First DVCS measurements with CLAS12

CLAS collaboration

Maxime DEFURNE

May 3rd 2022

A set of distributions encoding the nucleon structure

DVCS and GPDs

•
$$Q^2 = -q^2 = -(k - k')^2$$
.

- $\bullet \ x_B = \frac{Q^2}{2p \cdot q}$
- x longitudinal momentum fraction carried by the active quark.
- $\xi \sim \frac{\chi_B}{2-\chi_B}$ the longitudinal momentum transfer.
- $t = (p' p)^2$ squared momentum transfer to the nucleon.

The GPDs enter the DVCS amplitude through a complex integral. This integral is called a *Compton form factor* (CFF).

$$\mathcal{H}_{++}(\xi,t) = \int_{-1}^1 H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) dx .$$

The generalized parton distributions and the nucleon

At leading twist there are 8 GPDs:

- 4 chiral-even GPDs: H, E, \widetilde{H} and \widetilde{E} .
- 4 chiral-odd GPDs: H_T , E_T , \widetilde{H}_T and \widetilde{E}_T .

Using the GPDs, we can determine the total angular momentum of quarks in the nucleon.

$$\int_{-1}^{1} x \left[H^f(x,\xi,0) + E^f(x,\xi,0) \right] dx = J^f \qquad \forall \xi .$$

By Fourier transform of the GPD H at ξ =0 (need extrapolation), we obtain the distribution in the transverse plane of the partons as a function of their longitudinal momentum.

Photon electroproduction

We use leptons beam to generate the γ^* in the initial state... not without consequences.

Indeed, experimentally we measure the cross section of the process $ep \to ep\gamma$ and not strictly $\gamma^*p \to \gamma p$.

$$rac{d^4\sigma(\lambda,\pm e)}{dQ^2dx_Bdtd\phi} = rac{d^2\sigma_0}{dQ^2dx_B}rac{2\pi}{e^6} imes \left[\left|\mathfrak{T}^{BH}
ight|^2 + \left|\mathfrak{T}^{DVCS}
ight|^2\mp\mathfrak{I}
ight]\;,$$

Photon electroproduction and GPDs

The interference term allows to access the phase of the DVCS amplitude, *i.e* allows to isolate imaginary and real parts of CFFs.

$$c_{0,UU}^{DVCS} \sim 4(1-x_B) \left(\mathfrak{H}\mathfrak{H}^* + \widetilde{\mathfrak{H}}\widetilde{\mathfrak{H}}^* \right) ,$$
 $c_{1,UU}^{\mathfrak{I}} \sim F_1 \operatorname{Re}\mathfrak{H} + \xi(F_1 + F_2) \operatorname{Re}\widetilde{\mathfrak{H}} ,$
 $s_{1,UU}^{\mathfrak{I}} \sim F_1 \operatorname{Im}\mathfrak{H} + \xi(F_1 + F_2) \operatorname{Im}\widetilde{\mathfrak{H}} ,$
 $s_{1,UL}^{\mathfrak{I}} \sim F_1 \operatorname{Im}\widetilde{\mathfrak{H}} + \xi(F_1 + F_2) \operatorname{Im}\mathfrak{H} ,$

In the present talk, we will be interested in deriving the beam-spin asymetry defined as:

$$A = \frac{\Delta^4 \sigma}{d^4 \sigma}$$

Figure: Unpolarized and beam-helicity cross sections at $O^2=2$ 3 GeV² $x_B=0$ 36

(1)
$$Q^2=2.3 \text{ GeV}^2$$
, $x_B=0.36$, $t=-0.3 \text{ GeV}^2$ (Hall A).

Focus on CLAS12: Beam from right to left.

A typical DVCS event in CLAS12

A 10.6-GeV electron beam scatters off a 5-cm LH_2 target. The beam is ${\sim}85\%$ longitudinally polarized. All CLAS12 detectors are necessary to reconstruct all particles of a DVCS final state:

- The electron is going through Cerenkov detector, drift chambers and electromagnetic calorimeter.
- The photon is either detected in a sampling calorimeter or a small PbWO₄-calorimeter close to the beamline.
- The recoil proton goes in the Silicon and Micromegas detector.

DVCS phase-space with CLAS12 @ 10.6 GeV

The binning has been chosen to accommodate for the main kinematical dependence of the BSA with the available statistics.

- For each Q^2/x_B , 4 bins in $t_{min} t$ are defined.
- ullet Regarding ϕ , a adaptative binning procedure was implemented to accomodate for the steep dependence of the cross section.
- $Q^2/x_B/t$ -kinematics are *phi*-dependent.

May 3rd 2022

π^0 -contamination

After cutting on the exclusivity variables, SIDIS events are rejected but we still have a significant contamination from mostly exclusive π^0 's events.

Being only due to unfortunate decays, the π^0 -contamination is estimated by:

- Estimating the fraction of decays $r_{MC} = \frac{n_{1\gamma}^{cont}}{n_{2\gamma}}$ with a Monte-Carlo simulation.
- Normalizing by $n_{1\gamma}^{cont-Exp} = r_{MC} \times n_{2\gamma}^{Exp}$.

DVCS event selection

Exclusivity is enforced by cutting on 5 variables:

- The missing mass ep \rightarrow e γ pX,
- The missing mass ep \rightarrow e γ X,
- The missing energy,
- The missing transverse momentum,
- The cone angle (angle between detected photon and expected photon assuming exclusivity).

Results and comparison with fits/models

• Deriving the mean and standard deviation of a 100 ANN-predictions produced by a global fit, the new data are shown to be in good agreement. Called reweighting technique, a weight ω_k for the k^{th} -ANN is computed:

$$\omega_k = \frac{1}{Z} \chi_k^{n-1} e^{-(\chi_k^2/2)} , \qquad (2)$$

A weighted mean and standard deviation of the 100 ANNs show the impact of the newly collected data.

 Comparisons with KM15 and VGG/GK models are performed as well. (see last slide for references)

Conclusion

- The data shown represents approximately 25% of the beam time allocated to DVCS study with an unpolarized target. Another 25% is being calibrated and reconstructed. Finally the remaining 50% will be collected later.
- With the energy and the luminosity upgrade, CLAS12 reaches high-Q²/high x_B region with excellent statistical accuracy.
- Through the reweighting technique, we have shown that the data are in reasonable agreement with 6-GeV data and greatly reduce the uncertainties.
- In many bins, data agrees with KM15 predictions except in some bins at large x_B where data agrees well with GK/VGG models.
- Many other DVCS analysis are on going with neutron target or lower beam energies for Rosenbluth separation.
- This June, data will be collected on longitudinally polarized target until March 2023.

13 / 14

References

- H. Moutarde, P. Sznajder, and J. Wagner, Eur. Phys. J. C 79, 614 (2019), arXiv:1905.02089 [hep-ph].
- Kumericki, Kresimir and M uller, Dieter, EPJ Web of Conferences 112, 01012 (2016).
- S. V. Goloskokov and P. Kroll, The European Physical Journal C 65, 10.1140/epic/s10052-009-1178-9 (2009)
- M. Vanderhaeghen, P. A. Guichon, and M. Guidal, Phys. Rev. D60, 094017 (1999), arXiv:hep-ph/9905372 [hep-ph].