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We show that QED nonlinear effects imply a phase correction to the linear evolution of electromagnetic
waves in vacuum. We provide explicit solutions of the modified Maxwell equations for the propagation of
a superposition of two plane waves and calculate analytically and numerically the corresponding phase
shift. This provides a new framework for the search of all-optical signatures of photon-photon scattering in
vacuum. In particular, we propose an experiment for measuring the phase shift in projected high-power
laser facilities.
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Introduction.—Quantum electrodynamics (QED) pre-
dicts that at photon energies well below the electron rest
energy, photon-photon collisions can still be produced
through the interchange of virtual electron-positron pairs
[1,2]. This nonlinear interaction modifies Maxwell’s equa-
tions for the average values of the electromagnetic quan-
tum fields [3] and affects the properties of the QED
vacuum [4]. During many years, the search of these effects
has been restricted to projected particle physics experi-
ments with accelerators. However, photon-photon scatter-
ing processes in vacuum will become testable at energy
densities achievable with ultrahigh-power lasers in the near
future [5].

The realization of these ultraintense photon sources
began with the discovery of chirped pulse amplification
[6] in the late 1980s and optical parametric chirped pulse
amplification [7] in the 1990s. These techniques opened
the door to a field of research in the boundary between
optics and experimental high-energy physics, where a lot
of novelties are expected to come in the next years. In fact,
several recent works propose different configurations that
can be used to test the nonlinear optical response of the
vacuum, e.g., using harmonic generation in an inhomoge-
neous magnetic field [8], QED four-wave mixing [9],
resonant interactions in microwave cavities [10], or QED
vacuum birefringence [11], which can be probed by x-ray
pulses [12], among others [13].

In this Letter, we show that QED nonlinear effects in
vacuum imply a phase correction to the linear evolution of
crossing electromagnetic waves. We provide explicit nu-
merical and analytical approximate solutions for the propa-
gation of a superposition of two plane waves. This result
allows us to calculate the corresponding phase shift, pro-
viding a new framework for the quest of signatures of
photon-photon scattering. In particular, we suggest an
experiment for measuring the effect of nonlinear vacuum
in projected high-power laser facilities like the European

Extreme Light Infrastructure (ELI) project [14] for near IR
radiation.

Model and equations.—Let us begin by writing the
formulas that have to be used instead of the classical linear
Maxwell equations, including the terms which come from
QED effects in vacuum. The corresponding Lagrangian
density in terms of the electric and magnetic fields E and
B was derived in the 30s by Euler and Heisenberg [2]:

 L � L0 � �LQ � L0 � �
�
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is the linear Lagrangian density and �0 and c the dielectric
constant and the speed of light in vacuum, respectively. As
it can be appreciated in Eq. (1), QED corrections are
introduced by the parameter
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This quantity has dimensions of the inverse of an energy
density. This means that significant changes with respect to
linear propagation can be expected for values around
j�L0j � 1, corresponding to beam fluxes with electromag-
netic energy densities given by the time-time component of
the energy-momentum tensor

 T00 �
@L
@�@tA�

@tA�L * 2=� ’ 3� 1029 J=m3: (4)

While such intensities may have an astrophysical or cos-
mological importance, they are not achievable in the labo-
ratory. The best high-power lasers that are being projected
for the next few decades will be several orders of magni-
tude weaker, eventually reaching energy density of the
order �� 1023 J=m3 [5]. Therefore, we will study here
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the ‘‘perturbative’’ regime, in which the nonlinear correc-
tion is very small, j�L0j 	 1. As we shall see, even in this
case measurable effects can be accumulated in the phase of
beams of wavelength � traveling over a distance of the
order �j�L0j

�1. Thus, current sensitive techniques could
be used to detect traces of QED vacuum nonlinearities.

Once the electromagnetic fields are expressed in terms
of the four-component gauge field A� � �A0;A� as B �
r^A and E � �crA0 � @A

@t , the equations of motion are
given by the variational principle:

 

��

�A�
� 0; (5)

where � 

R
Ld4x is the QED effective action. Instead of

studying the resulting equations for the fields E and B,
which can be found in the literature [3,15], for the present
purposes it is more convenient to consider the equations for
the gauge field components A�. In general, these four
equations cannot be disentangled. However, after some
straightforward algebra it can be seen that they admit
solutions in the form of linearly polarized waves, e.g., in
the x direction, with A0 � 0 and A � �A; 0; 0�, provided
that (i) the field A does not depend on the variable x (a
transversality condition) and (ii) A�t; y; z� satisfies the
single equation

 @�@�A� ��0�@�@�A@�A@�A� 2@�A@
�
� A@�A� � 0;

(6)

where we have used the convention g�� �
diag�1;�1;�1;�1� for the metric tensor. Hereafter, we
will restrict our discussion to this case of linearly polarized
solution. The orthogonality relation E � B � 0 is then
automatically satisfied, and the effective Lagrangian
Eq. (1) reduces to L � L0�1� �L0�. Note that the plane
wave solutions of the linear Maxwell equations, such as
A cos�k � r�!t�, where A is a constant, k � �0; ky; kz�,
and ! � cjkj, are still solutions of Eq. (6). However, we
expect that the nonlinear terms proportional to �, due to the
QED correction, will spoil the superposition principle.

Variational solutions.—Let us consider two plane
waves, for simplicity having the same phase at the space-
time origin, having wave vectors (0, q, k) and (0, �q, k),

respectively, and angular frequency! �
����������������
k2 � q2

p
. Any of

them, when taken alone, would be a solution of both the
linear and nonlinear equations. However, the superposition

 A�t; y; z� �
A

2
�cos�kz�!t� qy� � cos�kz�!t� qy��

�A cos�qy� cos�kz�!t�;

where A is a constant, would only solve the linear equa-
tions of motion. In our perturbative regime, we can expect
that the small nonlinear correction will progressively mod-
ify the form of A�t; y; z� as the wave proceeds along the z
direction. We will therefore make the ansatz

 A �A cos�qy����z� cos�kz�!t� � 	�z� sin�kz�!t��;

(7)

allowing for the generation of the other linearly indepen-
dent function sin�kz�!t� (we will take ��0� � 1 and
	�0� � 0). On the other hand, we neglect the possible
generation of a reflected wave depending on kz�!t,
which can be expected to be a smaller correction in this
perturbative regime. As we will discuss below, in our
perturbative regime the effects of the possible y depen-
dence of � and 	 are negligible for the traveling distances
in the z direction that we will consider.

According to the variational method, we require that the
functions ��z� and 	�z� correspond to a local minimum of
the effective action �, after averaging out y and t as
follows:

 � �
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�
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4
2
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�
=q
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Z 2
=!

0
dtL

�
; (8)

whose minimum corresponds to the equations ��=�� � 0
y ��=�	 � 0. After a straightforward computation, these
two equations can be written as
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where a � ��0A
2=2. It is now convenient to express the

parameter a in terms of the energy density:

 � � T00

�
�0

2
�E2 � c2B2� �

�
4
�2

0�E
2 � c2B2��3E2 � c2B2�:

(11)

In our perturbative regime, this gives a ’ 2c2

!2 ��with a very
good approximation.

Numerical simulations and approximate analytical so-
lution.—The result of the numerical integration of Eqs. (9)
and (10) is shown in Fig. 1 for a choice of parameters that
may be accessible at future facilities [5]: namely, � � 4�
1023 J=m3, � � 5� 10�7 m, k � q � 2
��

2
p
�
� 0:89�

107 m�1, giving a � 3:4� 10�20 m2. The two enveloping
functions show a sinusoidal behavior, with an oscillation
length �0:26 m. In particular, we find that a 100% change
in phase is accumulated after the distance �z ’ 13 cm.

This numerical result also suggests the viability of an
analytical approximation. In fact, the numerical oscilla-
tions show that each order in derivation of � and 	
corresponds to a suppression factor �2
=0:26 m�1, 6
orders of magnitude smaller than k and q. We can then
neglect the second derivatives in Eqs. (9) and (10).
Moreover, in our perturbative regime a can also be con-
sidered an expansion parameter; therefore, we can also
neglect the first derivatives when they appear multiplied
by a. As a result, Eqs. (9) and (10) can be approximated as
follows:

 k	0 � aq4���2 � 	2� � 0; (12)

 � k�0 � aq4	��2 � 	2� � 0; (13)

whose analytical solution is

 ��z� � cos��z�; and 	�z� � � sin��z�; (14)

where

 � 
 aq4=k � ��0A
2q4=2k ’ 2

c2q4

k!2 ��: (15)

This result fairly coincides with our numerical solution,
giving � � 24 m�1 and 2
=� � 0:26 m for the same
choice of the parameters as in Fig. 1. This is an a posteriori
justification for the analytical approximation.

By substituting in Eq. (7) and after some trigonometry,
we find that our approximated analytical solution of the
nonlinear equations for the electromagnetic field in the
vacuum can be written as

 A�t; y; z� �A cos�qy� cos�kz� �z�!t�: (16)

Therefore, the effect of the nonlinearity is to change the
phase of the wave, with respect to the linear solution, by a
term that increases linearly with the distance. This can also
be interpreted as a change in the z component of the wave
vector, which becomes kz � k� �, so that the dispersion

relation is modified to ! � c
�������������������������������
�kz � ��2 � q2

q
.

To conclude this section, let us discuss now the validity
of the approximations that we have made. The variational
method that we have used is expected to provide very good
results whenever the class of test functions, given by
Eq. (7) in our case, is a reasonably good choice. Since
the latter was motivated by perturbative considerations, the
whole approximation will be justified whenever the cor-
rection �	 k, i.e., whenever 2 c2q4

k2!2 ��	 1. This is guar-
anteed by the dispersion relation and the fact that ��	 1
in our regime. It is easy to see that in this case the
correction to the energy density dependence on k and q
is also very small.

The other approximation that we have made was ne-
glecting the y dependence of the enveloping functions �
and 	. For an a posteriori test of this hypothesis, we have
corrected our solution Eq. (16) allowing for the further
envelop functions ��y; z� and �y; z�. We have then used
as a new ansatz for the variational method the potential
A
Acos�qy���cos�kzz�!t��sin�kzz�!t��, where
kz � k� � � k� aq4=k from Eq. (15).

We have performed a first average over the fast variation
in y in the action due to the trigonometric dependence on
the product qy, and we have minimized the action. After
keeping only the first order in the expansion parameter a
and neglecting the terms involving the second derivatives
(which imply a slower variation as discussed above), we
obtain the equations @z� ����2 � 2 � 1� � 0, and
@z�� ���2 � 2 � 1� � 0. These equations, which do
not involve @y� and @y at the first order, are solved by
��y; z� � 1 and �y; z� � 0; therefore, we conclude that at
this order our previous solution, Eq. (16), is not modified.
This justifies the approximation of neglecting the possible
y dependence in the first instance.
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 α
 (z
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  β
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)

FIG. 1. Numerical solution of Eqs. (9) and (10) for k � q �
0:89� 107 m�1 and a � 3:4� 10�20 m2. The continuous curve
represents the function ��z�, the dashed curve the function 	�z�.
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Comparison with the optical Kerr effect.—Since it is
theoretically known that the vacuum shows birefringence
as in the dc Kerr effect [4], it is interesting to compare our
result with the optical (ac) Kerr effect that also arises in
matter. In fact, let us consider a Kerr medium, character-
ized by an effective nonlinear refractive index of the form

 n � n0 � n2I; (17)

where n0 is the linear refractive index, n2 the Kerr coeffi-
cient, and I the irradiance of the beam. In such a medium,
for propagation through a distance dz, the wave front phase
will be modified by an amount

 d� �
2

�
n2Idz: (18)

Since � � I=c, Eqs. (15) and (18) show that our con-
figuration of two crossing waves in vacuum undergoes the
same phase shift as a single plane wave in a Kerr medium
having n0 � 1 and a Kerr coefficient n2 � 2c�q4=�!2k2�.
Choosing, e.g., q � k � !=�

���
2
p
c�, this Kerr coefficient

would be n2 � �=�
���
2
p
c�  10�38 m2 W�1. However, in

spite of this analogy, it is important to note that such an
n2 cannot be interpreted as a Kerr coefficient for the
vacuum. In fact, strictly speaking the vacuum does not
show the usual ac Kerr effect. In a Kerr medium, the phase
shift (18) is found even for a single plane wave propagating
along the z direction. In vacuum, such a single plane wave,
corresponding to q � 0 in Eq. (15), would propagate with
� � 0, i.e., without any phase change, exactly as in the
linear case. Ultimately, this is due to the fact that the cross
section for photon-photon scattering vanishes for parallel
momenta.

Proposal of an experiment.—Our previous discussion
suggests that we might test the nonlinear properties of
the QED vacuum by using sensitive experiments in which
the key point is the ability to measure small phase changes
in a laser beam. In our configuration, a laser pulse is
divided into three beams of the same intensity, and two
of the resulting beams are focused independently. The
trajectories of both rays cross at the focus point with an
angle �. As a result, the central part of each distribution has
acquired a phase shift ��. In an experiment corresponding
to the parameters of the ELI project in its first step, we have
pulses of wavelength � � 800 nm, intensity I �
1029 W m�2, and duration � � 10 fs, which are focused
in a spot of diameter d  10 �m. Either from Eq. (15) or
equivalently from Eq. (18), this results in a phase shift
��  10�7 rad, which can be resolved comparing with
the third beam that was not exposed to the effects of QED
vacuum. Current techniques like spectrally resolved two-
beam coupling, which can be applied for ultrashort pulses
[16], can be used for this purpose. Compared to other
alternatives like x-ray probing of QED birefringence, our
system does not need an extra free electron laser, and the
power requirements of the system are only 1 order of
magnitude higher. Moreover, the measurement of the el-

lipticity and the polarization rotation angle in birefringence
experiments is not yet possible with current technology.
Other techniques like four-wave mixing processes [9]
require the crossing of at least three beams, with the
corresponding alignment problems, and the rest of the
requirements are similar to our proposal.

Conclusions.—In conclusion, we have calculated the
phase shift arising from propagation of ultraintense radia-
tion in vacuum and shown that it could be measured in the
first step of the ELI facility under construction. We con-
sider that the present work could serve as a starting point
for the quest of other nonlinear optical phenomena that
may arise in ultra–high-power laser beams propagating in
vacuum.
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Universidad Politécnica de Valencia for its warm hospital-
ity. This work was partially supported by Contracts
No. PGIDIT04TIC383001PR from Xunta de Galicia and
No. FIS2004-02466, No. FIS2005-01189, and
No. TIN2006-12890 from the Government of Spain.

[1] O. Halpern, Phys. Rev. 44, 855 (1933); H. Euler, Ann.
Phys. (Leipzig) 418, 398 (1936 ).

[2] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
[3] J. McKenna and P. M. Platzman, Phys. Rev. 129, 2354

(1963).
[4] J. J. Klein and B. P. Nigam, Phys. Rev. 135, B1279 (1964).
[5] G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod.

Phys. 78, 309 (2006).
[6] A. D. Strickland and G. Mourou, Opt. Commun. 56, 219

(1985); P. Maine and G. Mourou, Opt. Lett. 13, 467
(1988).

[7] A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt.
Commun. 88, 437 (1992).

[8] Y. J. Ding and A. E. Kaplan, J. Nonlinear Opt. Phys. Mater.
1, 51 (1992).

[9] S. L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971); F. Moulin
and D. Bernard, Opt. Commun. 164, 137 (1999);
E. Lundstrom et al., Phys. Rev. Lett. 96, 083602 (2006).

[10] G. Brodin, M. Marklund, and L. Stenflo, Phys. Rev. Lett.
87, 171801 (2001).

[11] E. B. Aleksandrov, A. A. Anselm, and A. N. Moskalev, Zh.
Eksp. Teor. Fiz. 89, 1181 (1985) [Sov. Phys. JETP 62, 680
(1985)].

[12] T. Heinzl et al., Opt. Commun. 267, 318 (2006);
A. Di Piazza et al., Phys. Rev. Lett. 97, 083603 (2006).
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