Available online at www.sciencedirect.com

sc:ENcE@DIREcT’ NucLEAR[Z]
PHYSICS

Nuclear Physics B 738 (2006) 1-22

MSSM electroweak baryogenesis and flavour mixing
in transport equations

Thomas Konstandit) Tomislav Prokopet*, Michael G. Schmidi,
Marcos Secé

2 ngtitut fir Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg, Germany
b |nstitute for Theoretical Physics (ITF) & Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508
TD Utrecht, The Netherlands

Received 24 June 2005; received in revised form 31 October 2005; accepted 28 November 2005

Available online 15 December 2005

Abstract

We make use of the formalism of [T. Konstandin, et al., hep-ph/0410135], and calculate the chargino-
mediated baryogenesis in the Minimal Supersymmetric Standard Model. The formalism makes use of a
gradient expansion of the Kadanoff-Baym equations for mixing fermions. For illustrative purposes, we first
discuss the semiclassical transport equations for mixing bosons in a space-time-dependent Higgs back-
ground. To calculate the baryon asymmetry, we solve a standard set of diffusion equations, according to
which the chargino asymmetry is transported to the top sector, where it biases sphaleron transitions. At the
end we make a qualitative and quantitative comparison of our results with the existing work. We find that
the production of the baryon asymmetry of the universe by CP-violating currents in the chargino sector is
strongly constrained by measurements of electric dipole moments.

0 2005 Elsevier B.V. All rights reserved.

PACS: 98.80.Cq; 11.30.Er; 11.30.Fs

1. Introduction

Electroweak baryogenedi] is an effective framework for explaining the baryon asymmetry
of the universe (BAU). The most appealing feature of this mechanism lies in the fact that the
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relevant physics will soon be explored by experiments, most notably by LHC at CERN and by
the new generation of electric dipole measurements.

It has been realized that the scenario of electroweak baryogenesis depends on extensions of the
Standard Model (SM), since two mandatory conditions are not met in the SM. The first reason is
that CP-violation in the SM is marginal, such that the observed magnitude of baryon asymmetry
cannot be explained. Secondly, the electroweak phase transition in the SM is a cr¢@ghver
leading to a too weak departure from equilibrium to be viable for baryogenesis.

The Minimal Supersymmetric Standard Model (MSSM) instead has all the necessary ingredi-
ents. CP violation is enhanced by adding phases to the parameters in the soft supersymmetry
breaking sector, which contribute to the chargino mass matrix. Furthermore, the additional
bosonic degrees of freedom can lead to a strong first-order phase transition as, e.g., in the light
stop scenarib,6].

These considerations indicate that the MSSM has the potential of explaining the observed
BAU via electroweak baryogenesis. However, a formalism that determines the baryon asymmetry
has to incorporate several features. Clearly, the formalism has to reflect the quantum nature of the
involved patrticles, for CP violation is a purely qguantum effect. In addition, since the sphaleron
processes are only operative in the unbroken phase, the CP-violating particle densities have to
be transported away from the wall into the unbroken phase to lead to a net baryon density. A
formalism that can handle both of these aspects is given by the Kadanoff-Baym equations, which
are in turn derived from the out-of-equilibrium Schwinger—Dyson equations.

Early approaches that aimed to determine CP-violating densities and have not attempted to
derive transport equations from first principles have been based on the dispersion relation of the
quasi-particleg7—-11] deduced with the WKB method. For a recent resurrection of the method
seg[12].

In [13,14]it was suggested that an important contribution is given by mixing effects of the
quasi-particles in the wall rather than from the dispersion relations in the case of a nearly de-
generate mass matrix. However, in the wfitR,14]transport equations are not derived in a first
principle approach either, but the current continuity equation is used to determine CP-violating
contributions to the Green functions in a perturbative approach, which are subsequently inserted
as sources into classical diffusion equations derivgd ). These classical diffusion equations
neglect oscillations of the off-diagonal elements of the Green function that are important for a
proper treatment of CP violation.

Starting from the Kadanoff-Baym equations, the authorfl@f18] have derived the CP-
violating semiclassical force in kinetic transport equations, which appears in fermionic kinetic
equation at second order in derivatives. Initially, this was done for the one fermion flavour case
[17] and then subsequently generalized to the diagonal part of the multiflavoi&hse

Recently, this formalism was advanced to include mixing ferm{dhsThe formalism pro-
vides an accurate description of the dynamics in the thick wall regime, which applies to particles,
whose de Broglie wave length is much shorter than the thickness of the phase boundary (bubble
wall), formally 9, « k.

One conclusion of the worKl] is that two features of the transport equations are not cap-
tured by the procedure used [i©3,14] Firstly, the densities that are off-diagonal in the mass
eigenbasis of the system will perform oscillations analogously to neutrino oscillations. This ef-
fect suppresses the transport of the CP-violating sources, especially if the mass spectrum in the
chargino sector is far from degeneracy. Secondly, while R&€814]used a phenomenological
prescription (Fick's law) to introduce the CP-violating sources into the diffusion transport equa-
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tions, no such prescription is required in our formalism. The sources enter the diffusion transport
equations with an unambiguously defined amplitude.

A first goal of this publication is to study the simpler bosonic case, and thus to rectify the con-
clusions of[1]. As a second and principal goal, we consider the chargino-mediated baryogenesis
in the MSSM, in order to study the effects of flavour oscillations and source amplitude ambi-
guity on the baryon asymmetry within the framework of the reduced set of diffusion equations
for charginos and quarks used [(hi3—16] We also make a comparison of baryogenesis from
the semiclassical force mechanism. The principal difference with respect to the previous work,
is that our treatment is basis-independent, while the calculations presented if1Refg,18]
were performed in the mass eigenbasis.

This article is organized as follows. In Secti@rwe derive transport equations for mixing
bosons. This is done mainly to clarify the conclusions fiidithat are present in the bosonic
case, too. In the subsequent section we discuss, how the introduction of phenomenological damp-
ing terms can lead to additional unphysical CP-violating sources. Sectiamsl 5state the
fermionic transport equations derived[ij and the system of diffusion equations that is used to
determine the baryon asymmetry. Numerical results are presented in S&@mhwe conclude
in Section?.

2. Transport equations for mixing bosons

In this section we will derive transport equations for mixing bosons from the Kadanoff-Baym
equations and the resulting CP-violating particle densities. This is a simpler analog to the deriva-
tion for the fermionic case given ifi]. In the fermionic case, the spinor structure complicates
the decoupling of the system of equations, but the bosonic case given here will already support
the main conclusions given [t] without the technical issues coming from the spinor structure.

2.1. Kadanoff-Baym eguations and the approximation scheme
Starting point are the coupled Kadanoff—-Baym equat[@8$
TR — M A7) — e UM AT} — e T AR =, 1)
¢=Je () a%) - {m=}{a%)), @

where A denotes the Green function and the self-energy of the bosons. Both quantities are
N x N matrices in flavour space and depend on the average coordipaa@d the momentum
variablek,, . The superscripts, > and the subscrigt denote the additional:22 matrix structure

as usual in the Kadanoff-Baym formalism

A++ A+7
(3730
AS=AT AT =A"T Al= At A=A
1
Ath'—E(A<+A>). (3)
The diamond operator coming from the transformation into Wigner space is defined by

1
Olal{b) = E((Bxua)(‘?kub — (3, @)dx,b). (4)
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The mass squared matrix? is space—time-dependent and hermitian. During the electroweak
phase transition, the bosonic particles relevant for baryogenesis are the squarks whose mass
matrix is given by

M2 ( m% +hZHZ(X ) hi (A H2(X ) — MZ‘Hz(XM))> '
he (A H2(X ) — e Ha(X ) m% +h2HZ(X,)
In thermal equilibrium the Green function for a quasi-particle with mass
i Agqky) = 278 (k2 — m?) sign(ko) fae (ko).
i Agy(ky) = 28 (k% — m?) sign(ko) (1+ fae(ko)) (6)
with the Bose—Einstein distribution function

(®)

1
fBE(kO) = m~ (7)
The particle density can be deduced from the Green function using
JV(X/L) =2i kaA (X,uv ku)- (8)

ko>0

Since there will be already a contribution to the CP-violating particle densities in the mass
term, we will in our approximation neglect interactions with other particle species. However, we
will keep the collision tern, since this term usually drives the system back to equilibrium and
allows to fulfill the physical boundary conditions far away from the wall. We will not explicitly
calculate the collision term, but finally replace it by a phenomenological damping term. Hence,
the Kadanoff-Baym equations simplify to

k2 — MPH A} =c. 9)

A further simplification is to perform the calculation in the bubble wall frame. Our picture of

the phase transition is as follows. Bubbles of the Higgs field condensate nucleate and grow at a
first-order electroweak transition, and as they become large, they become approximately planar.
The wall frame is then defined as the frame moving with the bubble phase interface. Due to
the planarity, in this frame the mass matrix depends only on the average cootdigaks;. In

addition, as mentioned in the introduction, we are working in the thick wall regime, what makes

a gradient expansion reasonable. The system expanded up to first order in gradients reads (prime
denotes derivatives with respectdp

1 P
<k2 +ikd; + 502 — M? ZEMZ akZ>A< —c. (10)

Using the hermiticity conditiom <T = — A< this equation can be split into its hermitian and
antihermitian parts

L\ 1, i ;
<k2+ Zag>A S M2 %)= M 4] =0 (1)
kzazA<+l§[M2,A<]—%{Mz’,aszﬂ:C, (12)

where[-, -] and{-, -} denote commutators and anticommutators. In the following we refer to
these two equations as the constraint and kinetic equation.
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2.2. Lowest-order solution

Let us first discuss Eq§11), (12)for a two-dimensional mass matrix that is constant in space
and time. The mass matrix can be diagonalized by a unitary transformation and the equation in
this basis readsﬂ(/lg denotes the diagonalized mass matrix atgdthe corresponding Green
function that is non-diagonal in general)

1 1
<k2+za§)Aj - 5{M3. a5} =0, (13)
i

k9, A5 + E[Mﬁ, A7) =Ca. (14)

The question is, in which sense these equations can recover the solution in thermal equilib-
rium (6). We expect that the Kubo—Martin—Schwinger (KMS) equilibrium condition is then
satisfied, such that; = 0. We can use the derivative of the second equation to obtain

< l < 1 <
k2A; —@[Mﬁ,[Mﬁ,Ad]]—E{Mﬁ,Ad}:O, (15)
k0. A5 + %[Mﬁ,Aj] —0. (16)

Note that, upon the identificatiomm (mmT) with M2, these equations become identical to
the leading-order equations obtained for the chiral fermionic distribution funcgigng) in

Ref. [1]. The constraint equatiofi5) is algebraic, and it determines the spectrum of the quasi-
particles in the plasma. At this point it is helpful to introduce two projection operators

PTX=%[M3,[M§,X]], pP=1-pT, a7

whereA := v/Tr M2 — 4DetM?2 = Tr(03M?2) denotes the difference of the eigenvalueg.of
ando; (i =1, 2, 3) are the Pauli matrices. The properties of the projection operators

can be easily checked.

In the mass eigenbas}sTAj corresponds to the complex off-diagonal entries, Wﬁ’i%Aj
corresponds to the two real diagonal entries. If we spjjtin its transverse and diagonal parts
Al:=PTAZ, AP .= PP A3, and using the relations

{y? xPy=2vrPxP  {Y?. x"}=Trr)x", (19)
PPME=M7,  PTM5=0, (20)
the constraint equatior{d5) for the diagonal and transverse parts/gf decouple
(k? = M§)ag =0, (21)
A% 1
2 2\ AT _
<k —@—ETer>Ad =0 (22)

Both diagonal and transverse constraint equation are algebraic, and thus the solutions are given
by the appropriaté-functions, which represent sharp on-shell projections. The diagonal shell is
given by the standard dispersion relation, whose frequencielegﬁtraegol.2 =k 4+ m,2 whereml.2
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are the eigenvalues d¥12. The transverse parts fulfill a different on-shell condition, which can
be easily obtained frorR2). Note that these on-shell conditions are the same as the ones found
in [1] by solving the leading-order constraint equations for fermions.

The kinetic equatiorf16) reveals another difference between diagonal and transverse parts.
The kinetic equations read

k;9.AP =0, (23)

k0. AT + %[Mﬁ, all=o. (24)
The diagonal parts are constant in space and time, while the transverse parts rotate in flavour
space with the frequency A /k,.

In the equilibrium solution(6) the transverse entries vanish everywhere, but it is clear that
this oscillation dominates the dynamics of the transverse parts as soon as they are sourced by
higher-order contributions in the gradient expansion.

Alternatively, oscillations can be induced by the initial conditions. This is, for example, the
case in neutrino oscillations. Neutrinos are namely created as flavor eigenstates, and hence, from
the point of view of the mass eigenbasis, a mixture of diagonal and transverse states. Since in
most environments the damping of neutrinos is very small, neutrino oscillations persist for a long
time.

2.3. First-order solution and CP violation

Let us consider again the Kadanoff-Baym equatidrig, (12)to first order in gradients. In
the last section we saw that in lowest order the spectrum can be separated into the diagonal
and transverse contributions. One can show that in the first-order sysigm(12) however,
the different quasi-particles start to mix and the spectral functions acquire a finite width. This
is reflected in the fact that, at first order in gradients, the constraint equation is not any more
algebraic.

Fortunately, we do not need any information about the spectrum to solve the kinetic equa-
tion (12), since it does not explicitly contain arky dependence. When transformed into the
mass eigenbasis, the kinetic equation reads

' 1
ked, A5 4+ k[ 2, AF] + %[Mf,, A5]- 21{Mﬁ’ +[Z, M), 0, A5} =Ca, (25)
with
r=Uutr, (26)

and the matrixU (z) diagonalizes\?, M2 = UTM2U .
The next step is to determine the CP-violating contributions to the particle densities. By defi-
nition the CP conjugation acts as

AGP (X, k) =CPAWX, b)CP = A5(X, —k), (27)
XM:(XCL_XII)! lzlu:(kOv _kl) (28)
This transformation is in our E¢25) equivalent to

U— U, > — X, (29)



T. Konstandin et al. / Nuclear Physics B 738 (2006) 1-22 7

Now suppose that as in the chargino case our particles do not directly couple to the sphaleron
process. Then the CP-violating particle density has to be communicated to the other species
via interactions. Therefore, we are rather interested in the CP-violating densities in the diagonal
matrix elements of the Green function in the interaction eigenbasis. These are given by

Tr[Aa< —cPA=CP]=TiUua;UT — U a7 U™
=Tr[u(aj — a5°7) U, (30)

Tr{osA= — 03CPA=CP] =Ti[osUAFUT — 03U* AP U™]
=Tr[osU(A7 — 257U, (31)

where the latter equality in both cases follows from the fact m;@’ is hermitian. Hence-
forth, we consider in the mass eigenbasis the equation f&? := A<C¢P*. This Q-conjugation
coincides with CP-conjugation on the diagonal, but it is in addition basis-independent, since
it commutes with the diagonalization matrix. This fact was already usedl]irio identify
CP-violating quantities for mixing fermions before the Green function was transformed to the
interaction eigenbasis.

The equation forr << is given by (notice thaZ is antihermitian)

k0. AT + k[ X, A<Q]
- LIMB.479) - S (M + [5.M3]. 01,470 =a. (32

The only change with respect to the original equatiomgfis a sign-change in the oscillation

term[M3, A <Q] If we include higher-order terms in the gradient expansion additional Q break-
ing terms WI|| appear. Since in leading order CP violation is based on the oscillation effect, one
has to solve only the equation of the transverse parts and its Q conjugate. Collecting terms, that
are at most first order in gradients (deviations from equilibriily = A; — Aeg, Mf/ and X

are counted as of order one in the gradient expansion) we get for the transverse deviations,

kd.8A% + - [Md,SAd] Ca =S4,

k9,847 — E[Md,(mgg] —Cy =84, (33)
with the source term

Si=—k[Z. A5)" + (MZ 4[5, M3], . A5y (34)

This can be solved numerlcally using an ansatz for a flow solution as described [d]Ref.

SinceAjCP and A;Q differ only by transposition, this calculation in addition shows that the
diagonal entries in the mass eigenbasis will be CP-even up to first order in gradients.

3. Thedampingterm

If we solve Eq.(33) without the collision term, we will have problems to ensure that our
solution will be close to thermal equilibrium on both sides at a large distance from the wall. This
problem can be solved by introducing a damping term, that corresponds to statistical effects due
to the interaction of the particles with the heat bath. In the rest frame of the plasma, the damping
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should take place in the positive time like direction as, e.g., in the equation
k-0xA+kol'A=S. (35)

In the wall frame this leads t6; = y,, (ko — vwk;)I" A with the wall velocityv,,. For I" a
reasonable choice 8 = a T,, wherex denotes the coupling strength of the dominant interaction
of the species and. is the temperature of the plasma during the phase transition.

However, by introducing a term that breaks time reversal invariance, we run the risk of break-
ing CP explicitly by introducing new artificial CP-violating sources. We illustrate this by the
following simple example. Assume that a quanti%y; which denotes a CP-violating deviation
from equilibrium, fulfills the equation

0.W = exp(~2?)nge (k2 + m? ) = S(z. ko), (36)

and we are interested indk, W (z, k7).

To solve this equation, we can use the Green function method with the boundary condition,
such thatWw vanishes in the unbroken phase¢ —oo), where the wall has not yet influenced
the plasma. Then

W(z, k;) = /dz’g(z, S k), (37)
with the Green function
g(z,2)=0(z-2)), (38)

and [ dk W(z, k;) can be determined.

Since the solution does not vanish in the broken phase @¢-oo), we introduce a phenom-
enological damping term that breaks time invariance and our choice could be in analogy to the
considerations above:

k
8ZW+k—0FW:S(z,kZ). (39)
Z

The corresponding Green function is

_ [ ko/ke >0 exp(—(ko/k) T (z—2))0(z — 2,
8z, y) = {ko/kZ <0 —exp((ko/k) T (z = 2))0(Z —2),

and yields the desired result. On the other hand, if the source is dddltine picture changes.
Eq. (37) yields a solution, that is odd ik, and [ dk; W(z, k;) vanishes, while the solution of
(39) gives a non-vanishing result even after integration @ver

The same effect can be seen in the kinetic equd88h Without the damping term, the result
will be odd ink,, such that only the three component of the particle current

(40)

, . d*k
.]V(XM)ZZI kaA(Xuv ku) (41)
ko>0
is sourced. This is expected, since if this current is Lorentz boosted into the rest frame of the

plasma, the CP-violating particle densiff®™* ™™= y, v, jyafame yanishes in the static
wall limit, v, =0.

After the damping term is introduceg > ™is sourced even in the case of a static wall
profile, which is clearly an unphysical result for a CP-violating quantity. Notice that this source
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persists even in the limif;, — 0. In the following we keep only the source terms, which are not
induced by the damping term.

4. Transport equationsfor mixing charginos

In this section we recall the fermionic transport equations derivgt] ifDue to the additional
spinor structure of the Green function, we have to solve two equations for the left-handed and
right-handed densities separately. In addition, the Green functions have a spin quantumsnumber
As in the bosonic case, only the transverse parts oscillate and contribute to the CP-violating (or
better Q-violating) densities. In the mass eigenbasis the equatioﬂg}jprand Sg[; read (see
Eq. (78) in Ref[1])
i
2

[
kzazag{; + é[mg’ 58[2] + kOFth{; =8y, (43)

with the spin-dependent part of the sources

k.9:8g%5 + = [m3, 8855 + kolhdghy = Sk, (42)

2
Sk=—sE[VV" 0] = [V (m¥m =)V, goed
0 0
&
ko
k2 s
Si =S];_Z[UUT/,gO,eq] + E[U(m’mT _mmT/)Uth’eq]
0 0

{V(m"m)'V". gocq) "

k
- s—f{U(mmT)/UT,go,eq}T. (44)
4o
The functiongg eq denotes they coefficient of the Green function in thermal equilibrium and
mass eigenbasis

1

2 2
go)eq=27r|ko|8(k —md)fFD, fFDzeﬁk0+1-

(45)

The chargino mass matrix is given by

Mz gH>
= 46
" <gH1 Me > (46)
and diagonalized by the biunitary transformation
mg=Um VT, (47)

whereu . andM; are the soft supersymmetry breaking parameters.

To compare the result from these equations with the Bkl 4]it is helpful to examine the
contributions of the different sources in the local approximatign—~ oo, in which diffusion
transport is neglected. In this case, the resulting CP-violating vector and axial vector particle
currents behave as

Tr(o3js.) =S5, Tr(o®%j,) =S) + S5,

S8 = 2173 (Mape) (|Ma2l? — |ie|?) 0, (wauz)ny,.
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Sh = 2T 43 (Mape) (uf — u3) 9, (au2)n).

8§ = =217 23(Mapne) (uzd,u1 — u1d,u2) (ny, + ). (48)

whereu » = g|Hy 2|, andn?o), 77(30) andn(32) are integrals derived ifi],

d* ko, nk".m3,
r)3 ko “KBIP +(A/2)2

N2 =T>" 8(k* —m3 ).

ko>0
1 T?
77?”) = —(ﬂ(n)l + Nn)2)s 77(3,,) = —L(n(n)l — N(n)2)s (49)

andn = n(k*, ml ,) denotes the distribution function. The contributighsandsS; result from
the first term in the sourcéd4), while the terms. results from the second and third terms in the
sourceq44).

Comparing with Eq. (3.13) dfL4], we see that in local approximation our sources agree in
the characteristics of thedependence, but show different structure in momentum space.

To facilitate a comparison with the work on semiclassical force baryogenesis of Cline, Joyce
and Kainulainerj10], we quote the dominating local source at the second order in gradients in
the plasma fram§l,18],

Tr(1js7) = S§ = 20, T4 (Mape) (u202u1 + u12u2) ). (50)

Whereg(o) = n(0)|/Ho. This source corresponds to the CP-violating shift in the dispersion rela-
tion and dominates if the mass spectrum in the chargino sector is far from degentracy)

and in the limit of a small damping. It contributes in contrast to the first-order terms to the trace
of the chargino current.

5. Diffusion equations

Using our formalism, we can deduce the CP-violating particle densities in the chargino sector.
To evaluate the baryon asymmetry in the broken phase, we need to compute the density of left-
handed quarks and leptong in front of the wall. These densities couple to the weak sphaleron
and produce a net baryon number.

To determine how the CP-violating currents are transported from the charginos to the left-
handed quarks and leptons we use a system of coupled diffusion equations as defh&@d in
and later adapted if13,20]and[10]. The diffusion equations are

anszqné_pY[Z_Q_"_T_M} _Fm["_Q_"_T}
Y

kT k[-] kQ kT

eI, |22 T | gletnT (51)
ss kQ kT kB k]
n nr ng +ny no nr
=D o T r| =< _ =L
Uy g + Y|:kQ i i i| + m[kQ kT]
no nr ng+nr

Al |2———+9——|, 52
+ [ o kr O } (52)
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ng

ng nr ng—+n Ty

= — | =y +4r)—, 54

Lt ] (I +417) (54)

whereny denotes the density of the left-handed top and stop particlgshe remaining left-

handed quarks and squarks ang andn;, the sum and difference of the two Higgsino densities
2

ng, andny,. The quantities; are statistical factors defined by = kiuiT—é‘ (u; denotes the

chemical potential of specié}. For light, weakly interacting particlds ~ 2 (bosons) ok; ~ 1

(fermions), while for particles much heavier than k; is exponentially small. We use the values

vynj, = Dypnj + Fy|:

kQ%G, kr ~9, kp ~ 3, ky~12 (55)
corresponding to the light stop scengi®] and the diffusion constants gizl]
6 110
Dy~ —, Dy ~ . 56
q Tc h Tc ( )
For the particle number changing rates we tgké6,21]
I~ Ly~ 27 o~ =T ro~ 2, (57)
y’\’lo c m’\’lo cy h’\’20 C ;/,’\’10 c
and for the sphaleron raté2?]
Iy ~15x107%T,, I, ~6.0x107°°T,. (58)

The diffusion equationg1)—(54)are derived under the assumpti¢h8] that (a) the supergauge
interactions, which are of the weak strength, are in equilibrium; (b) the chargino asymmetry gets
transported to the quark sector via the strong top Yukawa interactions, while the wino asymme-
try does not contribute; (c) the gaugino helicity-flip interactions are in equilibrium, implying that
the chemical potentials for particles and their supersymmetric partners are equal. These approx-
imations imply that the main channel for baryon production is the conversion of the chargino
asymmetry into the top sector, which then bias electroweak sphalerons. The accuracy of these
approximations will be addressed elsewhere.

The solution of Eqs(51)—(54)is performed in several steps. First we use the transport equa-
tions in the chargino sector as describefllinto determine:;; andnj,. The resultis used as an in-
putin Egs(51) and (52)From these equations the left-handed particle dengitg 5np +4nr
can be determined and used as a source for the weak sphaleron process as degtB8béskm
also Ref[19]). The net baryon density is given by

0
Iy, 1571,
n3=—3U“ /dan(z)eXp<z 5 ws) (59)

w 4y,

and finally the baryon-to-entropy ratio is determined via

2
ng 27 3
E = — T
n B s 45 8effl,

To check, whether our solution of the diffusion equation is consistent, we used the dengities
andny as input for Eqs(53) and (54) The resulting deviations in the higgsino densities never

~51L1TS. (60)
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exceed 5% of the original densities. This is due to the fact that the higgsino diffusion constant
Dy, is rather large and that the oscillation partially suppresses an efficient transport of the quarks
and squarks. In this light the equations of the higgsinos decouple, since the oscillation provides
the shortest time-scale.

Note that in the wori23] a suppression was found for the parameters of the Standard Model
(k7 = 3 in Eqg. (55)). As explained, for the mixing sources we consider here, the oscillation
effectively decouples the dynamics of the charginos from the quarks/squarks. This allows us to
neglect the backreactions from the quarks/squarks and leads to the absence of the suppression
for k7 ~ 3. If the oscillation is not the shortest time-scale, i.e., [for — M>| <5 GeV, the
backreactions become large and our approach does not reproduce the suppreisbarad
would indeed over-estimate the result. In the following we will employ the parameters (§&q.
where this suppression mechanism is already ineffective.

6. Numerical results

In this section we will present numerical results of the transport and diffusion equations. The
Higgs vevs and thg angle are parametrized by

Hi(z) = H()sin(B(z)).  Ha(z) = H(z) coqB(2)). (61)

= b (- (a1~ ), @)
s - Boa(1an(af1- 2))) e

The parameters used are

T. =110 GeV, v(T)=175Ge\,

and

20
and the complex phase is chosen maximally
S(Maue) = M. (65)

We have checked, with the help of a program developed by the authors of B8] that the
values forv(T) compatible with present Higgs bounds typically lie in the range 165-185 GeV.
The exact value depends on parameters of the Higgs and squark sectors which affect our re-
sults only through this expectation value. We therefore have fixed the val@ofto its zero
temperature result. The uncertainty arising from our choice is below ten percent.

The values ofAB are deduced frorf25] for the different values ofz 4. The wall velocity is
taken to bev,, = 0.05 and the transport equations are evaluated using the fluid ansatz for the first
six momenta. The parameters of the diffusion equations are given in the last section.

The plotFig. 1 supports the claim that, within our approximations and for our choice of
parameters, the back-reaction of left-handed quarks and squarksy, on the charginos can
be neglected. The amplitude of the higgsino densities coming from the back-reaction is always
smaller than 3% and never leads to corrections of the baryon-to-entropy ratio larger than 5%.

In Fig. 2we plot the first-order sourcesy, Sh, Sy, and the second-order source (semiclas-

sical force)S?, as defined in Eq948)—(50) The first-order sources are roughly of the same
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Fig. 1. The original higgsino densities and the corresponding back-reactions. The parameters of the plot are
e =200 GeV,Mp =180 GeV,m 4 = 200 GeV.
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Fig. 2. This plot shows the first- and second-order sources as a functignwith M, = 200 GeV. The plot on the left
are the sources with the damping = o, 7, while on the right plot]” = 0.25x, 7.

magnitude, and they peak whai.| >~ |M>|, where they also switch the sign. The second-order
source varies slowly withu.| and tends to dominates when the differeficg — |M2| becomes

large. Note that when the damping is small, the first-order sources become more peaked around
|ue] = [M2|, but the amplitude of the baryon asymmetry does not significantly change. On the
other hand, the second-order source is about an order of magnitude larger in the right plot, imply-
ing that in the limit of a small damping the second-order source (semiclassical force) may result
in a viable baryogenesis. Since our damping term is phenomenological and flavor blind, it would
be premature to conclude that the second-order source cannot lead to a viable baryogenesis, unti
a more quantitative analysis of the damping term is performed.

The parameters chosen figs. 3 and 4are similar to the ones chosen|[it¥], in order to
facilitate comparison. In pldtig. 3the parameters 4 and M» are fixed whilew. is varied. The
maximum is not exactly ai. = M> as in[14], but rather close tp. ~ M2+ 20 GeV. The reason
for this difference is that in our case all sour¢48) are of similar order, while ifiL4], the baryon
asymmetry is completely dominated by a source term of f6fnin (48) that is proportional to
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Fig. 3. This plot shows1g = 10'% as a function ofs. with M, = 200 GeV and for several valuesafy in GeV.
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Fig. 4. This plot shows1o = 10'% as a function ofe., M2 = 11 — 20 GeV and for several values af4 (in GeV).

ApB in the parametrizatiof63) and hence suppressed for large values:g@fas shown if25].
Another difference is that our plot shows the suppressionfor> M»> what is expected since
in this case the quasi-particles have highly separated on-shell conditions and mixing should be
suppressed. We would like to emphasize that the peak arpurd M> + 20 GeV is due to
this suppression and not due to a resonance in the sources as it was in the publjitatibhs
26] and more recently ii29]. In the present work, the sources show a resonance but the CP-
violating densities do not since they are generated by the oscillations (sé&3qnd contain
near the degeneracy an additional proportionality to the mass splitting Fig. 4 the baryon
asymmetry is plotted near the maximal vajuex~ M, + 20 GeV. The maximum is reached near
e &~ 80 GeV in contrast tf14] where the maximum was,. ~ 250 GeV.

Finally, in Fig. 5two contour plots are shown with regions in th¥>, 1) parameter space
for the baryon asymmetry expressed in termg@f= 10'%. In these units the observed value



T. Konstandin et al. / Nuclear Physics B 738 (2006) 1-22 15

mp =200 =400

10 20 30 40 10 20 30 40
M Mo

Fig. 5. The baryon-to-entropy ratipg g = 10107} in the (M>, u.) parameter space from (0 GeV, 0 GeV) to (500 GeV,
500 GeV). For the left plot the valug 4 = 200 GeV is used, for the right plet 4 = 400 GeV. The black region denotes
n10 > 1, where baryogenesis is viable. The other four regions are bordered by the valggs ¢£0.5,0,0.5, 1},
beginning with the lightest color.

is close to unityy10,00s = 0.8—0.9. If 10 > n10,00s, the observed value can be attained simply by
adjusting the complex phase, which is in our calculation chosen to be maximal. The two plots
correspond to the choices, = 200 GeV andn 4 = 400 GeV.

In the following we will comment on differences between the formalism used in this paper
and the work14] that lead to the discrepancy in the numerical results. already mentioned
in a previous section, the authorg[ir] work in the flavour basis and write classical Boltzmann
equations using CP-violating sources whereas in this work the sources appear genuinely in a
basis-independent set of quantum transport equations. In this work the dampsgrimarily
introduced to obtain consistent boundary conditions and it corresponds to the helicity flif rate
in the diffusion equations diL.3]. We have excluded,-dependent terms that violate CP and the
limit I';, — 0 is straightforward.

In addition to the damping}, a Breit-Wigner width/; was introduced in the chargino spec-
trum in[13]. We have checked in the simpler bosonic case that] fes O, the present sources
and those if13] are related in a simple way. A detailed discussion is presentagpendix A
Of course, the ambiguity related to the magnitude of the source in the chargino diffusion equa-
tions remains in the formalism used in Rgfs3,14], where a phenomenological thermalization
time t or the classical Fick’s law had to be used to incorporate the sources into the diffusion
equations. In our formalism the magnitude of the source is completely specified.

Furthermore, we have checked that the effect of the Breit—Wigner broadening on our sources
is small. This effect can be modeled by replacing dH@inction in (45) by the corresponding
Breit—Wigner form. To account for the finitg in the transport and not just in the sources is on
the same level as a treatment of the collision terms in R&828,29]and it is outside the scope

1 There are some differences between the results presenfe8-ih5] Nevertheless, these differences do not affect
one of the main results §13-15] that is, the presence of a resonance in the minus current for alipé¢s= |u|. In the
present paper we have found that this effect is strongly suppressed by the oscillations induced by the off diagonal terms.
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of this paper. In principle, the collision term could as well yield additional CP-violating sources,
but a one-loop calculatiofi8] in a model theory of chiral fermions Yukawa-coupled to scalars,
indicates that the collisional sources are phase space suppressed with respect to our tree level
sources.

7. Conclusions and discussion

In this work we obtained the baryon asymmetry of the universe during the electroweak
phase transition in the MSSM using semiclassical transport equations derived in a first prin-
ciple approach from the Kadanoff—-Baym (KB) equations in REf. When the KB equations
are expanded in gradients in the general case of mixing fermions, the CP-violating deviations
from equilibrium can be sourced by a space—time-dependent Higgs background both at first and
second order in gradients. The first-order effects, which occur only in the presence of fermion
mixing, have been consistently determined including oscillations that are crucial for the dynam-
ics of the CP-violating densities. The second-order effects are dominated by the semiclassical
force[7,10,18] which is the leading-order source for single fermions coupled to a space—time-
dependent background. Unlike in some alternative approaches pursued in the literature, a nice
feature of the present approach is that sources and transport are treated within one formalism,
which allows for an unambiguous fixing of the amplitude of CP-violating sources in (diffusion)
transport equations. Moreover, this approach allows in principle for a systematic study of CP-
violating sources from collisions, and how thermal and off-shell effects may affect the sourcing
and transport of CP-violating charges.

Furthermore, since our treatment is based on a formalism that fully includes the effects of
mixing fermions, our results are manifestly basis-independent. This is in contrast to former work,
where the transport was treated either in mass eigen@ass 18] or in flavour basi$§13,14,16]
and which describes just transport of two physical degrees of freedom, ignoring any dynamical
effects arising from flavour mixing. For example, such a treatment of neutrino propagation would
lead to complete neglect of neutrino oscillations. Unlike in the neutrinos case, the chargino os-
cillations occur on a microscopic scale given by the split in the chargino eigenvalues and by the
chargino damping. In addition our formalism contains genuinely sources and transport such that
no phenomenological thermalization timénas to be introduced as was dong18,14,16]

While a broad-brush picture of the first-order sources resembles the sources found in Refs.
[13,14](this approach to supersymmetric baryogenesis was initiated by Huet and {pn
there are noteworthy differences. Firstly, we found that chargino flavour oscillations are of crucial
importance for identification and dynamics of the CP-violating sources. The oscillations tend to
suppress the calculated baryon asymmetry, in particular in the limit of a moderate damping, a fea-
ture that was not observed jh3,14] Secondly, while broadly speaking the first-order sources
share similar parametric dependences with the earlier work, they do differ in some important
aspects.

Firstly, as can be seen iRig. 3, all of the contributions to the BAU from our first-order
sources are of similar size, such that in the final BAU one sees the characteristics of all three
sources. In particular, the BAU peaks|at| >~ |M2| + 20 GeV, and then dies out rather fast for
large values ofu.|. On the other hand, the BAU obtained[i8,14] peaks at the chargino mass
degeneracylu.| >~ |M>|, it is about a factor 2 larger than in our calculation, and finally it does
not diminish for large values df..| as fast as in our calculation. Both discrepancies are due to
the oscillations. Far from degeneracy (large mass splittipnghe fast oscillations will suppress
the particle densities. Near the degeneracy (small mass splifirgP-violation is suppressed
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Fig. 6. This plot shows1o = 1019 as a function ofu., M2 = 1. — 20 GeV,m 4 = 150 GeV and for several values of
tang.

since it is generated by the oscillations as shown in(B8) and this suppression cancels the
resonance in the sources observefl#i.

Provided it is not too strong, the phenomenological damping term that we introduce does not
significantly affect the maximum strength of the first-order sources, unlike what was observed
in [13-15] On the other hand, the second-order sources are enhanced in the limit of a small
damping, as shown iRig. 2 For example, for a moderate dampinig~ «,, T, the first-order
sources dominate in most of the parameter space. The second-order source is small, such tha
it cannot alone be a viable source for baryogenesis, even when the CP violation in the chargino
sector is maximal. When damping is wedk~ 0.25x,, T, the second-order source dominates in
a large section of parameter space. For even smaller valuEgié semiclassical force source
alone represents a viable baryogenesis source, implying that our source is somewhat larger than
what was found in Ref{10], which agrees quite well with the BAU found [27], based on a
study of semiclassical force source obtained in the mass eigeffib8kis

Perhaps the most severe constraints on the supersymmetric baryogenesis in near future are
expected from electric dipole moment (EDM) measurements. Already the current constraints on
the EDM of the electrori32] place rather strict constraints on the CP-violating phases in the
chargino mass matrix, as can be seen from Fig. 4 in Béf. or Fig. 6 in[31] that claims a
little less restrictive bounds. For example, for = 200 GeV, My, = 170 GeV and tapg = 6
the CP-phase is restricted to be less than abgl@ and Y10, respectively, implying that, when
our numbers are taken at the face value, the baryogenesis mechanism presented here is by abot
factor 5-6 too weak to account for the observed BAU. Similar conclusion is reached for other
values of|u.| and|M>| since both the EDMs and the produced baryogenesis decreases with
decreasing chargino masses. We would like to emphasize that most of the parameters are chosel
in order to produce as much baryon asymmetry as possible, e.g., the values used for the wall
velocity v,, and the wall widthL,,. The only relevant parameter we have not varied so far is
tang. Smaller values of taf lead to less restrictive EDMs and at the same time to more baryon
asymmetry as shown iRig. 6. On the other hand, tahdue to the mass of the lightest Higgs is
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restricted to be in the rand#3]

5 < tang, (66)

such that we are not allowed to enter the region with smaller values gf taraddition, even for
tang = 3 our result is still a factor 2 to small. Note that this is a very different conclusion from
the one reached in RgfL5], where an ample region of parameter space was claimed to result in
a successful baryogenesis in the MSSM.

Based on our analysis, can we conclude that the MSSM baryogenesis is ruled out? At least, a
factor 2 can be accounted for based on the inaccuracies in the parameters in diffusion equations,
as well as from approximations that lead to the set of diffusion equations considered here, but
unlikely a factor 5/10]. Nevertheless, it would be premature to claim that the MSSM baryoge-
nesis is ruled out, since the chargino-mediated baryogenesis studied here does not exhaust the
possibilities of the MSSM. Recall that neutralinos mediate baryogenesis as well, and that their
contribution may be as important or even more important than that from charginos. Furthermore,
in the complete set of diffusion equations, there may be additional channels, which lead to baryon
production, as of yet unaccounted for. Finally, the EDM analysis given here is not conclusive.
For larger values ofi 4 and due to the possibility of fortuitous cancellations between different
EDM contributions, the value of the electron EDM could be reduced relative to the generic values
used abov§37]. Hence, electroweak baryogenesis seems to be still possible in the MSSM and in
this respect we agree with the conclusion drawfili+15] However, we would like to empha-
sis two robust and novel consequences resulting from the quantum treatment of transport in the
chargino sector: the BAU is strongly suppressed away from the chargino mass degeneracy and
one requires even close to the degeneracy a CP-violating phase of order unity, more precisely,
arg(Mou.) > 0.2.

Modifications of the MSSM with an additional singlet (NMSSM) also contain the prominent
chargino channels. As shown [B83,34] one easily can get a strong first-order phase transition
and also spontaneous CP-violation at the temperafuraf the phase transition not affecting
the EDM atT = 0. This then allows for a satisfying baryon asymmetry without squeezing the
(unfortunately many) parameters. One can also think about extensions of the MSSM that not
forbid tang ~ 1 [35] or modifications of the Standard Mod@6], where the chargino system
does not appeatr, but of course again quantum-transport is important.

In summary, our numerical solution to the diffusion equatigiig—(54)shows that a success-
ful baryogenesis at the electroweak scale from charginos of the MSSM is possible only when
CP violation is quite large, and near the resonanece— M2| <« 50 GeV,M>, u. <« 500 GeV.

As long as the first-order sources dominate, due to the oscillations, this picture persists also for
much stronger sources, which is to be contrastdd3e15]

Our conclusion is that, in purely chargino-mediated MSSM baryogenesis the capability to
explain the observed baryon asymmetry is strongly constrained by the current electron EDM
bounds.
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Appendix A. Comparison of bosonic sources

In this appendix we show how the sources, presented in the current work, relate with those
of Refs.[13,14]in the bosonic case and in the limit of zero widthis order to inspect this we
make use of the Kadanoff-Baym equations for the full 2 Green functions of the Schwinger—
Keldysh formalism. These equations are obtained from Eds, (12)if we substituteA< by
the full 2 x 2 propagator,

ATTH AT Al A<
A= (A_+ A__> = <A> Al > ’ (A1)

insertunity in the r.h.s. of11), and set the collision term ¢12)to zero,

1 1 i
(k2 —~ ZB)Z()A —~ é{/\/12, A} + 21[aijZ, o A]=1, (A.2)
k-dxA+ ;[MZ, Al+ %{a}f/\/tz, ' A}=0. (A.3)

In [13] the corresponding Dyson—Schwinger equation4ds iteratively solved as an expan-
sion in powers obX M2,

A= AO L AD 4 (A.4)

whereA© is the leading-order equilibrium propagator, antt = O(3¥ M?) denotes a first-
order correction. Upon performing a Wigner transform over the spatial variaﬁlé@‘,*”'k,
identifyingz = (x + y)/2 = X, and transforming into the flavour basis, the first-order correction,
AD = AD (k; X) given in Eq. (2.5) of Ref[13] becomes

AD _ %[(B,f‘A(O))(afsz)A(O) — A0 (5X M2)al 4O (A.5)

In the approach advocated[itB3] in the calculation of the sources one is not interested in long
range effects, and hence the tes ™ in the constraint equatiofd.2) andk - 9y AD in (A.3)
were considered of second order, and thus have been neglected. Frofh]Refd this work
we know however that, when the dynamics is taken account of, in the case of mixing scalars
and fermions the flavour oscillations mess up the derivative expansion, such that only the terms
containing spatial derivatives acting on the mass term are genuinely derivative-suppressed.
Upon inserting(A.4) into (A.2), (A.3) and using the prescription for derivative counting of
[13], we get for the leading-order propagator,

1
K240 - S {MPA0) =1, (A-6)

which is solved by the thermal Green function, which commutes with The first-order equa-
tions are

RCAD _ %{Mz A(l)} + %[35/\/‘2’ 3//:A(0)] =0, (A.7)

: 1
keoxA@ 4 S[MP AW ]+ 2 {9 M2 0 4@ =0, (A.8)

2 1t has been checked that the numerical difference between the cases with and without finite width is smaller than
2-3%.
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By a judicious use ofA.6) and its derivatives,
(k2 = MA@ =1= 2O (k%2 - M?),
(K2 = M) A0 = (X M?) 2@, (3XA@) (k2 — M?) = 2@ (¥ M?),
(k2 — M?)3f A0 = —(2k") 2@ = (3} AQ) (k? — M?), (A.9)

one finds that the first-order correcti¢h.5) can be recast as

AW = (3 A0) (k2 = M2)3} A — (9 A0) (k2 = M?) 3}t O]
=—i[AQ%k -9y A© — (k- 3x2A@)2©]. (A.10)

It can be easily shown that, when this is inserted {#d), (A.8), one obtains two consistent
equations forA™®

Note that taking moments of the kinetic equati@n8) allows for a simple prescription on
how the CP-violating source originally calculated 8] enters the relevant transport equations
for squarks. The term® enters through the commutatfovt?, A®]in (A.8), while[13] used a
heuristic prescription for the sources based on the Fick’s law and interpreted the diagonal entries
of AW in the interaction basis as sources for the classical diffusion equations.

Note further that, even though we have rephrased the souft®]ah our language, it remains
a nontrivial matter to establish the exact correspondence between the soi@apipearing in
(A.8) and the source calculated in this work. Our source is in principle obtained by the means of
the kernel of Eq(33) acting upon(34), which is thus of a complicated nonlocal form, and bares
no simple relation to the source(A.8), apart from a rather superficial similarity, stemming from
the fact that the kernel of E¢33)is a nonlocal functional of the commutato¥12(z’), -] acting
upon(34) (see Ref[1]).

Finally, we emphasize that the difference in how the sources couple to the diffusion equations
cannot alone explain a different baryon asymmetry obtained by the two methods, but also the
presence of the oscillatory terms.

As regards the case of mixing fermions, we expect that the sources can be related in a similar
fashion. Because of the spinor structure however, the comparison for fermions is a nontrivial
generalization of the bosonic case.
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