = A cos�kz + �t + �� , �19�

where � is an arbitrary phase, describing the unknown phase
difference between the two counterpropagating beams. Such
a beam is shot against a low power wave that, in the absence
of the nonlinear QED terms, would be described by a x com-
ponent of the vector potential given by Al�t ,z�=� cos�kz
−�t�, where the constant � is related to the intensity of the
beam. In other words, the only condition is that the two
waves have the same frequency. Photon-photon scattering
will then generate a z dependence of � and an additional
term proportional to sin�kz−�t� in the low power wave, so
that

Al�t,z� = ��z�cos�kz − �t� + ��z�sin�kz − �t� , �20�

with the initial condition ��0�=�0 and ��0�=0. Neglecting
the effect of the low power beam on the high power wave,
we are then led to the ansatz

A�t,z� = Ah�t,z� + Al�t,z� . �21�

According to the variational method, we require that the
functions ��z� and ��z� correspond to a local minimum of
the effective action , after averaging out the time depen-
dence as described in Eq. �12�. After averaging over the fast
dependence on z, as discussed in the previous section, and
neglecting again the nonlinear terms involving derivatives of
the functions � and �, we get the following equations:

��

2k
+ �� + �� = 0 �22�

and

��

2k
− �� + �� = 0, �23�

where �=2��0A2c2k3. Note that Eqs. �22� and �23� are lin-
ear, and they do not show any dependence of the initial phase
difference � between the two beams. Neglecting the second
derivatives, for the same reason discussed in the previous
section, we get the solution ��z�=�0 cos��z� and ��z�=
−�0 sin��z�. Note also that this solution is valid for any
value of the amplitude �0 of the low power wave, provided
that it is much smaller than the amplitude of the high power
beam, 	�0	� 	A	.

As a result, we find that the low power beam becomes

Al�t,z� = �0 cos��k + ��z − �t� . �24�

Taking into account that the average energy density of the
high power wave is 
=�0A2�2 /2, we can compute the phase
shift accumulated by the low power wave after a distance �z
as

�� = ��z � 4�
k�z . �25�

We stress that this result only depends on the energy den-
sity of the high power wave, as far as it is much larger than
that of the low power wave. The initial phase difference is
found to be irrelevant.

VI. PROPOSAL OF AN EXPERIMENT

We can now discuss the possibility to test the nonlinear
properties of the QED vacuum by measuring small phase
changes in one of two crossing laser beams at a very high
power laser facility. In the previous sections, we have studied
the leading QED nonlinear effect on two counterpropagating
waves traveling in the z direction. We have considered two
different configurations: a symmetric one, in which both
waves are high power waves with the same initial phase and
amplitude, and an asymmetric configuration, in which only
one of the two waves is high power, and they do not need to
be in phase. Of course, the second configuration is easier to
be produced experimentally. Moreover, as we shall discuss
below, it leads to a phase shift which is �at least� twice higher
than that which could be obtained from the symmetric con-
figuration, for the same experimental facility.

In fact, the total energy density achievable in the symmet-
ric configuration is the space-time average due to both
waves, that have to be obtained from the same original high
power pulse through a beam splitter. Therefore even if we
neglect the energy loss when the beams split, the value of 

in Eq. �25� is roughly the same as that of the single high
power beam of Eq. �18�. Therefore the asymmetric configu-
ration of Sec. V produces a phase shift which is roughly
twice that of the symmetric configuration that we have dis-
cussed.

Therefore we will propose the following experimental
setup, which in our opinion will provide the simplest and
most effective way to look for optical effects of photon-
photon scattering in future exawatt laser facilities. A com-
mon laser pulse is divided in two beams, A and B, one of
which �say A� crosses at a 180° very high power beam. As a
result, the central part of the distribution of beam A has ac-
quired a phase shift �� with respect to beam B, that has
propagated freely. In an experiment corresponding to the pa-
rameters of the ELI project in its first step we have pulses of
wavelength �=800 nm, intensity I=1029 W m−2, and dura-
tion �t=10 fs which are focused in a spot of diameter d
�10 �m. From Eq. �25�, this results in a phase shift ��
�2�10−7 rad for beam A, which can be resolved compar-
ing with beam B which was not exposed to the effects of
QED vacuum. Current techniques like spectrally resolved
two-beam coupling, which can be applied for ultrashort
pulses �22�, can be used to this purpose.

It is interesting to note that the sensitivity of this method
for the detection of photon-photon scattering may be en-
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hanced by a suitable choice of the combination of the inten-
sity I, the wavelength �, and the time duration �t that enter
in Eq. �25�. In fact, taking into account that �z�c�t, Eq.
�25� implies that the most sensitive experimental configura-
tion will be that having the maximum value of the combina-
tion I�t /�.

Comparing to other alternatives like x-ray probing of
QED birefringence, our system does not need an extra free
electron laser and the power requirements of the system are
only one order of magnitude higher. Moreover, the measure-
ment of the ellipticity and the polarization rotation angle in
birefringence experiments is not yet possible with current
technology. Other techniques like four-wave mixing pro-
cesses �12� require the crossing of at least three beams, with
the corresponding alignment problems and the rest of the
requirements similar to our proposal. Moreover, the present
result also improves significantly the one arising for two
high-power waves that we discussed in Ref. �17�.

VII. CONCLUSIONS

In this paper, we have studied the nonlinear wave equa-
tions that describe the electromagnetic field in the vacuum
taking into account the QED corrections. In particular, we
have studied the scattering of two waves in a symmetric and
an asymmetric configuration. In the first case, we have found
a full numerical solution of the QED nonlinear wave equa-
tions for short-distance propagation. We have then performed
a variational analysis and found an analytical approximation
which is in very good agreement with our numerical solu-
tion, but can also be used for long distance propagation. We

have then studied an asymmetric configuration correspond-
ing to the head-on scattering of an ultrahigh power with a
low power laser beam and argued that it is the most promis-
ing configuration for the search of photon-photon scattering
in optics experiments. In particular, we have shown that our
previous requirement of phase coherence between the two
crossing beams can be released. We have then proposed a
very simple experiment that can be performed at future exa-
watt laser facilities, such as ELI, by bombarding a low power
laser beam with the exawatt bump. Photon-photon scattering
will then be observed by measuring the phase shift of the low
power laser beam, e.g., by comparing with a third low power
laser beam. This configuration is simpler, and significantly
more sensitive, than that proposed in our previous paper.
Even in the first step of ELI, we have found that the resulting
phase shift will be at least ���2�10−7 rad, which can be
easily measured with present technology. Finally, we have
discussed how the experimental parameters can be adjusted
to further improve the sensitivity.
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