Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

Marvin Gottowik¹ for the Pierre Auger Collaboration[#]

¹ Instituto Galego de Fisica de Altas Enerxias, marvin.gottowik@usc.es [#] Full author list: https://www.auger.org/archive/authors_icrc_2023.html

Take-home messages

- Measurement of muon number and energy estimator independently with hybrid radio and particle detection at the Pierre Auger Observatory • 32 high-quality events in almost six years of data with electromagnetic
- Can be interpreted as a deficit of muons in simulations as a lighter mass composition is expected from X_{max} measurements. Known muon deficit confirmed for the first time with radio data
- Proof of principle study as analysis is limited by low statistics.

- energies above 4 EeV
- Muon content in data compatible with the one predicted for iron primaries by hadronic interaction models
- Advantages of using radio detection will allow for advanced analyses with high-statistics in the future

Pierre Auger Observatory & analysis outline

- Hybrid detection of radio emission, particles and fluorescence light
- 1600 water Cherenkov detectors (WCD) on a hexagonal grid with 1.5 km spacing. Total area of 3000 km² \rightarrow muon number R_{μ}
- Auger Engineering Radio Array (AERA) consists of 153 antennas distributed on an area of 17 km² \rightarrow energy estimator S_{rad}
- Challenge: Low statistics due to high energy threshold from WCD and small area of AERA \rightarrow proof of principle study
- Advantages of a radio detector compared to a fluorescence detector: 1. uptime of almost 100%
- 2. increased geometrical phase space for high-quality event reconstruction

Validation of reconstruction with CoREAS simulations

• Realistic reconstruction of more than 1000 CoREAS simulations

- Sufficient agreement of model prediction and event reconstruction
- Difference due to bias in S_{rad} reconstruction as LDF not yet optimized for AERA

Measurement of the muon content

Energy estimation with AERA

• Radiation energy S_{rad} estimated by integrating the lateral signal distribution on ground. Model developed for inclined showers detected by the AugerPrime radio detector.

• S_{rad} can be related to the electromagnetic energy E_{EM}. Solid energy scale will be established in a future analysis

Water Cherenkov Detector AERA butterfly

• Data period: 26.06.2013 - 01.05.2019

• 32 high-quality events

• Strongest cut: $E_{EM} > 4 \text{ EeV}$ (enforces full efficiency of the WCD for inclined air showers)

cut	number of events after cut
$60^{\circ} \le \theta_{\mathrm{SD}} \le 80^{\circ}$	2002
number of candidate stations ≥ 5	1108
Full hexagon of stations	953
no thunderstorm conditions	849
SD-RD opening angle $< 2.08^{\circ}$	788
has LDF fit with a station inside Cherenkov radius	532
$E_{\rm EM} > 4 {\rm EeV}$	50
number of stations > 5	40
reduced χ^2 of LDF fit < 5	37
relative $E_{\rm EM}$ uncertainty < 0.2	32

• Muon content in data consistent with model prediction for iron primaries

 Lighter composition expected from X_{max} \rightarrow muon puzzle

• Muon deficit also observed with independent Auger analyses in different energy ranges

 $\phi = (10.36 \pm 0.03)^{\circ}$ west of south

x (m)

Muon density map Muon number measured with the WCD 10 EeV, 84° zenith • For inclined air showers WCD performs pure measurement of muons • Fit station signal to scaled reference muon distributions on ground Rescaling factor can be interpreted as relative _____ muon number wrt a 10 EeV proton shower

Future high-statistics measurements

• Hybrid events with the AugerPrime radio detector and the 1500m WCD array at the highest energies

- Hybrid events with AERA and the 750m WCD at EeV energies between 10¹⁷ eV and 10¹⁹ eV
- High-statistics measurements allowing for more advances analysis beyond simple average muon number