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Abstract

A model of quark mass matrices from six dimensions, which is nearly democratic in natu
which is previously constructed by two of us (PQH and MS), is studied in detail in this manus
We found that not only it fits all the six quark masses as well as the CKM matrix but also that
exists a region in the allowed parameter space of the model where the constraint on the paraθ̄

of the strong CP problem is satisfied. This region itself puts a constraint on the CKM Parameρ̄

andη̄. As such, through our analysis, there appears to be a deep connection between strong a
CP in this model.
 2004 Elsevier B.V. All rights reserved.

PACS: 12.15.Ff; 12.60.Cn; 13.20.Eb; 14.60.Pq; 14.60.St; 14.70.Pw; 11.10.Kf

1. Introduction

The search for a plausible model of fermion masses is a continuing quest in p
physics. In particular, the quark sector is a fertile ground to test various models since
is there that one has the largest amount of information: quark masses, CKM angl
phase, and it is in this sector that most models turn their attention to.

Two of us have recently constructed a model of fermion masses[1] in which the
mass matrix is almost of the pure phase form and is constructed out of four plu
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extra compact spatial dimensions. As shown in[1], one extra compact spatial dimensi
was needed to give a democratic mass matrix and another one was needed to m
matrix elements complex. In[1], an almost pure phase mass matrix was found to take
form M = gY v/

√
2(1− �ij )exp(iθij ) with i, j = 1,2,3, �ij � 1, andθij � 1, although

Ref. [1] contains a more general result. Our motivation for that work was based o
attempt to give a theoretical basis for the so-called pure phase mass matrix (PPMM)
(similar to the previous form but with�ij = 0) of Refs.[2,3] which, at the time of its
construction, was quite successful in fitting the various angles and masses. In so
we arrived at a mass matrix which contains the pure phase form as a particular lim
we shall see below, the general result of Ref.[1] allows us to be able to fit the late
determination of the CKM elements[4]. Along the way, as stipulated in Ref.[1], we
found a special region, in the allowed parameter space that fits the CKM matrix, w
the parameter̄θ of the famous strong CP problem can be found to satisfy the experim
bound θ̄ < 10−9. This result is somewhat surprising since it is not at all evident
solutions of our model that fit the mass spectrum and the CKM matrix could also
values ofθ̄ below the experimental bound. This connection between weak and stron
is certainly very intriguing and will be the subject of our focus at the end of the pape

The organization of the paper will be as follows. We first briefly review the constru
of a democratic mass matrix (DMM) in five dimensions. We then summarize the s
points of the model of Ref.[1]: its construction in six dimensions and the resulting qu
mass matrices. Next we enumerate and describe the parameters used in the numer
analysis of the mass matrices which is carried out in the section that follows. There w
will show the allowed region in our parameter space where solutions are found to fi
the mass spectrum and the CKM matrix. Finally, we discuss a subspace in the a
region where the bound̄θ < 10−9 is obeyed. In particular, we present some thoughts
the possible physics which might be responsible for this behaviour.

2. Democratic mass matrices from five dimensions

Before discussing the results of Ref.[1], let us first review how a democratic ma
matrix (DMM) [5] arises in the case with one extra compact dimension. A D
is a special case of an almost PPMM with�ij = 0, θij = 0, namely one in which
all matrix elements are unity, apart from a common factor, and hence the
“democratic”. As described in[1], in order to obtain a democratic mass matrix and to av
unwanted Flavour-Changing Neutral Current processes (FCNC), we imposed the fol
permutation symmetries on the action:S

Q
3 ⊗ SUc

3 ⊗ SDc

3 , with Q → S
Q
3 Q, Uc → SUc

3 Uc

andDc → SDc

3 Dc . Q(xα, y), Uc(xα, y), Dc(xα, y) are the five-dimensional Dirac field
whose left-handed zero modes are given, respectively, byq(xα), uc

R(xα), and dc
R(xα).

(For convenience, left-handed fields are used throughout[1] and in this paper with the las

two fields representing actually the two quarkSU(2)L singlets.) The extra dimension is
compactified on anS1/Z2 orbifold. The action which obeys this permutation symmetry is
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the sum of two terms,S0 andSYuk, where

(1)

S0 =
∫

d5x Q̄i

(
i/D5 + f φ(y)

)
Qi + Ū c

i

(
i/D5 + f φ(y) − mU

)
Uc

i

+ D̄c
i

(
i/D5 + f φ(y) − mD

)
Dc

i ,

(2)SYuk =
∫

d5x kU

∑
i

QT
i C5H

∑
j

Uc
j +

∫
d5x kD

∑
i

QT
i C5H̃

∑
j

Dc
j + h.c.

In Eq. (1) D5 is the covariant derivative. (The gauge fields are supposed t
uniformly spread along the fifth dimensiony inside the thick brane.)φ(y)δij is the
vacuum expectation value VEV for the background scalar fieldΦ(xα, y). The attractive
proposal of[7] to localize chiral zero modes at different points along the extra dimen
y was adopted in[1]. As a result,mU andmD are the five-dimensional “masses” whi
determine the locations ofuc

R(xα) anddc
R(xα) alongy. (As pointed out in Ref.[1], in

order to have an invariant “mass term” under theZ2 symmetry, one has to require
“mass reversal”m → −m. The behaviour ofm underZ2 could come, for example, i
a model where the “masses” are generatedby the radiative corrections to the VEVφ(y),
φ(y) → φ(y)+δφ with δφ being independent ofy. BecauseΦ(xα, y) → −Φ(xα,L5−y)

underZ2 symmetry, at the same timeδφ → −δφ originating in this “mass reversal”.) I
Eq. (2)kU andkD are the Yukawa couplings in five dimensions which have been ch
real and flavor independent andH(xα, y) is the five-dimensional SM doublet Higgs fie
whose zero modeh(xα) is assumed to be uniformly spread alongy inside the thick brane
HereC5 = γ0γ2γy is the charge conjugation operator in five dimensions.

For the purpose of keeping track of the dimensionalities of various objects, let us r
ourselves that, in five dimensions, the Yukawa couplingkU has a (mass) dimensionM−1/2.
A scalar field, in five dimensions, has a dimensionM3/2. The zero mode of the SM Higg
field can be written asKh(xα) whereh(xα) is the usual 4-dimensional Higgs field wi
dimensionM, and therefore the constantK has a dimensionM1/2. In dimensionally
reducing the above action to four dimensions, the following dimensionless combin
appears in the Yukawa term:

(3)gY,u ≡ kUK.

The effective action for the Yukawa term of theUp sector in four dimensions can no
be written as

(4)Seff
Yuk =

∫
d4x gY,u

∑
i,j

qT
i

(
xα

)
h
(
xα

)
Cuc

j

(
xα

)∫
dy ξi

q (y)ξ
j
uc (y) + h.c.,

where a similar expression holds for the Down sector. As stressed in Ref.[1], since all the
qi ’s are located at the same place inside the brane, and similarly for all theuc

i ’s. The wave

function overlap
∫

dy ξi
q (y)ξ

j
uc (y) is independent ofi, j . The Yukawa action now become

eff
∫

4 eff T
(

α
) (

α
)(1 1 1)

c
(

α
)

(5)SYuk = d x gY,uq x h x 1 1 1
1 1 1

Cu x + h.c.,



own in
enario

on,
ugh a
in an
ions
d the
etry,

e main
86 P.Q. Hung et al. / Nuclear Physics B 692 (2004) 83–109

wheregeff
Y,u is given by

(6)geff
Y,u = gY,u

∫
dy ξq(y)ξuc(y),

and similarly for the down sector

(7)geff
Y,d = gY,d

∫
dy ξq(y)ξdc (y).

FromEq. (5)one obtains the democratic mass matrix (DMM)

(8)M = gY
v√
2

(1 1 1
1 1 1
1 1 1

)
,

which has eigenvalues 3gY v/
√

2, 0, 0, with v ∼ 246 GeV. The DMM ofEq. (8) does
not reproduce the right mass spectrum and the right CKM matrix. What has been sh
Ref.[1] is that by adding another compact extra dimension one can obtain a viable sc
represented by an almost-PPMM.

3. Almost pure phase mass matrices from six dimensions

3.1. The action

The main idea of Ref.[1] is that by introducing a sixth compact extra dimensi
and by requiring that the background scalar field couples to the fermions thro
Yukawa interaction which is non-local along that extra dimension, one can obta
oscillatory behavior for the fermion wave function along the sixth dimension. Ferm
are delocalized along the sixth dimension, in contrast with the fifth dimension, an
oscillatory behavior of the wave functions, together with the breaking of family symm
has the effect of producing phases in the mass matrix. Let us now summarize th
results obtained in Ref.[1]. We first rewrite more compactly the action given in Ref.[1]
which is the sum ofS0 andSYuk where

S0 =
∫

d6x

[
Q̄i i/D6Qi + Q̄i(z)

(
f

2
φi(z) − mQ,i

2

)
Qi(L6 − z)

− Q̄i(L6 − z)

(
f

2
φi(z) − mQ,i

2

)
Qi(z) + Ū c

i i/D6U
c
i

+ Ū c
i (z)

(
f

2
φi(z) − mU,i

2

)
Uc

i (L6 − z)

− Ū c
i (L6 − z)

(
f

2
φi(z) − mU,i

2

)
Uc

i (z)(
f mD,i

)

+ D̄c

i i/D6D
c
i + D̄c

i (z) 2
φi(z) −

2
Dc

i (L6 − z)
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− D̄c
i (L6 − z)

(
f

2
φi(z) − mD,i

2

)
Dc

i (z) + f ′Q̄iΓ7φ
′(y)Qi

(9)+ Ū c
i Γ7

(
f ′φ′(y) − mU

)
Uc

i + D̄c
i Γ7

(
f ′φ′(y) − mD

)
Dc

i

]
,

and

(10)

SYuk =
∫

d6x kU

∑
i

QT
i C6H

∑
j

Uc
j +

∫
d6x kD

∑
i

QT
i C6H̃

∑
j

Dc
j + h.c.,

whereC6 = Γ0Γ2Γz is the charge conjugation in six dimensions. (The gamma matric
six dimensions can be obtained in Ref.[1].) In Eq. (9)we expressed the dependence fr
z only for the non-local interaction terms. The important point here is that while t
interactions will produce an oscillatory behavior for the fermion wave functions along th
sixth dimensions, the local terms, which are built usingΓ7, are found to be responsible f
localizing the fermions along the fifth dimension. The above actions are invariant
the family permutation symmetrySQ

3 ⊗ SUc

3 ⊗ SDc

3 .
The vacuum expectation values (VEV) for the background scalar fieldsΦ andΦ ′ are

given by

(11)
〈
Φ

(
xα, y, z

)〉 =
(

φ1(z) 0 0
0 φ2(z) 0
0 0 φ3(z)

)
,

and

(12)
〈
Φ ′(xα, y, z

)〉 =
(

φ′(y) 0 0
0 φ′(y) 0
0 0 φ′(y)

)
.

As in Ref. [1], the family symmetry is broken by the background scalar fieldφi(z)δij

and by introducing different non-local “mass terms”mQ,i , mU,i andmD,i for each family.
To break the family symmetry together with the left right symmetry along the s
dimension will allow us to reproduce the right mass spectrum and the right CKM ma

As shown in Ref.[1], the absence inEq. (9)of local interactions of the form̄Ψ ΦΨ ,
which will localize the fermions wave function along the sixth dimension, is obtaine
introducing the discrete symmetryQ

ψ
(
xα, z

) → Qψ
(
xα, z

) = Γ7ψ
(
xα, z

)
,

ψ
(
xα,L6 − z

) → Qψ
(
xα,L6 − z

) = −Γ7ψ
(
xα,L6 − z

)
,

(13)Φ
(
xα, z

) → QΦ
(
xα, z

) = Φ
(
xα, z

)
.

As pointed out in Ref.[1] the realization of theQ-symmetry ofEq. (13)implies that the
introduced orbifold for the compactification isS1/(Z2 × Z′

2) instead ofS1/Z2. This also
implies that the physical space is[0,L6/2] instead of the initial support[0,L6]. The non-

local terms ofEq. (9) and the local terms containingΓ7 are invariant under the above
Q-symmetry.
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3.2. The mass matrix

From the Yukawa action ofEq. (10)one can now obtain the effective action in fo
dimensions

Seff
Yuk =

∫
d4x gY,u

∑
i,j

qT
i

(
xα

)
h
(
xα

)
Cuc

j

(
xα

)∫
dy ξi

5,q(y)ξ
j

5,uc(y)

(14)×
∫

dz ξ i∗
6,q(z)ξ

j

6,uc (z) + h.c.,

where we considered only the up sector, but equal considerations hold for the down
UsingEqs. (5) and (6)one can rewriteSeff

Yuk as

(15)Seff
Yuk =

∫
d4x geff

Y,uq
T
(
xα

)
h
(
xα

)(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
Cuc

(
xα

) + h.c.,

where

aij =
∫

dz ξ i∗
6,q(z)ξ

j

6,uc(z)

= 1

L6

L6∫
0

dzexp
[−i

(
2fVi ln

(
cosh(µiz)

)/
µi − 2fVj ln

(
cosh(µjz)

)
/µj

(16)− (mq,i − mu,j )z
)]

.

In Eq. (16)we have used forξ i
6,q andξ i

6,uc , respectively,

(17)ξ i
6,q = 1√

L6
exp

[
i
(
2f Vi ln

(
cosh(µiz)

)/
µi − mq,iz

)]
,

(18)ξ i
6,uc = 1√

L6
exp

[
i
(
2fVi ln

(
cosh(µiz)

)/
µi − mu,iz

)]
,

which correspond to a VEVφi(z) = Vi tgh(µiz) with µi = √
λ/2Vi .

As pointed out in Ref.[1], L6 is now a generic symbol for the length of the physi
space, which isL6/2 for the orbifoldS1/(Z2 × Z′

2). FromEq. (14)one obtains the mas
matrix

(19)M = geff
Y,u

v√
2


a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

Following Ref.[1], if one now uses the linear approximation for the kink, which is v
for 1/µi ∼ O(L6), all domain wall thicknesses alongz are of the size of the compa

dimension, one can obtain for the elementsaij the form(1 − �ij )eiθij with �ij � 1 and
θij � 1. In the linear approximation for the kink one obtains the following expressions
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for aij

(20)aij = 1

L6

L6∫
0

dzexp
[−i

(
�µ2

ij z
2 − �mij

)]
,

where

(21)�µ2
ij ≡ 1

2
(2fViµi − 2fVjµj ),

(22)�mij ≡ mq,i − mu,j .

As shown in Ref.[1], one can explicitly carry out the integration and obtain

(23)aij =
√

π

2

erf
(

i(2�µ2
ijL6−�mij )

2
√

i�µ2
ij

)
+ erf

(
i�mij

2
√

i�µ2
ij

)
√

i�µ2
ijL6

exp

(
i
(�mij )

2

4�µ2
ij

)
.

Now if
√

�µ2
ijL6 ≡ xij � 1 and�mij ≡� 1 one can expandEq. (23)giving

(24)aij =
(

1− 2

45
x4
ij − 1

24
y2
ij + 1

12
x2
ij yij

)
exp

(
i

(
yij

2
− x2

ij

3

))
+O

(
x8
ij , y

4
ij

)
,

which has the desired almost-PPMM form. It has to be stressed here that the exp
for the mass matrix which has been used to make our numerical simulation is the on
Eq. (16). This implies that when we looked for a solution in the parameter space, w
not have to restrict ourselves to the particular range of values for the parameters whe
the linear approximation for the kink andEq. (24)were valid.

As pointed out in Ref.[1], by looking at Eqs. (19) and (16)one can make th
important following consideration. If one introduces the same “mass” term forleft andright
components for each familyi, which means thatmq,i = mu,i (and similarlymq,i = md,i

for the Down sector), then the mass matrix ofEq. (19)is Hermitian, i.e.,aij = a∗
ji . In this

particular case the mass matrices for the up and down sectors differ only by the Y
couplings and one will not be able to reproduce a realistic mass spectrum. Moreov
diagonalization matrices are the same, i.e.,VU = VD, andVCKM = V

†
UVD becomes just the

unit matrix. So in order to obtain a realistic mass spectrum and CKM matrix one ne
introduce different “mass” terms forleft andright components at least for one sector. W
will be shown in the following is that we will be able to reproduce the right mass spec
and the right CKM matrix for the case in which both up and down mass matrices a
Hermitian. While Hermitian mass matrices do not give a realistic scenario, they ha
important property of having a real determinant. This implies that the argument of

determinant is zero. As pointed out in[1], this fact could form the seed for a solution to the
strong CP problem.
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4. Description of the parameter space

In this section we are going to describe the parameter space for the model of R[1].
The particular case we consider has 10 parameters. What has to be said here is
started our numerical simulation considering cases with a higher number of paramet
and only after examining the results obtained, we were able to reduce the paramete
to 10. This, by the way, is the same number of parameters found in the quark sect
masses and four CKM parameters. The 10 parameters we are considering are the followin

• geff
Y,u andgeff

Y,d defined, respectively, byEqs. (6) and (7);
• µ1, µ2 andµ3 whose inverses give the thickness of the domain wallsφ1(z), φ2(z) and

φ3(z) of Eq. (11);
• εq,1 = mq,1

√
λ/2/2f andεq,2 = mq,2

√
λ/2/2f with mq,1 the “mass” term for the 1s

family left component andmq,2 for the 2nd and 3rd family left components;
• εu,2 = mu,2

√
λ/2/2f andεu,3 = mu,3

√
λ/2/2f the “mass” term respectively for th

2nd and 3rd family right components,εu,1 = 0;
• �ε being the common split inm

√
λ/2/2f of εd,i = εu,i − �ε with respect toεu,i .

As can be seen from the particular choice of parameters the background scalar p
does not break the left–right symmetryφ

q

i = φu
i = φd

i but on the other hand breaks t
family symmetryφi 	= φj . The left–right symmetry is broken by choosingεq,i 	= εu,d,i

and by choosing differentεi for different indicesi one breaks additionally the famil
symmetry. The choiceεq,3 = εq,2 comes from the analysis of the same model in the c
of 11 parameters, where all theεq,i were different, and which gave as a resultεq,3 
 εq,2.

5. Results for mass matrices from six dimensions

In this section we will present the results obtained for the parameter space and for
quantities ofTable 1.

We should point out that each solution that we found corresponds to a point
parameter space with all the fitted quantities ofTable 1being in the experimental rang
[4,8]. In Figs. 1, 2 and 3we give the masses of the 6 quarks in GeV evaluated a
MZ scale for three different cases corresponding to three different ranges of arg(detM) =
arg(detMu)+arg(detMd). It will be clear in the next section why it is interesting to look
the quantity arg(detM) when we present a scenario for a possible solution to the stron
problem. We choose to evaluate the running massesmq(µ) at the scaleµ = MZ , because
the CKM matrix parametersV CKM

ij are given atµ = MZ . This is a common approach fo
quark mass matrix phenomenology. See Ref.[9] for a review of the running masses and t
renormalization group equation that describes the evolution of the running quark m
mq(µ) with the scaleµ. The edges of each box inFigs. 1–3give the uncertainties for th
masses, which depend not only on the errors ofthe input parameters for the renormalizat

group (RG) equation, but also on the error of the parameter which governs the flow itself,
i.e., the strong couplingαs(MZ).
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Table 1
Central values and uncertainties for the masses of the 6 quarks
evaluated atMZ , for the two ratiosmu/md andms/md , for the
absolute values of the CKM matrix elements, the CP parameteres
ρ̄ , η̄, sin 2β andγ

xi 〈xi 〉 |xmax
i

− xmin
i

|/2

mu 2.33×10−3 0.45×10−3

mc 0.685 0.061
mt 181 13
md 4.69×10−3 0.66×10−3

ms 0.0934 0.0130
mb 3.00 0.11
mu/md 0.497 0.119
ms/md 19.9 3.9
|Vud | 0.97485 0.00075
|Vus | 0.2225 0.0035
|Vub | 0.00365 0.00115
|Vcd | 0.2225 0.0035
|Vcs | 0.9740 0.0008
|Vcb | 0.041 0.003
|Vtd | 0.009 0.005
|Vts | 0.0405 0.0035
|Vtb| 0.99915 0.00015
ρ̄ 0.22 0.10
η̄ 0.35 0.05
sin 2β 0.78 0.08
γ 59◦ 13◦

In the following we present two numerical examples corresponding, respective
arg(detM) ∼ O(1) and arg(detM) < 2 × 10−10. For each numerical examples we w
also give the corresponding parameter space. Below we rewrite the expression for th
matrix to make clear the role of each parameter.

Mij = gYeff
v√
2

∫
dz ξ i∗

6,q(z)ξ
j

6,uc (z)

= gYeff
v√
2

1

L6
exp

(
−i2f

√
λ

2

)

(25)×
L6∫

0

dzexp
[−i

(
ln

(
cosh(µiz)

) − ln
(
cosh(µjz)

) − (εq,i − εu,j )z
)]

,

whereεq,u,i = mq,u,i

√
λ/2/2f with µi = √

λ/2Vi . In our numerical simulation we wil
ignore the phase factor exp(−i2f

√
λ/2) in Eq. (25), which is independent of the indice

i, j . All results correspond toL6 = 1.
One word of caution is in order here. In comparing our results with the phenomen

ical extractions of the CKM matrix elements, we take into account the following po

(1) The magnitudes ofVub andVcb are obtained fromtree-level decays and are to a very
good approximation independent of contributions fromnew physics. (2) If one were to use
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Fig. 1. Solutions for the 6 quark masses corresponding to 10−1 < |arg(detM)| < 5 × 10−1. The masses in
GeV are evaluated at theMZ scale. The range for each mass as given inTable 1is defined by the edges of th
corresponding window.

the unitarity triangle parameters̄ρ andη̄ for comparison, one has to assume that poss
new physics contributions (through loop effects for example) conspire to bring the
(ρ̄, η̄) of the unitarity triangle to within the allowed band of the “unitarity clock”. In t
following we will use both points 1 and 2 to make our comparisons with experiments

First, we give a numerical example corresponding to the case arg(detM) ∼ O(1). In
Eqs. (26)–(30)we give the parameters space for the first case

(26)µ1 = 7.378, µ2 = 8.460, µ3 = 8.531,

(27)εq1 = −8.262, εq2 = 5.090, εq3 = 5.090,

(28)εu1 = 0.000, εu2 = 1.120, εu3 = 1.198,

(29)εd1 = −2.044, εd2 = −0.924, εd3 = −0.846,

(30)gYuv/
√

2 = 152.31, gYdv/
√

2 = 24.48.
We have decided to present the parameter space in a more readable way but it is important
to remember that the number of independent parameters is 10. InEqs. (31) and (33)we
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Fig. 2. Solutions for the 6 quark masses corresponding to 10−3 < |arg(detM)| < 10−1. The masses in GeV ar
evaluated at theMZ scale. The range for each mass as given inTable 1is defined by the edges of the correspond
window.

give the numerical expressions for the up and down quark mass matrix for the first ca
in Eqs. (32) and (34)the corresponding mass eigenvalues. As one can see, the elem
the mass matrices, although not equal to each other in magnitudes, are of the same ord
revealing their democratic origins

(31)

Mu = 152.31 GeV

×

0.1111+ 0.1690i −0.1937− 0.4167i −0.1852− 0.4377i

0.1039+ 0.1750i −0.1857− 0.4221i −0.1765− 0.4430i

0.1031+ 0.1758i −0.1846− 0.4238i −0.1753− 0.4446i


 ,

(32)mu = 0.0023 GeV, mc = 0.624 GeV, mt = 183.0 GeV,

Md = 24.48 GeV

×

−0.0105+ 0.0003i −0.0424− 0.0086i −0.0544− 0.0121i

−0.0090+ 0.0041i −0.0442− 0.0060i −0.0563− 0.0099i


 ,
(33)
−0.0081+ 0.0043i −0.0451− 0.0060i −0.0572− 0.0100i
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Fig. 3. Solutions for the 6 quark masses corresponding to 10−12 < |arg(detM)| < 2 × 10−10. The masses in
GeV are evaluated at theMZ scale. The range for each mass as given inTable 1is defined by the edges of th
corresponding window.

(34)md = 0.0048 GeV, ms = 0.081 GeV, mb = 3.09 GeV.

In Eqs. (35) and (36)we also give the absolute values of the mass matrices ofEqs. (31)
and (33)which show thatbreaking the family symmetry does not destroy completely th
democratic structure of the mass matrices

(35)Mu = 152.31 GeV

(0.2023 0.4595 0.4753
0.2035 0.4611 0.4768
0.2038 0.4622 0.4780

)
,

(36)Md = 24.48 GeV

(0.0105 0.0432 0.0558
0.0099 0.0446 0.0571
0.0092 0.0455 0.0581

)
.

In Eqs. (37) and (38)we give the absolute values of the mass matrices ofEqs. (31)
and (33)with rescaled values of the matrix elements.Eqs. (37) and (38)show in a more
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explicit way that the deviations from a democratic mass matrix are of O(1)

(37)Mu = 72.80 GeV

(0.4232 0.9614 0.9943
0.4257 0.9647 0.9976
0.4264 0.9671 1.0000

)
,

(38)Md = 1.42 GeV

(0.1807 0.7446 0.9601
0.1702 0.7675 0.9836
0.1584 0.7836 1.0000

)
.

In Eq. (39)we give the CKM matrix corresponding to the mass matrices ofEqs. (31)
and (33), in Eq. (40) its absolute value, and inEqs. (41) and (42)the values for the
parameters̄ρ andη̄, and for sin 2β andγ .

(39)VCKM =
( 0.9711− 0.0884i 0.0930− 0.2014i −0.0036+ 0.0010i

−0.1185− 0.1872i 0.9734− 0.0392i −0.0144+ 0.0398i
0.0095− 0.0064i 0.0150+ 0.0380i 0.9986+ 0.0302i

)
,

(40)VCKM =
(0.9751 0.2218 0.0038

0.2215 0.9742 0.0423
0.0423 0.0409 0.9991

)
,

(41)ρ̄ = 0.18, η̄ = 0.35,

(42)sin 2β = 0.72, γ = 63.2◦

with ρ̄ andη̄ being defined as

(43)ρ̄ = Re
(
VudV ∗

ubV
∗
cdVcb

)/∣∣VcdV ∗
cb

∣∣2,
(44)η̄ = Im

(
VudV ∗

ubV
∗
cdVcb

)/∣∣VcdV ∗
cb

∣∣2
and sin 2β andγ as

(45)sin 2β = 2η̄(1− ρ̄)

(1− ρ̄)2 + η̄2 ,

(46)γ = 90◦ − 90◦

π
sin−1

(
2ρ̄η̄

ρ̄2 + η̄2

)
.

In Eq. (47)we give the values for the arg(detMu), arg(detMd) and for their sum

(47)
arg(detMu) = −1.5692, arg(detMd) = 1.8643, arg(detM) = 0.2951.

The following numerical results corresponding to a value of arg(detM) < 10−9 are
presented in the same way as the above example

(48)µ1 = 7.365, µ2 = 8.456, µ3 = 8.532,

(49)εq1 = −8.189, εq2 = 5.026, εq3 = 5.026,

(50)εu1 = 0.000, εu2 = 1.105, εu3 = 1.188,

(51)εd1 = −2.274, εd2 = −1.168, εd3 = −1.085,
(52)gYuv/
√

2 = 144.63, gYdv/
√

2 = 23.60,
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(53)

Mu = 144.63 GeV

×
(0.1154+ 0.1622i −0.1846− 0.4383i −0.1740− 0.4608i

0.1096+ 0.1662i −0.179− 0.4367i −0.1683− 0.4591i
0.1090+ 0.1670i −0.1781− 0.4382i −0.1671− 0.4606i

)
,

(54)mu = 0.0028 GeV, mc = 0.621 GeV, mt = 177.9 GeV,

(55)

Md = 23.60 GeV

×
( −0.0609+ 0.0113i −0.0167− 0.0046i −0.0294− 0.0063i

−0.0630+ 0.01480i −0.0144− 0.0006i −0.0272− 0.0025i
−0.0622+ 0.0147i −0.0152− 0.0005i −0.0280− 0.0024i

)
,

(56)md = 0.0047 GeV, ms = 0.105 GeV, mb = 2.9 GeV,

(57)Mu = 144.63 GeV

(0.1990 0.4756 0.4925
0.1991 0.4720 0.4889
0.1994 0.4730 0.4899

)
,

(58)Md = 23.60 GeV

(0.0619 0.0173 0.0301
0.0647 0.0144 0.0273
0.0639 0.0152 0.0281

)
,

(59)Mu = 71.23 GeV

(0.4042 0.9656 1.000
0.4043 0.9583 0.9927
0.4049 0.9604 0.9948

)
,

(60)Md = 1.53 GeV

(0.9568 0.2676 0.4655
1.0000 0.2229 0.4223
0.9873 0.2350 0.4346

)
,

(61)VCKM =
(−0.9681+ 0.1152i −0.1707+ 0.1425i 0.0038+ 0.0011i

−0.1879− 0.1183 0.9741− 0.01456i −0.0078+ 0.0384i
0.0068− 0.0096i 0.0082+ 0.0367i 0.9991+ 0.0126i

)
,

(62)VCKM =
(0.9750 0.2223 0.0040

0.2220 0.9743 0.0392
0.0118 0.0376 0.9992

)
,

(63)ρ̄ = 0.31, η̄ = 0.32,

(64)sin 2β = 0.77, γ = 46.3◦,

arg(detMu) = −1.55845421528, arg(detMd) = 1.55845421485,

(65)arg(detM) = 4.3× 10−10.

In Figs. 4, 5 and 6we give the absolute values of the CKM matrix elements for the t
different cases corresponding to three different ranges of arg(detM). The uncertainties
for each element are given by theedges of the corresponding window.Fig. 8 shows the
solutions forρ̄ and η̄. The sharp edges for the solution patches are due to the cons
imposed onρ̄ and η̄. Fig. 9 shows instead the solutions for sin2β and γ . It has to
be said here that the solutions appear in patches because of the waythe minimization

process works. One obviously cannot exclude other solution patches. For example, could
we try to make the minimization process follow different paths by toying with the input
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Fig. 4. Solutions for the absolute values of the CKM elements corresponding to 10−1 < |arg(detM)| < 5×10−1.
The range for each element as given inTable 1is defined by the edges of the corresponding window. The range
delimeted by the dashed lines correspond to the new evaluations for|Vus | (region on the left of the dashed line
|Vub| andVcb as in Ref.[4].

parameters, temperature and number of iterations (seeAppendix A), and by changing th
initial conditions.

The parameter space with the 10 parameters described in the previous section and whic
corresponds to the three different cases for the three different ranges of arg(detM), are
given inFigs. 10, 11 and 12. It has to be said here that the solutions presented corres
to a two step procedure. First we find solutions by requiringµ1, µ2 andµ3 to be larger
than unity, because one can use in the physical space[0,L6] the kink solution forφi(z)

instead of the kink–antikink approximate solutionV tgh(µz) tgh(µ(L6 − z)) [6] (the kink–
antikink solution has the property of vanishing at both orbifold fixed pointz = 0 andz = L6
as required by the imposed boundary conditions to compactify on anS1/Z2 orbifold).
Second, using initial conditions from the parameter space already found, we looked
solutions which correspond to very small ranges ofµ1, µ2 andµ3. The reason we did thi
is because we noticed that the parameters which were more relevant to fit the qu

of Table 1were the “mass” terms of left and right components, i.e.,εq,i , εu,i andεd,i ,
respectively. As a result, in order to understand the dependence of the found solutions on
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Fig. 5. Solutions for the absolute values of the CKM elements corresponding to 10−3 < |arg(detM)| < 10−1.
The range for each element as given inTable 1is defined by the edges of the corresponding window. The range
delimeted by the dashed lines correspond to the new evaluations for|Vus | (region on the left of the dashed line
|Vub| andVcb as in Ref.[4].

the “mass” terms, we decided to restrict the range ofµ1, µ2 andµ3. The way one controls
range for a parameter consists simply in adding that parameter to the quantities one
to fit, modifying the functionf of Eq. (A.1) given in Appendix A. For our numerica
simulation we setL6 = 1. This implies that the introduced parametersµ andε have to be
multipied byL6 for a general case.

We have presented in this section an analysis of the quark mass matrices obta
Ref. [1]. In this analysis, we have used 10 parameters and were successful in fitt
6 quark masses and all the parameters of the CKM matrix. This is shown inFigs. 1–10
for three separate ranges of the quantity|arg(detM)| which was defined above. In the
figures, each dot in the scatter plot represents a solution which fits the masses and the CK
matrix. As one can see, the solutions which correspond to|arg(detM)| ∼ 10−10 and which

will have a significance to the strong CP problem, are within 1σ and 1.5σ of the so-called
R-fit and Bayesian fit respectively, as presented in Ref.[4].
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Fig. 6. Solutions for the absolute values of the CKM elements corresponding to 10−12 < |arg(detM)| <

2× 10−10. The range for each element as given inTable 1is defined by the edges of the corresponding wind
The ranges delimeted by the dashed lines correspond to the new evaluations for|Vus | (region on the left of the
dashed line),|Vub| andVcb as in Ref.[4].
Fig. 7. Solutions for the ratio|Vub|/|Vcb | for the three cases corresponding to (a) 10−1 < |arg(detM)| <

5× 10−1, (b) 10−3 < |arg(detM)| < 10−1, and (c) 10−12 < |arg(detM)| < 2× 10−10.



s

ter

ting
100 P.Q. Hung et al. / Nuclear Physics B 692 (2004) 83–109

Fig. 8. Solutions forρ̄ andη̄ for the three cases, from top to bottom, corresponding to (a) 10−1 < |arg(detM)| <
5× 10−1, (b) 10−3 < |arg(detM)| < 10−1, and (c) 10−12 < |arg(detM)| < 2 × 10−10. The delimeted area i
the allowed region in thēρ, η̄ plane as obtained from Ref.[4].

6. Possible connection between strong and weak CP

In this section, we will discuss a possible connection between the region of parame
space where arg(detM) < 10−10 and the strong CP problem.

It is well known that the non-trivial vacuum of QCD generates a P and CP viola
term in the Lagrangian of the form

(66)Lθ̄ = θ̄

32π2
G̃µνG

µν,

where

(67)θ̄ = θQCD + arg(detM).

This term(66) gives a contribution to the electric dipole moment of the neutron[10,11],

with the current experimental limit[12] beingθ̄ < 2×10−10. The mystery of whȳθ should
be so small constitutes the so-called strong CP problem.
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Fig. 9. Solutions for sin 2β and γ for the three cases, from top to bottom, corresponding to (a) 10−1 <

|arg(detM)| < 5× 10−1, (b) 10−3 < |arg(detM)| < 10−1, and (c) 10−12 < |arg(detM)| < 2× 10−10.

The most famous and elegant solution to the strong CP problem is the Pe
Quinn mechanism[13] where θ̄ becomes a dynamical field and relaxes to zero
the minimum of its potential. This dynamical field manifests itself as a pseudos
particle—the so-called axion—whose decayconstant is now severely constrained
astrophysical and cosmological arguments[14]. Another solution involving a massless
quark [15] is largely disfavoured by studies of chiral perturbation theory. A third t
of solution to the strong CP problem which has no axion, is the Nelson–Barr ty
mechanism[16] which assumes exact CP at tree level and whose mass matrices ha
determinants, and, as a result, the strong CP problem does not exist. It can arise
levels and can be “under control”. However, a realistic model of this type is yet
constructed.

We have already mentioned that when we introduce the same “mass” term for le
right components (Eqs. (19) and (16)), i.e., mq,i = mu,i = md,i , the up and down quar
mass matrices are Hermitian and consequently their determinant is real[1]. arg(detMu)
and arg(detMd) are separately zero. This situation suggests that the symmetry of the
Lagrangian that makes arg(detM) = 0 at tree level is the “left–right” symmetry of
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Fig. 10. Summary of the 10 parameters space corresponding to 10−1 < |arg(detM)| < 5× 10−1.

the components along the sixth dimension. If we also assume CP conservation
Lagrangian level, this scenario would provide a solution to the strong CP pro
However, this symmetry has to be broken because, as we have already mentioned,
case in which the quark mass matrices are Hermitian does not reproduce the right ma
spectrum and the right CKM matrix. One could imagine a scenario where the “left–r
symmetry is spontaneously broken. This will induce some loop corrections that will
the mass matrices deviate from Hermiticity, reproducing the right mass spectrum and ri
CKM matrix. At the same time the breaking of this “left–right” symmetry could ind
at loop levels a non-vanishinḡθ . But one can envision a scenario were the deviation f
Hermiticity happens in such a way that arg(detMu) and arg(detMd), each being now o
O(1), can cancel each other so as to keepθ̄ < 2× 10−10.

As we have mentioned earlier, the solutions presented in this paper corresp
very small windows for the domain wall parametersµi ’s, because we wanted to put
evidence the effect of the “left–right” symmetry breaking, especially in theθ̄ parameter. In
searching for a quantity which could “retain the memory” of this “left–right” symme

we decided to plot, seeFig. 13, the sum of the arguments|arg(det(M))| versus the
“CoM”, the weighted average of the “mass” terms along the sixth dimension, which is
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Fig. 11. Summary of the 10 parameters space corresponding to 10−3 < |arg(detM)| < 10−1.

defined as

(68)CoM≡ 2
∑

i εq,i + ∑
i εu,i + ∑

i εd,i

12
.

As one can notice fromFig. 13, the sum of the arguments tends to go to zero
a particular CoM
 0.125, and this behavior is confirmed inFig. 14. Notice that, for
practical reasons, we have reduced the number of points (i.e., the number of sol
in Figs. 13 and 14in order to reduce the sizes of the files containing these
figures. The actual number of solutions is much larger than what is shown in
figures.

Now one can think that the value of 0.125 for the “CoM” when the “left–right”
symmetry is broken, and which corresponds toθ̄ < 2 × 10−10, was also the value fo
the “CoM” before the breaking, when̄θ was equal to zero. In other words one can imag
a scenario where the “mass” terms of left and right components are split such a wa
retain the same value of the “CoM”. To invent a mechanism which could break the “lef
right” symmetry and which could reproduce the scenario mentioned above is beyo

scope of this paper, but it is one of the main topics we would like to investigate in the
future.
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Fig. 12. Summary of the 10 parameters space corresponding to 10−12 < |arg(detM)| < 2× 10−10.

If one now looks atFig. 8 which show the solutions in thēρ, η̄ plane for|arg(detM)|
in the three different ranges, one can see that the solutions corresponding to 1−12 <

|arg(detM)| < 2× 10−10 tend to favor a particular region of thēρ, η̄ plane. In particular
the region of allowed solutions shrinks down in theρ̄ direction constraining the paramet
ρ̄ in the small window∼ [0.3,0.32]. These solutions are within 1σ and 1.5σ of the so-
calledR-fit and Bayesian fit, respectively, as can be seen fromFig. 8. This could be an arti
fact of the way the minimization process works, but it could also be an indication that
is a deep connection between weak CP violation and strong CP violation in our mod

As we have already mentioned earlier, one cannot exclude completely the existe
other solutions, because of the way the minimization process works, but we believe that
results obtained here can give some very good indications of how the allowed par
space might look like.

7. Epilogue

We have presented in this paper a complete phenomenological analysis of the

of quark mass matrices as derived from six dimensions by[1]. With just 10 parameters,
we have found a large number of solutions which can fit the 6 quark masses as well as
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Fig. 13. Solutions for|arg(detM)| in the region[10−3,5× 10−1] vs the CoM as defined byEq. (68).
Fig. 14. Solutions for|arg(detM)| in the region[10−12,2× 10−10] vs the CoM as defined byEq. (68).
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the CKM matrix as can be seen inFigs. 1–9. Furthermore, we subdivide these solutio
into three sets: (1) those that have 10−1 < |arg(detM)| < 5 × 10−1, (2) those that hav
10−3 < |arg(detM)| < 10−1, and finally (3) those that have 10−12 < |arg(detM)| <

2 × 10−10. The first two sets are given for the sole purpose of comparison with the
set which is most relevant to the strong CP problem as discussed in the last sect
one can observe fromFigs. 8 and 9, there is a deep connection between the weak
parameters and the strong CP phase. In order to satisfy the constraint on theθ̄ parameter
i.e., |arg(detM)| < 2 × 10−10 in our framework, the solutions obtained forρ̄ and η̄ are
found to be within 1σ and 1.5σ of the so-calledR-fit and Bayesian fit, respectively. A
measurements of weak CP parameters becomemore accurate in the future, they will either
rule out or confirm our predictions.
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Appendix A

As mentioned above the model we considered has 10 free parameters. Relying
freedom we were able to fit the 6 quark masses evaluated at an energy scale equ
mass ofZ gauge bosonMZ , with constraints for the two ratiosmu/md andms/md , the
absolute values of the CKM matrix elements and the CP parametersρ̄, η̄, or equivalently
the three angles and one phase of the CKM matrix standard parametrization, for a tot
number of 10 quantities. The approach we used to derive the parameter space con
minimizing a particular function, built in such a way that its global minima correspon
the region defined by the experimental constraints. This function is defined in the follo
way:

(A.1)f =
N∑

i=1

(x th
i − xmin

i )2

〈xi〉2
θ
(
xmin
i − x th

i

) +
N∑

i=1

(x th
i − xmax

i )2

〈xi〉2
θ
(
x th
i − xmax

i

)
,

whereθ(x) is the step function,N is the number of quantities that we want to fit,x th
i is the

predicted value for theith quantity,xmin
i andxmax

i fix the range for theith quantity, and
〈xi〉 is its average value. It is immediate to verify fromEq. (A.1)that when all the predicte
quantitiesx th

i ’s are contained in the proper ranges, the functionf takes its minimum value
equal to zero.
The set of parameters which correspond to a zero value for the functionf is called a
solution. In our particular case the function we are considering is a mapping fromR10 toR.
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The parameter space is really big and to find the solutions, which correspond to the
minima off , can be very challenging. The global minima off can be infact surrounde
by a lot of local minima which most of the time can make the minimization process
Therefore, just trying different initial conditions with the hope to find the good one th
will allow the minimization process to follow the right path towards a global minimum
result quite inefficient.

It is a common belief that there does not exist a general recipe to follow for minimizatio
problems. A minimization procedure that can be very efficient for a particular problem
be very inefficient in an another case or even fails. In the particular case where the fu
that we want to minimize depends on many parameters, there is a minimization procedu
called simulated annealing[17,18], which seems to work more efficiently than others. T
procedure is mostly used when the global minima are surrounded by a lot of local m
Infact this minimization process can find a global minimum also after being trapped in
local minimum. The way instead most of the minimization processes work is to go,
the starting point, immediately downhill as far as they can go, but this often leads to a lo
minimum.

At the heart of the method of simulated annealing is an analogy with thermodyna
specifically with the way liquids crystallize, or metal cool and anneal. When a liqu
cooled down sufficiently slowly, the atoms are often able to line themeselves up and
a pure crystal, which corresponds to the state of minimum energy for the system.
the liquid is cooled quickly, it does not reachthis state but rather ends up in an amorph
state of higher energy. So nature, as long as the process of cooling is sufficiently s
able to find the minimum energy state. The way nature works is based on the fact t
a system in thermal equilibrium at temperatureT , the probability for the system to be in
state of energyE is given by the Boltzmann probability distribution:

(A.2)Prob(E) ∼ exp

(
− E

KT

)
.

This implies that even at low temperature there is a chance, albeit a tiny one, f
system to be in a high energy state. Therefore, there exists the possibility for the s
to get out of a local energy minimum and move towards the global one. This prin
has been incorporated in what is called a metropolis algorithm[19]. Given a simulated
thermodynamic system, it is assigned a probabilityP = exp(−(E2 − E1)/KT ) to the
change from a configuration with energyE1 to one with energyE2. If E2 < E1, P is
greater than unity and in this case to the change is assigned a probabilityP = 1, which is
equivalent to say that the system always makes such a change. In the caseE2 > E1, one
can compare the probabilityP = exp(−(E2 −E1)/KT ) with a random-number and make
the change to the new configuration only ifP > random-number. The system always take
a downhill step while sometimes takes an uphill step. The metropolis algorithm c
used for systems other than the thermodynamic ones if we give:

• A description of possible system configurations.

• A generator of random changes in the configuration.
• A functionE (analog of energy) whose minimization is the goal of the procedure.
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• A control parameterT (analog of temperature) and an annealing schedule which
how it is lowered, e.g., after how many random changes in configuration and
which step.

Going back to our particular case, the functionf we want to minimize is the analog o
the energy, and each possible set of parameters correspond to a particular configuration
the system. For the algorithm to work a control parameterT , with an annealing schedu
by which it is gradually reduced, has to be introduced, as well as a generator of ra
changes in the configuration, that is in the parameter space. The way these random cha
are taken is the following: a positive quantity, given by−T · ln(random-number), is added
to the stored function value. The same quantity is subtracted from the function
corresponding to every new set parameters that are tried as a replacement point in
parameter space. (The new points are obtained using the downhill simplex method. T
simplex is a set ofN + 1 points withN the number of parameters, and the changes ha
through reflections, expansions and contractions of the simplex.) As mentioned befo
method allowed the system to jump from a local minimum and to look for a global one
algorithm that we have used has been taken from numerical recipes[20]. Other than the
initial set of values for the parameters, also the value for the temperature and the n
of iterations which determine the annealing schedule to reduce the temperature, ha
given as input. The way these last two values were chosen, as well as the initials conditio
is mostly the result of different attempts. The output of our code is a patch of solu
which have been subsequently tested using an independent code written in mathem
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