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INTRODUCTIONINTRODUCTION
Supernovae explosion, combustion of solar hydrogen to form helium, heavy quark
decay, or nuclear beta radiation, all weak interaction phenomena, are not unrelated to
electromagnetism, but closely linked to it through the Higgs field.

This eBook contains a modern introduction to the electroweak unification theory, as part
of the so called Standard Model of particle physics. Not only some of the key theoretical
ideas are exposed in a precise way, but also the experiments that revealed them. The main
highlights of the theory consolidation process are examined, the experimental counterpart
of which spans over 40 years, from the discovery of neutral currents in 1973 to the Higgs
boson in 2012.

The reader is assumed to have been introduced to quantum mechanics and quantum
fields based on the local gauge invariance principle, and to be familiar with Dirac’s
relativistic electron theory. The course is specially suited for undergraduate students in
physics, as part of an optional subject of elementary particles.

The course consists of nine lectures, that on the blackboard take about 90 minutes each.
It contains a very select collection of problems and exercises, having as a connecting
thread the calculation of the lifetime of elementary fermions and bosons, as well as the
comprehension of some experimental results of historical relevance.

I am grateful to all those who contributed with their comments to improve the course,
particularly to all undergraduates in Santiago that in late years have attended my classes,
relentlessly spotting every typo or poor explanation. And I owe a debt of gratitude to
Enrique Fernández Sánchez, for his priceless comments on specific physics topics.

Santiago de Compostela, February 12, 2024
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Lecture I
PARITY VIOLATIONPARITY VIOLATION

1 PARITY VIOLATION
Dirac equation and chirality
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The two key experiments
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Left-handed quarks and leptons
The Casimir rule
The Oxigen-14 decay into positron
The kinematics of beta decay
Insensitivity to nucleon mass
Fermi theory versus V-A theory
The Curie spectrum
Lifetime of beta decay

3 MUON DECAY
The muon decay amplitude
The 3-body phase-space
The unpolarized amplitude
The 3-body kinematics
The Michel spectrum
The muon lifetime
The muon and the Fermi constant

4 PION AND KAON DECAY
Pions and kaons
The helicity suppression
The pion decay constant
Pion and chirality
The pion lifetime
Properties of pion decay
The kaon decay
The creation of neutrino beams

5 NEUTRINO SCATTERING
Elastic amplitudes neutrino-electron and
antineutrino-electron
Backward helicity suppression
Elastic neutrino-electron and antineutrino-electron
cross-sections
The deep inelastic scattering
Neutrino-quark and antineutrino-quark scattering
Neutrino-antiquark and antineutrino-antiquark
scattering
The Bjorken x and y variables
The isoscalar target
The V-A coupling of the W-boson to the quarks
The antimatter fraction in the proton

6 THE NEUTRAL CURRENTS
The discovery of neutral currents
The neutrino experiments
Relative proportion of neutral currents
Generic amplitude for neutral currents
Cross-sections on isoscalar target
Chiral content of the neutral current
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DIRAC EQUATION AND CHIRALITYDIRAC EQUATION AND CHIRALITY
Dirac equation: (/p−m)ψ = 0

Free solutions:
ψ(x) = u(p, s)e−ipx, v(p, s)eipx

p = (0, 0, p) (otherwise p
E+m →

σp
E+m ):

u↑ = N

(
↑
p

E+m ↑

)
u↓ = N

(
↓
−p
E+m ↓

)
For positron, antiquark (p = (0, 0, p)):

v↑ = N

( −p
E+m ↓
↓

)
v↓ = N

( p
E+m ↑
↑

)
with N =

√
E +m

Reminder:

/p ≡ pµγµ

γµγν + γνγµ ≡ 2gµν

γ5 ≡ iγ0γ1γ2γ3

Dirac-Pauli representation:

γ5 =
(

0 I
I 0

)
~γ =

(
0 ~σ
−~σ 0

)
γ0 =

(
I 0
0 −I

)
γµ =

(
γ0 ~γ

)
A marvel of Dirac’s theory, the ADJOINT spinor: ψ̄ ≡ ψ∗T γ0

that allows creating relativistic quantities: ψ̄Γiψ
with Γi = 1, γ5, γµ, γ5γµ, σµν = γµγν − γνγµ

i = scalar,pseudoscalar, vector, axial−vector, tensor
6



THE MEANING OF γ5THE MEANING OF γ5

The operator γ5 is called CHIRALITY
Let us denote k ≡ p

E+m . The ultrarelativistic limits: v → c, m→ 0, p� m,
or k → 1 are all equivalent, and it is customary to refer to them as chiral limit
The helicity eigenstates u↑ , ↓ are not eigenstates of γ5

But at high velocities, in the chiral limit, u↑, ↓ approach γ5 eigenstates, and
the γ5 operator represents, in that limit, the helicity H ≡ 2S · p/p, having
equal eigenvalues: (+1,−1)

Indeed: γ5u↓ = γ5
(

↓
−k ↓

)
=
(
−k ↓
↓

) v→c

→
(
− ↓
↓

)
= −u↓ , eigenvalue: −1

and analogously γ5u↑ = u↑ , eigenvalue: +1
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THE CHIRAL OPERATORSTHE CHIRAL OPERATORS 1
2(1± γ5)

Each of the chiral operators γR,L ≡ 1
2 (1± γ5) acts on BOTH helicities (to be

called equal or opposite to the operator, in the following). For instance γL:

1
2(1− γ5)u↑ = 1

2

(
↑ −k ↑
− ↑ +k ↑

)
= 1

2(1− k)
(
↑
− ↑

)
1
2(1− γ5)u↓ = 1

2

(
↓ +k ↓
− ↓ −k ↓

)
= 1

2(1 + k)
(
↓
− ↓

)
Hence we can evaluate their action on any other quantum state of the fermion. In
particular, on the state u = 1√

2u
↑ + 1√

2u
↓ with zero average helicity 〈H〉 = 0:

1
2(1− γ5)u = 1

2
√

2

[
(1− k)

(
↑
− ↑

)
+ (1 + k)

(
↓
− ↓

)]
whose helicity is now:

〈H〉L = (1− k)2 − (1 + k)2

(1− k)2 + (1 + k)2 = −p
E

= −β = −v
c

The above expression is of great importance, for it provides the exact polarization
induced by a chiral theory (γL) on the coupled fermion.
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THE PARITY TRANSFORMATIONTHE PARITY TRANSFORMATION

The PARITY transformation (P) consists in Quantum Mechanics in inverting the spatial
coordinates, preserving the time arrow (thus the rotation ~r × ~p sign):

~r → −~r ~p→ −~p ~S → ~S

Hence, P changes the fermion HELICITY:

Therefore every reaction that preferentially produces a given helicity of the fermions
violates P. According to today’s level of knowledge, parity is strictly conserved by
the strong interaction (QCD), by Maxwell’s electromagnetic interaction (QED),
both quantum and relativistic theories, and there is yet insufficient data concerning
its possible violation in various approaches to quantum gravity.
In 1956 T. D. Lee openly brought up the question: is parity violation possible in
quantum physics?
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DISCOVERY OF PARITY VIOLATIONDISCOVERY OF PARITY VIOLATION

In 1957, several experiments independently and unequivocally showed violation of parity
in quantum processes of weak interactions. Two of them, published on January 15, did
have historical importance:

That of Wu, Ambler and Hudson at Washington DC, using cryogenics at mK
temperatures to polarize the very high spin nucleus of 60Co (J=5), in the decay
60Co→ 60Ni∗ + e− + ν̄e.
That of Garwin, Lederman and Weinrich at Columbia University New York, utilising
muons (mµ = 105.7 MeV/c2), spontaneously polarized from pion decay (as we
shall see), and properly stopped in graphite, in the decay: µ− → e− + ν̄e + νµ.

In both cases, the electron yield with helicity −1 was significantly higher than that with
helicity +1. Even if in both cases the initial state was polarized, the above is indeed a
general fact.
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THE TWO KEY EXPERIMENTSTHE TWO KEY EXPERIMENTS
SIMILARITIES between both experiments:

both used initial polarization, with no
attempt to measure the outgoing e−
polarization
both saw a negative asymmetry in electron
emission, with respect to the direction of
the initial spin: unequivocal sign of parity
P violation
in both cases the conservation of ~J and
the negative asymmetry suggested a chiral
solution with a left-handed electron and
right-handed antineutrino ν̄e
in both cases the quantitative analysis
revealed that the relativistic coupling is
100% left-handed chiral: 1

2γ
µ(1− γ5)

DIFFERENCES:
While the 60Co is semirelativistic
(γe− = 1.25, with v/c = 0.6), the µ− is
ultrarelativistic (γe− = 220)
The photonic corrections are utterly
important for 60Co, but negligible for µ−

a

νeL
_

e-
RνeR

_

e-L

60 Ni*

e- DOWN 

WU  1957

60 Co
J = 5 J = 4

e- up 

dσ
d(cosθ)

=A 1− v
c
cosθ

⎛

⎝
⎜

⎞

⎠
⎟

dσ
d(cosθ)

=A 1− 1
3
cosθ

⎛

⎝
⎜

⎞

⎠
⎟

νeL
_

e-RνeR
_

e-LνμL
νμR

μ-

polarized

e- DOWN e- up 

GARWIN-LEDERMAN  1957
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THE GARWIN-LEDERMAN EXPERIMENTTHE GARWIN-LEDERMAN EXPERIMENT
The decay at rest π− → µ−ν̄µ yields 100% polarized muons.
Larmor precession was induced to the µ− at rest with frequency ω = gµe| ~B|/(2mµ)
The muon spin direction is kept unchanged, while it comes to rest in graphite.
The muon spin rotates (within the drawing’s plane) one turn on average during its
lifetime τµ = 2.20µs.
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MMMMMMM
MMMMMMM

MMMMMMMMMMM
MMMMMMMMMMM

5x5 cm2 counters in 

coincidence to detect 

          the π ➔ μ decay           

MMKMMMMMMMM
MMMMMMMMMM

Carbon absorber
to stop the pions 

MMMMMMmm
MMMMMM

MMMMMM
MMMMMMm
MMMMMM
MMMMMM

Magnetization
current

Graphite 
  target

Shielding of terrestial 
magnetic field

Additional counters

in coincidence for the

outgoing electron

2

3

4

1

PION BEAM

     85 MeV/c
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MMMMMMMMMM
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MMMMMMMMMM
MMMMMMMMMM
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PRECESSION FIELD CURRENT IN AMPERES  

NUMBER OF COUNTS RELATIVE TO ZERO FIELD
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

1.0

1.3

0.7

The odd curve shows parity violation.
1 + acosθ was measured, with

a = −0.33± 0.03
in good agreement with 1− 1

3 cosθ
(see Problem 2)

θ = ωt = ωτµ ω=14KHz with | ~B|=1G

In addition gµ = +2.00± 0.10 was measured for the muon, for the first time.
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THE WU EXPERIMENTTHE WU EXPERIMENT
A single photomultiplier: cosθ = +1 (on top).
More electrons are emitted in the direction opposite to the ~B-field (− 40%).

The high nuclear spin of 60Co (J=5)
together with the high spins of Mg
and Ce in the CMN salt help nuclear
polarization at mK temperatures.
An electromagnet was used for
adiabatic demagnetization cooling,
and an induction coil was used to
polarize the sample.
The data show a = −1 in
1 + aP · (v/c)cosθ, with known
v/c = 0.6 and P = 0.67 (polarization
achieved in the 60Co sample).
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THE FERMI THEORYTHE FERMI THEORY

e−
νe

p

nW−

Jµ

J+µ

the same |M|2 for
p→ ne+νe and pe− → nνe
(e−capture, supernovae)

n→ p e−ν̄e
In 1934 Enrico Fermi put forward a relativistic theory
for nuclear β decay based on Dirac spinors and a
vector coupling (γµ) between charged currents,
inspired by electromagnetism, with amplitude:

M = GF (ūnγµup)(ūνeγµue)

The constant GF is dimensionful [GeV−2] 1 because
it represents the propagator of a very massive spin 1
boson g2

w/(M2
W − q2) ≈ g2

w/M
2
W in the limit

q2 �M2
W , with q2 = (pe − pν̄e)2 = (pn − pp)2

Fermi’s theory had enormous success during the period 1934-1957 because it
achieved a perfect understanding of all known β decay half-lifetimes and electron
emission spectra, with a single coupling constant: GF = 1.16637× 10−5 GeV−2

(current value).
Given that γµ = 1

2 (1− γ5)γµ + 1
2 (1 + γ5)γµ, it becomes evident that such theory

cannot interpret the observed parity violation, since it predicts equal numbers of
right-handed electrons (H = +1) and left-handed electrons (H = −1).

1 without adopting ~ = c = 1, its exact dimension is energy × volume [J m3]
14



THE V−A THEORYTHE V−A THEORY

In 1957 the V−A theory was established by Sudarshan, Marshak, Feynman,
Gell-Man and Sakurai, which replaces Fermi’s theory with the amplitudes:

M(p→ ne+νe) = 4GF√
2

[
ūnγ

µ 1
2(1− γ5)up

] [
ūνeγµ

1
2(1− γ5)ue

]
M(µ− → e−ν̄eνµ) = 4GF√

2

[
ν̄µγ

µ 1
2(1− γ5)uµ

] [
ūeγµ

1
2(1− γ5)νe

]
It conforms the general structure:M = 4GF√

2 J
µJ+

µ . If Jµ “lowers the charge” , J+
µ

“raises the charge”(hermitic conjugate). Each one is left-handed chiral and may be
formed by hadrons or leptons indistinctly.
The V−A theory describes ALL weak interactions by charged currents in nuclear
and particle physics. As of today, no violation is known to its strict left-handed
character, being an essential part of the Standard Model.
With the indicated

√
2 factor, GF exactly recovers the same experimental values

that it would have in Fermi’s theory. With regard to the heavy boson mass, it
obviously takes the value GF =

√
2g2
w/(4M2

W ) =
√

2g2/(8M2
W ) (units ~ = c = 1).

The dimensionless constant g ≡ gw
√

2 will come up later when we define the
Standard Model 2.

2 the exact relationship is GF =
√

2g2(~c)3/[8(MW c
2)2] (units Jm3), without adopting ~ = c = 1.

15



Lecture II
β DECAYβ DECAY

1 PARITY VIOLATION
Dirac equation and chirality
The meaning of Gamma-5
The chiral operators
The parity transformation
Discovery of parity violation
The two key experiments
The Garwin-Lederman experiment
The Wu experiment
The Fermi theory
The V-A theory

2 BETA DECAY
Left-handed quarks and leptons
The Casimir rule
The Oxigen-14 decay into positron
The kinematics of beta decay
Insensitivity to nucleon mass
Fermi theory versus V-A theory
The Curie spectrum
Lifetime of beta decay

3 MUON DECAY
The muon decay amplitude
The 3-body phase-space
The unpolarized amplitude
The 3-body kinematics
The Michel spectrum
The muon lifetime
The muon and the Fermi constant

4 PION AND KAON DECAY
Pions and kaons
The helicity suppression
The pion decay constant
Pion and chirality
The pion lifetime
Properties of pion decay
The kaon decay
The creation of neutrino beams

5 NEUTRINO SCATTERING
Elastic amplitudes neutrino-electron and
antineutrino-electron
Backward helicity suppression
Elastic neutrino-electron and antineutrino-electron
cross-sections
The deep inelastic scattering
Neutrino-quark and antineutrino-quark scattering
Neutrino-antiquark and antineutrino-antiquark
scattering
The Bjorken x and y variables
The isoscalar target
The V-A coupling of the W-boson to the quarks
The antimatter fraction in the proton

6 THE NEUTRAL CURRENTS
The discovery of neutral currents
The neutrino experiments
Relative proportion of neutral currents
Generic amplitude for neutral currents
Cross-sections on isoscalar target
Chiral content of the neutral current
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LEFT-HANDED QUARKS AND LEPTONSLEFT-HANDED QUARKS AND LEPTONS

Amplitudes 4GF√
2 J

µJ+
µ can be formulated with chiral left-handed (called L or V−A)

charged currents Jµ formed by quarks or leptons of any two of the following
doublets, from the 3 known generations (21=

(
6
2

)
+ 6 forms):(

u
d

)
L

(
c
s

)
L

(
t
b

)
L

(
νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

given that the quark electric charge (+ 2
3 |e| UP type and − 1

3 |e| DOWN type) raises
or lowers by one unit ∆Q = ±1|e| at each doublet.
These currents are analogous to the vector current γµ = γµ(γR + γL) that couples
quarks and leptons to the photon in QED (electric charge), or quarks to the gluon
in QCD (color). Yet contrary to the above only the left-handed chiral component
γµγL is present.
Note how, owing to (1− γ5)ue = u∗Te (1− γ5)γ0 = u∗Te γ0(1 + γ5) = ūe(1 + γ5),
the chiral filter acts on BOTH fermions coupled to the current. For instance, with
Jµ = ūeγ

µ 1
2 (1− γ5)uνe :

ūeγ
µ(1− γ5)uνe = ūe(1 + γ5)γµuνe = (1− γ5)ue γµuνe

that couples indistinctly to the (initial, final) state: (e−L , νL), (ν̄R, e+
R), (0, νLe+

R),
(e−L ν̄R, 0), and analogously for Jµ+.
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THE CASIMIR RULETHE CASIMIR RULE
In Feynman diagram calculations, the following relations are useful, called Casimir’s
rules. The lemma

∑
s
ū(p)Γu(p) = Tr

[
(/p+m)Γ

]
is easily shown from the basic

property
∑

s
uū = /p+m, and [ū(a)Γu(b)]∗ = ū(b)Γ̄u(a) is also straightforward 3:∑

spins

[ū(a)Γ1u(b)] [ū(a)Γ2u(b)]∗ = Tr
[
Γ1(/pb +mb)Γ̄2(/pa +ma)

]
∑
spins

[v̄(a)Γ1v(b)] [v̄(a)Γ2v(b)]∗ = Tr
[
Γ1(/pb −mb)Γ̄2(/pa −ma)

]
where Γi = 1, γ5, γµ, γ5γu, σµν represent any product of γ matrices. We define
Γ̄ ≡ γ0Γ+γ0, with Γ+ meaning conjugate and transposed. It can easily be shown
that γaγbγcγd = γdγcγbγa, but γµ(1− γ5) = γµ(1− γ5), and 1− γ5 = 1 + γ5.
With Γ1 = Γ2 the above rules allow calculating

∑
ss′ |M|

2, but they also allow to
handle interferences of the type

∑
ss′M1

∗M2.
Recall Tr(AB) = Tr(BA), and the cyclic property of the traces, that lets these
rules be written in different ways.
For the mixed cases we have the expressions:∑

ss′ [ū(a)Γ1v(b)] [ū(a)Γ2v(b)]∗ = Tr[Γ1(/pb −mb)Γ̄2(/pa +ma)]∑
ss′ [v̄(a)Γ1u(b)] [v̄(a)Γ2u(b)]∗ = Tr[Γ1(/pb +mb)Γ̄2(/pa −ma)]

3 see the book “Introduction to Particle Physics", D. J. Griffiths, Pearson 2010, pp. 249 and 270.
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THE DECAY 14O → 14N∗e+νeTHE DECAY 14O → 14N∗e+νe

We shall take as a detailed example in the V−A theory the disintegration
14O → 14N∗e+νe, a β+ emitter utilised in radiophysics 4, with lifetime τ ln2=71s,
defect mass ∆m = 1.81 MeV/c2, and zero spin for both nuclei.
We are going to assume that the underlying physical reaction is p→ ne+νe (the
closest to u→ de+νe), although kinematically only the nuclear reaction is exact,
the nuclei being quantum particles with well defined mass (see Problem 1).
Assuming energy and momentum conservation in the above reaction, the partial
width would be given by dΓ = 1

2m

∫
|M|2dQ3, where m = mp is the proton mass,

and dQ3 the 3-dimensional Lorentz invariant phase-space volume, with pi = pp and
pf = pn + pe + pν :

dQ3 =
d3pn

(2π)32En
d3pe

(2π)32Ep
d3pν

(2π)32Eν
(2π)4

δ
(4)(pi−pf ) =

d3pe

(2π)32Ep
d3pν

(2π)32Eν
d3pn

2En
2πδ(4)(pi−pf )

However, it is clear that such conservation cannot happen, since mp < mn and the
reaction only takes place thanks to the Fermi motion of the nucleons, the masses of
p and n being ill-defined inside the nucleus (and even more so the u- and d-quark
masses). Independently, the motion of p and n are deeply non relativistic.

4 see the book F. Halzen and A. D. Martin, "Quarks and Leptons", John Wiley & Sons (1983).
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THE KINEMATICS OF β-DECAYTHE KINEMATICS OF β-DECAY
In order to obtain the exact kinematics, we should recall that the origin of the
δ(4)(pi − pf ) factor is no other than the d4x integration ofM including the
participant plane waves:

Tif = 4GF√
2

∫ [
ψ̄n(x)1

2γ
µ(1− γ5)ψp(x)

] [
ψ̄ν(x)1

2γµ(1− γ5)ψe(x)
]
d4x

= GF√
2

∫
ψ+
n (x)ψp(x) · ūpνγ

0(1− γ5)vpe · e
−i(pν+pe)xd4x

The ψp,n, involved in the short range V−A interaction, are contained within the
nucleus, subject to the relativistic normalization condition

∫
ψ+
NψNd

3x = 2mN ,
where it only makes sense to talk about a generic wave function of a nucleon of
mass mN , given that mp and mn are not well defined inside the nucleus.
As ~v/c ≈ 0 for the nucleon, ~j = ψ̄N~γ ψN = |N |2~v/c ≈ 0, that implies
ψN = N(↑, k ↑)→ N(↑, 0), thus ψ̄Nγ5ψN = 0 and γ0ψN = ψN . Hence all µ 6= 0
indices become zero in the relativistic contraction, including the (e+, νe) pair.
The wavelength of the νe or e+ λ ∼ h/(∆mc) is ∼ 100 times larger than the size
of the nucleus (∆m ∼ 1 MeV/c2), thus we have eipνx ∼ 1 and eipex ∼ 1 upon
spatial integration over d3x (note that only the nucleus inside contributes).
The integration over t of the factor ei(Ep−En−Ee−Eν)tdt generates the exact
energy conservation from ∆m: a factor 2πδ(∆m− Ee − Eν). Therefore:

M = GF√
2
[
ūpνγ

0(1− γ5)vpe
]

2mN · Is
20



INSENSITIVITY TO NUCLEON MASSINSENSITIVITY TO NUCLEON MASS

The isospin factor Is is actually present in every β-decay process. In this case,
Is = 2/

√
2 (just compare |pp〉 in 14O with 1√

2 (|pn〉+ |np〉) in 14N∗, with a factor
2 for the two identical protons that can decay).
It is important to understand that the above result for Γ is insensitive to the nucleon
mass values mN , since on integration over the outgoing neutron phase-space:

dΓ = 1
2mN

∫
|M|2dQ3 = 1

2mN

∫
|M|2 d

3pN
2EN

(. . . ) ,

the factor 1/(2mN )2 (EN = mN ) exactly cancels the factor (2mN )2 in |M|2,
because:

∫
d3pN

2
√

m2
N

+pN 2
δ(3)(pN + prec) = 1/(2mN ) with prec = pp + pe + pν (an

alternative calculation is proposed in Problem 1).
The precise determination of the lifetime now requires to sum over the unobserved
states of the positron (and, of course, of the neutrino) and the integration over the
6-dimensional phase-space of both momenta:

dΓ = I2
s

2 G
2
F

∑
ss′
|ū(pν)γ0(1− γ5)v(pe)|

2 d3pe

(2π)32Ee
d3pν

(2π)32Eν
2πδ(∆m− Ee − Eν)
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FERMI THEORY VERSUS V−A THEORYFERMI THEORY VERSUS V−A THEORY

As we have seen, the chiral character of the V−A theory is still present in the factor
1− γ5, in spite of the non relativistic motion of the nucleons. There would be parity
violation, should the positron polarization be measured. If we give up measuring it, the
spin sum can be performed using Casimir’s rule, and some properties of the traces of γ
matrices, such as the following (p1,2 being arbitrary 4-momenta):

Tr
[
γµ(1− γ5)/p1γ

ν(1− γ5)/p2

]
= 8 [pµ1 · p

ν
2 + pν1 · pµ2 − (p1 · p2)gµν ] + 8iεµανβp1αp2β

Indeed, on application of Casimir’s rule with γ0(1− γ5) = γ0(1− γ5), the resulting
trace is a particular case of the one above, with µ = ν = 0:∑
ss′

[
ūpν γ

0(1− γ5)vpe
] [
ūpν γ

0(1− γ5)vpe
]∗

= Tr
[
γ

0(1− γ5)(/pν +mν)γ0(1− γ5)(/pe −me)
]

= Tr
[
γ

0(1− γ5)/pνγ
0(1− γ5)/pe

]
= 8
[
p

0
νp

0
e + p

0
νp

0
e − (pν · pe)g00

]
+8iε0α0β

pναpeβ

= 8(EeEν + pepν) = 8EeEν(1 + vecosθ)

in the reference frame where the 14O is at rest.
Note that Tr

[
γµ/p1γ

ν
/p2

]
= 4 [pµ1 · pν2 + pν1 · pµ2 − (p1 · p2)gµν ], which tells us that the

Fermi theory would have produced an identical result to the one calculated above,
since the factor 1/2 in G2

F /2 would not be present.
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THE CURIE SPECTRUMTHE CURIE SPECTRUM

Nowhere have mν and me been neglected, since the trace of a odd number of γ
matrices is always zero, the matrices γ5 and 1− γ5 being themselves an even
number. Thus we have: meTr[γ0(1− γ5)/pν(1 + γ5)γ0] = 0, and in addition
memν(1− γ5)(1 + γ5) = 0.
In order to evaluate the (six-fold) integral in spherical coordinates, we take the
Z-axis along the positron direction. Then 1 + vecosθ defines the angular distribution
of the νe about the e+, where the second term integrates to zero, irrespective of
the actual velocity ve. The highest probability is found when both particles come
out in the same direction, as expected from angular momentum conservation, their
helicities being opposite in the V−A theory, both nuclei having spin zero.
The integrand in spherical coordinates thus takes the form (integrated azimuth):

dΓ = 2G2
F

(2π)5 (1 + vecosθ)
[
(2πd(cosθ)p2

edpe)(4πE2
νdEν)

]
δ(∆m− Ee − Eν)

Leading to the positron spectrum, on integration over Eν and cosθ for the neutrino:

dΓ
dpe

= 4G2
F

(2π)3 p
2
e(∆m− Ee)2

∫ +1

−1
d(cosθ)(1 + vecosθ) = G2

F

π3 p
2
e(∆m− Ee)2
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LIFETIME OF β DECAYLIFETIME OF β DECAY
The momentum distribution dΓ/dpe of β electrons is generically called Curie
spectrum. Its maximum value pe,max has been subject of investigation for many
years, as a tentative means of detection of neutrino mass.
We have seen in detail the reason why the Curie spectrum is identical in both the
V−A theory and the Fermi theory: despite the neutrino being ultrarelativistic, the
nucleons are deeply non relativistic, and the electron polarization is not analysed.
If we just count the number emitted electrons per unit time interval in (t, t+ dt),
we observe an exponential distribution: N0e

−t/τ = N0e
−Γt , as in every quantum

decay process. The time constant τ indicates the emitter lifetime. The prediction
for Γ is obtained upon integration of the previous expression for dΓ/dpe:

Γ = 1
τ

= G2
F (∆m)5

30π3

where for simplicity we have neglected m2
e as compared to (∆m)2.

The time analysis of many different β emitters provided a consistent and successful
description of the data, with a unique Fermi constant GF , independent of the
(∆m)5 value. However precision measurements require Coulomb corrections, due to
the strong electric field seen by the positron (or electron) at the nucleus surface.
Compare GβF = 1.136(3)× 10−5GeV−2 with GF = 1.1663788(7)× 10−5GeV−2

from muon decay (next Lecture). A physical difference still remains, related to the
quark mass matrices: Vud or the Cabibbo angle, to be discussed in Lecture IX.
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AMPLITUDE FOR µ− → e− ν̄e νµAMPLITUDE FOR µ− → e− ν̄e νµ

µ−→ e−ν̄eνµ

µ−(p) νµ(k)

e−(p′)

ν̄e(k
′)W−

Following the general structure 4GF√
2 J

µJ+
µ , we obtain the

amplitude in the V−A theory:

M = GF√
2
[
ū(k)γµ(1− γ5)u(p)

] [
ū(p′)γµ(1− γ5)v(k′)

]
with p = p′ + k′ + k.

Straightforwardly 1
2 (1− γ5)v(k′) represents an outgoing

ν̄e of positive helicity. Considering an incoming νe, with
spinor 1

2 (1− γ5)u(k′) in the Feynman diagram, would
render the same result for |M|2.

Every partial decay width follows the general quantum and relativistic expression
dΓ = 1

2mA
|M|2dQ, mA being the mass of the decaying particle (here mA = mµ),

the bar indicates average over all possible initial spin orientations and sum over all
final spin states, and dQ is the Lorentz invariant phase-space volume element for
the N final state particles (A→ 1 + 2 + · · ·+N).
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THE 3-BODY PHASE-SPACETHE 3-BODY PHASE-SPACE

Labelling ω ≡ Eνµ , ω′ ≡ Eν̄e , E ≡ Eµ− and E′ ≡ Ee− , the generic structure of
the 3-body phase-space is:

dQ = d3 ~p′

(2π)32E′

(
d3~k

(2π)32ω

)
d3 ~k′

(2π)32ω′
(2π)4δ(4)(p− p′ − k − k′)

= 1
(2π)5

d3 ~p′

2E′
d3 ~k′

2ω′ δ
(

(p− p′ − k′)2
)

The last expression above is a consequence of the known integral over the
relativistic mass shell:

∫
d3~k
2ω =

∫
d4kθ(ω)δ(k2 −m2

νµ), where θ(ω) is the step
function that selects only positive energies ω > 0, and the fact that:∫
d4kδ(4)(p− p′ − k − k′)θ(ω)δ(k2 −m2

νµ) = δ
(
(p− p′ − k′)2), with m2

νµ = 0.

In a succint way, the integral over the mass shell is obtained as follows:∫
d4k θ(ω)δ(k2 −m2) =

∫
d3k
∫
dω θ(ω)δ(ω2 −m2 − k2) =∫

d3k
∫
dω θ(ω) 1

|2ω|

[
δ
(
ω +
√
m2 + k2

)
+ δ
(
ω −
√
m2 + k2

)]
=
∫
d3k
2ω · 1
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THE UNPOLARIZED AMPLITUDETHE UNPOLARIZED AMPLITUDE

If we give up doing the Garwin-Lederman experiment, and perform the average over
the two spin orientations of the muon to calculate its lifetime, we may use Casimir’s
rule for each factor inM =M1M2, by doing:

|M|2 = 1
2
∑
ss′

M1M2(M1M2)∗ = 1
2

(∑
s

M1M1
∗

)(∑
s′

M2M2
∗

)
Assuming me = 0 (and of course mν̄e = mνµ = 0) the trace takes the form:

Tr
[
γµ(1− γ5)/kγν(1− γ5)(/p+mµ)

]
Tr
[
γµ(1− γ5)/p′γν(1− γ5) /k′

]
At this point, it is extremely useful to know, for all V−A processes, the generic
expression (p1,2,3,4 being arbitrary 4-vectors):

Tr
[
γµ(1− γ5)/p1γ

ν(1− γ5)/p2

]
Tr
[
γµ(1− γ5)/p3γν(1− γ5)/p4

]
= 256 (p1·p3)(p2·p4)

Leading to the partial result (the term in mµ is an odd number of γ matrices):

|M|2 = G2
F

2
1
2 256 (kp′)(pk′) = G2

F 64 (kp′) (k′p)
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THE 3-BODY KINEMATICSTHE 3-BODY KINEMATICS

e−(p′, E′)

ν̄e(k
′, ω′)

νµ(k, ω)

θ

In the muon rest frame we have: p = (m, 0, 0, 0) and
(p− k′)2 = (k + p′)2 = 2kp′, since p′2 = m2

e = 0 and
k2 = m2

νµ
= 0 (m ≡ mµ).

Given that (p− k′)2 = p2 − 2pk′ = m2 − 2mω′ and
k′p = mω′, we may write the V−A amplitude as:
2(kp′)(k′p) = (p− k′)2(k′p) = (m2 − 2mω′)mω′

It becomes evident that the opening angle θ between the
e− and the ν̄e is univocally determined by the energies of
both particles.

Indeed, let us see how the above kinematic fact is precisely what is behind the Dirac
δ-function: δ(k2) = δ(m2

νµ
) in the 3-body phase-space:

δ
(

(p− p′ − k′)2
)

= δ
(
p

2 − 2pp′ − 2pk′ + 2p′k′
)

= δ
(
m

2 − 2mE′ − 2mω′ + 2E′ω′(1− cosθ)
)

= δ
(
A− 2E′ω′cosθ

)
=

1
2E′ω′

δ

(
cosθ −

A

2E′ω′

)
, with A ≡ m2 − 2m(E′ + ω

′) + 2E′ω′

As a result of which, the integrand of the partial width calculation can be written as:

dΓ =
G2
F

2mπ5
d3p′

2E′
d3k′

2ω′
mω′(m2 − 2mω′)

1
2E′ω′

δ

(
cosθ −

A

2E′ω′

)
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THE MICHEL SPECTRUMTHE MICHEL SPECTRUM
In order to perform the above (6-fold) integral over the e− and ν̄e phase-space, we take
the Z-axis of the spherical coordinates along the electron direction. Being unpolarized,
both azimuthal distributions are flat, thus: d3p′d3k′ = 4πE′2dE′2πω′2dω′d(cosθ). As the
opening angle θ is fixed by the δ-function, it all boils down to a 2-fold integral over the
energies:

dΓ =
G2
F

2π3 dE
′dω′mω′(m− 2ω′) with limits: 0 ≤ E′ ≤

m

2
and

m

2
− E′ ≤ ω′ ≤

m

2

Original measurements of the positron
momentum, M. Bardon et al. Phys. Rev. Lett.
14, 449 (1965). The line corresponds to the

derived formula for dΓ/dE′ .

Upon integration over ω′ we obtain the Michel spectrum
of energy (and momentum) of the emitted electron or
positron:

dΓ
dE′

=
G2
F

12π3m
2
µE
′2
(

3−
4E′

mµ

)
that historically constituted a stringent test on the V−A
structure of the coupling. The excellent agreement with
the data extends to recent high precision experiments.
The mean muon lifetime τµ is readily obtained after
integration over E′:

Γ ≡
1
τµ

=
G2
Fm

5
µ

192π3
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THE MUON LIFETIMETHE MUON LIFETIME

When a given particle is allowed several decay channels, with different partial
widths, Γ1,Γ2, . . . , these add up to determine the total width: Γt = Γ1 + Γ2 + . . . ,
with mean lifetime τ = 1/Γt. The time elapsed before decay is still given by an
exponential distribution with time constant τ , no matter which channel is observed.
Given that the pion π−[ūd] is the lightest hadron, with higher mass than the muon,
the decay µ− → e− ν̄e νµ is the only channel available. Indeed, a decay of the type:
µ− → ūdνµ would result in the formation of at least one pion, since free quarks are
strongly unstable. Furthermore, the electromagnetic decay µ− → e−γ is forbidden
in the Standard Model, as we shall see. Hence the calculated width amounts to the
total width, the calculation of τµ being exact.
In order to obtain the asymmetric distribution 1− 1

3 cosθ for a polarized µ− in the
Garwin-Lederman experiment, it is necessary to use: u↑ū↑ = 1

2 (m+ /p)(1 + γ5/s),
with sµ = (|p|, 0, 0, E)/m (see Problem 2 and Exercises 19 and 20).
The calculations shown in the V−A theory, where the 3 final state fermions have
very small squared masses compared with the initial fermion mass 2, constitute a
perfect model to assess the decay of the τ lepton and that of the c, b and t quarks,
allowing to estimate their mean lifetimes. Some examples: τ− → ντdū, c→ sµ+νµ,
c→ sus̄, b→ cµ−ν̄µ, and b→ csc̄ (see Problems 3, 4, 5 and 6).
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THE MUON AND THE GF CONSTANTTHE MUON AND THE GF CONSTANT
Recent measurements of τµ (D.M. Webber et al., PRL 106, 041803 (2011)) have allowed a
very precise determination of one of the most important constants in physics, the Fermi
constant GF = 1.1663788(7)× 10−5GeV−2. Which requires to accumulate muons and
study their Larmor precession frequency, following Garwin-Lederman’s idea.
If the W± boson mass is independently known (80.4 GeV/c2), GF fixes the true
dimensionless coupling constant of the weak interaction g2

w, as we have seen.
Having a lifetime in its rest frame τµ = 2196980.3(2.2)× 10−12s, the muon lives in
accelerators almost forever, in practical terms. It is the most penetrating charged particle
known. Its selection at high energies requires the installation of a dense hadron absorber
(typically Fe), with length in the meter scale.
The highly penetrating power of the high energy muon (Eµ & 5 GeV) is a consequence of
three unique features, leaving aside its long lifetime:

• very low probability of bremsstrahlung (and pair creation), as compared to the
electron (proportional to 1/m2

µ).
• low cross-section of deep inelastic (hadronic) scattering off nuclei (σinel ≈ 0.1nb), as

compared to the pion.
• cross-section of interaction with atomic electrons even lower than the above,

although higher than for neutrinos (due to its electromagnetic character).
The latter cross-sections are still lower for neutrinos, as will be seen (for their weak, not
electromagnetic, interaction). However, the comparison is strongly energy dedendent.
Almost all the great discoveries in particle physics have required the selection, or
antiselection, of muons.
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PIONS AND KAONSPIONS AND KAONS

Pions and kaons are the particles most frequently produced at accelerators. Their quark
composition is π−[ūd], K−[ūs], and both have spin zero. Their electric charge is that of
the electron, with masses mπ± = 139.6 MeV/c2 and mK± = 493.7 MeV/c2. The neutral
modes also exist, with masses: mπ0 = 134.9 MeV/c2 and mK0

s
= 497.7 MeV/c2.

At accelerators, the π± and K± are ultrarelativistic (Eπ,K & 1 GeV), and also penetrating
particles (not as much as muons, but far more than electrons and photons), and they can
traverse layers of matter of considerable thickness (detectors, absorbers). No industrial
applications have been found for them, thus far.

The relativistic π± and K± are penetrating for two fundamental reasons:

• they fly long decay paths in the laboratory, due to Lorentz dilation (∆x = cτ0γ).
Their lifetimes at rest are: τπ− = 26.0ns and τK− = 12.4ns (cτ0 = 7.8m and
3.7m respectively), that we shall study next.

• because, like the muon, they do not undergo bremsstrahlung, also suppresed by their
squared mass. This precludes the development of electromagnetic showers, that stops
electrons and photons. They do develop hadronic showers due to their strong
interaction with nuclei. The cross-sections are, however, much lower than (for
instance) slow neutrons, thus generating low nuclear activity even though some
radiological protection is required on the irradiated materials, for very intense beams.

34



THE HELICITY SUPPRESSIONTHE HELICITY SUPPRESSION

Pions and kaons decay into muons by forming a charged current in the V−A theory:
π− → µ−ν̄µ and K− → µ−ν̄µ. Two facts call for specific attention, however:

• why do they decay into muon and not into electron, with much larger phase-space?
• and still decaying into muon, why the decay is 100 times faster than the muon decay

itself, with smaller phase-space (∝ mπ −mµ for the pion)?
The answer to the first question is found precisely in the chiral structure of the V−A
coupling. Indeed, angular momentum conservation tells us that the decay happens only
through the opposite chirality (see right Figure below). As was seen, probabilities for both
chiralities are: Popposite = (1− k)2/[(1− k)2 + (1 + k)2] = (1− β)/2, with β ≡ vµ/c and
Pequal = (1 + k)2/[(1− k)2 + (1 + k)2] = (1 + β)/2. That explains why for the electron
(me = 0.5 MeV/c2, ve/c ∼ 1) it is almost entirely suppressed.

The second question requires a detailed analysis of the initial charged current in the pion.
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THE fπ CONSTANTTHE fπ CONSTANT

The ν̄µ wavelength (or µ−), λ ' 2h
(mπ−mµ)c , is ∼ 100 times larger than the π− size

(∼ 1fm). The pion is a bound state in QCD, and the leptonic charged current does not
couple to the free quarks, but to the pion wave function, thus we cannot just assume a
pure V−A coupling. This is in sharp contrast to the case of the (µ−, ν̄µ) pair.

µ−(p)

νµ (−k)

ū

d

π−(q)

W−

The relativistic amplitude must contain a Lorentz
vector, thus be proportional to qµ (the only
4-vector available, with a spin zero pion):
(. . . )µ = qµf(q2) ≡ qµfπ 5. The function f(q2)
is the axial vector form factor of the pion (Fourier
transform of the ūd charge distribution), that
must be evaluated at q2 = m2

π . So is the pion
decay constant fπ defined.
The constant fπ is known experimentally
(130.4 MeV/c), and it can also be calculated in
QCD, albeit with less precision.

Given that q = p+ k, the decay amplitude can be expressed as:

M =
GF√

2
(pµ + kµ) fπ

[
ū(p)γµ(1− γ5)v(k)

]
=
GF√

2
fπmµū(p)(1− γ5)v(k)

5 the pion being a negative parity state, this vector is proportional to the matrix element of the axial
p current between the π− state and the vacuum: iqµfπ = 〈0|ūγµγ5d|π−〉, or ūd wave function overlap.
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PION AND CHIRALITYPION AND CHIRALITY

The r.h.s. of the above equation is derived from the fact that the µ− and the ν̄µ are free
outgoing particles, both satisfying the Dirac equation: ū(p)(/p−mµ) = 0 and /kv(k) = 0.
The spinor (1− γ5)v(k) represents a right-handed ν̄µ coupled to a µ− that is also
right-handed (as shown in the spin drawing of p. 35).
The amplitudeM shows analitically what was previously seen: only the opposite helicity
contributes, the amplitude being zero in the limit mµ → 0 (helicity suppression).
The lifetime calculation now requires the spin sum, and the phase-space integration,
according to: dΓ = (1/2mπ)|M|2dQ. The former is achieved by application of Casimir’s
rule (together with the cyclic property of the traces):∑

ss′

MM∗ =
∑
ss′

G2
F

2
f

2
πm

2
µ

[
ū(p)(1− γ5)v(k)

] [
ū(p)(1− γ5)v(k)

]∗
=
G2
F

2
f

2
πm

2
µTr
[
(/p+mµ)(1− γ5)/k(1 + γ

5)
]

After suppression of the terms with an odd number of γ matrices, and using Tr[/a/bγ5] = 0,
we have: Tr

[
/p/k(1 + γ5)(1 + γ5) +mµ/k(1 + γ5)(1 + γ5)

]
= Tr(2/p/k) = 8(p · k). Finally:

|M|2 = 4cos2θcG
2
F f

2
πm

2
µ(p · k)

The amplitude includes a additional factor Vud = cosθc, related to the quark mass mixing
matrices, that we shall study later (see Lecture IX).
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THE PION LIFETIMETHE PION LIFETIME

To perform the phase-space integration, we go to the pion rest frame. Taking the Z-axis
along the µ−, it is clear that both the momentum and the energy of the ν̄µ are uniquely
determined, the angular distribution being flat, in the absence of spin (d3k = ω2dωdΩ with∫
dΩ = 4π):

µ−

ν̄µ

~p

~k
E

ω

p · k = Eω − kp = Eω + k2 = ω(E + ω)

Γ =
(
G2
F f

2
πm

2
µ

(2π)22mπ

)∫
d3p d3k

Eω
δ(mπ−E−ω)δ(3)(k+p)ω(ω+E)

= ( . . . ) 4π
∫ ∞

0
dω ω2(1 +

ω

E
)δ(mπ − E − ω)

The zero of the Dirac δ-function must be evaluated: mπ −
√
mµ + ω2

0 − ω0 = 0 yielding

ω0 = (m2
π −m2

µ)/2mπ , and we must take into account δ[f(ω)] =
1

|f ′(ω0)|
δ(ω − ω0),

with f ′(ω) = −(1 + ω
E

). Thus
∫∞

0 dω ω2(1 + ω
E

)
1

(1 + ω
E

)
δ(ω − ω0) = ω2

0 , and finally:

Γ =
1
τπ

=
G2
F

8π
cos2θcf

2
πmπm

2
µ

(
1−

m2
µ

m2
π

)2
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PROPERTIES OF π− → l−ν̄lPROPERTIES OF π− → l−ν̄l

The experimental value of the π± mean lifetime in its rest frame is τπ = 26.0ns
(cτπ = 7.8m). Which is long enough to allow the magnetic measurement of its momentum
at accelerators, while being in some cases too short to observe the pion-muon decay kink.
The pion decay constant is thus known experimentally fπ = 130.4 MeV/c, which allows to
understand τπ quantitatively, thereby explaning why the pion actually decays faster than
the muon.
The electron decay π− → e−ν̄e is much rarer, as we have seen, and the previous
calculation in the V−A theory allows to make a clean prediction for the ratio of the
respective probabilities, that is independent of the value of fπ :

Γ(π− → e−ν̄e)
Γ(π− → µ−ν̄µ)

=
(
me

mµ

)2(
m2
π −m2

e

m2
π −m2

µ

)2

= 1.283× 10−4

after using precision values of the 3 masses involved. The experimental value is
1.230(4)× 10−4. Taking into account the orders of magnitude present in the suppression,
a difference of only 3% means a high precision test of the V−A coupling of the W± to
both leptons.
The above result does not provide evidence, however, of the V−A structure of the W±
coupling to the quarks, owing to the long wavelength of the antineutrino, that does not
couple to free quarks, but to the pion bound state as a whole.
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THE KAON DECAYTHE KAON DECAY

All previous results for the π− apply also to the kaon K−[ūs]: it is a bound state in QCD,
where we have replaced the d quark by an s quark. The sizes of both mesons are not very
different, as implied by fK ≈ fπ , in fact fK = 156.1(2)MeV/c. However, kaon mass is
much higher: mK− = 493.7 MeV/c2.
The electron/muon suppression is even stronger, for the higher meson mass: 2.57× 10−5.
Kaon lifetime τK− = 12.4ns can also be understood in the V−A theory. The quark mass
mixing matrices (that we shall study) now generate a factor Vus = sinθc 6. It is easily
derived from the above that, for a generic lepton l = µ− or e−, we get the ratio:

Γ(K− → l−ν̄l)
Γ(π− → l−ν̄l)

= tan2θc

(
fK

fπ

)2(mπ
mK

)3
(
m2
K −m

2
l

m2
π −m2

l

)2

Just because the chiral suppression was considered to be understood, the above formula
played an important role in the determination of the Cabibbo angle θc = 13.1◦, after the
discovery of the strange particles in the 1960 decade.
For the π− there is no other lepton (apart from l = µ−, e−), or hadron, with lower mass,
thus the partial width Γ(π− → µ−ν̄µ) is practically the total width. However the K− mass
allows the hadronic decays K− → π−π0, π−π−π+, π−π0π0, and the semileptonic decay
K− → π0µ−ν̄µ. All of them are weak decays and can be dealt with as charged currents in
the V−A theory.

6 note that we have nothing similar to the lepton number conservation for the quarks. Instead we have the
palab Cabibbo angle. We shall come back to this topic in Lecture IX.
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THE CREATION OF NEUTRINO BEAMSTHE CREATION OF NEUTRINO BEAMS

As in any other quantum decay process, we find an exponential time distribution, where
the maximum probability density occurs at t = 0: the collision vertex where the π± and
K± are produced.
The fact that pions and kaons decay into muons, and almost never into electrons, is a
determining factor for particle physics experiments: the noise over the prompt muons (those
produced at the interaction vertex) will depend on energy, and on the amount of obsorber.
The π± and K± decays are the basis for the construction of intense neutrino and
antineutrino beams (νµ,ν̄µ) at any proton collider. Hadron focalization and absorption
actually define the figure of merit of the neutrino beam, along with the intensity and
degree of focalization of the primary proton beam.
As derived from all the properties discussed above, muonic neutrino beams show a tiny
contamination from electron neutrinos νe,ν̄e (10−4 − 10−5). In addition, they allow to
selectively create neutrinos νµ or antineutrinos ν̄µ, just by appropriate setting of the
magnet polarities (π+/π−), as shown below:

Setup of the CERN
neutrino beams,

directed towards the
Gran Sasso (Italy)
CERN-AC Note

(2000-03)
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Lecture V
NEUTRINO SCATTERINGNEUTRINO SCATTERING

1 PARITY VIOLATION
Dirac equation and chirality
The meaning of Gamma-5
The chiral operators
The parity transformation
Discovery of parity violation
The two key experiments
The Garwin-Lederman experiment
The Wu experiment
The Fermi theory
The V-A theory

2 BETA DECAY
Left-handed quarks and leptons
The Casimir rule
The Oxigen-14 decay into positron
The kinematics of beta decay
Insensitivity to nucleon mass
Fermi theory versus V-A theory
The Curie spectrum
Lifetime of beta decay

3 MUON DECAY
The muon decay amplitude
The 3-body phase-space
The unpolarized amplitude
The 3-body kinematics
The Michel spectrum
The muon lifetime
The muon and the Fermi constant

4 PION AND KAON DECAY
Pions and kaons
The helicity suppression
The pion decay constant
Pion and chirality
The pion lifetime
Properties of pion decay
The kaon decay
The creation of neutrino beams

5 NEUTRINO SCATTERING
Elastic amplitudes neutrino-electron and
antineutrino-electron
Backward helicity suppression
Elastic neutrino-electron and antineutrino-electron
cross-sections
The deep inelastic scattering
Neutrino-quark and antineutrino-quark scattering
Neutrino-antiquark and antineutrino-antiquark
scattering
The Bjorken x and y variables
The isoscalar target
The V-A coupling of the W-boson to the quarks
The antimatter fraction in the proton
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ELASTIC AMPLITUDES νee
− AND ν̄ee

−ELASTIC AMPLITUDES νee
− AND ν̄ee

−

Let us consider the elastic reactions νee− → νee− and ν̄ee− → ν̄ee−, governed by
charged V−A currents. The Feynman diagrams may be called W± exchange and W±
annihilation, respectively:

e−(p′) ν̄e(k)

νe(k
′)

νe(k)

e−(p) e−(p)

e−(p′)

ν̄e(k
′)

W−

W−

Both of them receive additional
contributions from neutral currents, that
we shall see in next lecture. The versions
with equal amplitude: νµe− → µ−νe and
ν̄ee
− → ν̄µµ

− instead, contain only
charged currents. They both can be
considered as the inverse muon decay.

Their respective amplitudes are readily obtained from the diagrams:

Mν =
GF√

2

[
ū(k′)γµ(1− γ5)u(p)

] [
ū(p′)γµ(1− γ5)u(k)

]
Mν̄ =

GF√
2

[
v̄(k)γµ(1− γ5)u(p)

] [
ū(p′)γµ(1− γ5)v(k′)

]
It can be shown that the differential cross section for any unpolarized two-body process
ab→ cd, follows the generic expression below, in the ultrarelativistic limit:

dσ

dΩ
=

1
64π2s

|M|2

where the bar means average over all initial spin states, and sum over final spin
configurations.
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THE BACKWARD HELICITY SUPPRESSIONTHE BACKWARD HELICITY SUPPRESSION
On application of the Casimir rule and trace theorem already used for µ− decay:

1
2

∑
ss′

|Mν |2 = G2
F · 64(kp)(k′p′) = 16G2

F s
2

1
2

∑
ss′

|Mν̄ |2 = G2
F · 64(k′p)(kp′) = 16G2

Fu
2 = 4G2

F s
2(1 + cosθ)2

θν/ν̄

ν/ν̄

e−

e−

given that s ≡ (k + p)2 = 2(kp) = 2(k′p′) and u ≡ (k − p′)2 = −2(kp′). The change of
order of the 4-vectors in the annihilation channel is actually equivalent to replacing the
Mandelstam variable s by u. Both are related by the angle θ in the center-of-mass frame
(CM): u = − s2 (1 + cosθ), in the limit m2

e = m2
ν = 0, with θ as indicated in the figure.

It is very instructive to perform the calculation of s in the laboratory frame (LAB) where
the beams have been prepared, and see that it would be zero in the limit me → 0:
s = (k + p)2 = (Eν +me)2 − p2

ν = 2meEν . This is a relativistic effect that prevents
energy dissipation on a target that is too light.
The fact thatMν is isotropic in the CM frame whileMν̄ is not, reflects the V−A
structure of the coupling, through the helicity suppression of the backward hemisphere
(θ = π), as shown below, from angular momentum conservation:
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ELASTIC CROSS-SECTIONS νee
− AND ν̄ee

−ELASTIC CROSS-SECTIONS νee
− AND ν̄ee

−

The above suppression directly reflects itself in a factor of 3 suppression of the antineutrino
cross-section, as compared to the neutrino, after using the two-body phase-space formula
previously seen:

dσ

dΩ
(νee− → νee

−) =
G2
F s

4π2 =⇒ σ(νee−) =
G2
F s

π

dσ

dΩ
(ν̄ee− → ν̄ee

−) =
G2
F s

16π2 (1 + cosθ)2 =⇒ σ(ν̄ee−) =
1
3
σ(νee−)

It is useful to get an idea of the magnitude of the neutrino cross-sections in the V−A
theory, i.e., in the Standard Model. Utilising the expression seen for s in the LAB frame,
the numerical values obtained are expressed by the formula:

σ(νee−) =
2G2

Fme

π
Eν = Eν(GeV)× 10−2fb

Which summarises the following two main features:
• The cross-section increases linearly with the energy of the neutrino beams, and for
Eν = 1 GeV it takes the value 10−2fb (1 fb = 10−6nb = 10−43m2).

• They also increase linearly with the mass of the target fermion. Being a kinematic
effect, the above rule may also be applied for quarks, protons, neutrons, or nuclei.
However, we must take into account that, either the mass may differ from its value in
a vacuum (case of the quarks, that acquire a dressed mass), or the coupling will not
be strictly V−A (the other cases). Still, cross-sections may be estimated using the
above formula, for hadronic targets of given mass.
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THE DEEP INELASTIC SCATTERINGTHE DEEP INELASTIC SCATTERING
Once the feasibility to build νµ and ν̄µ beams with sufficient intensity was proven in the
decade of 1970, at proton accelerators (J. Steinberger was pionier in this endeavour), these
were used historically for 3 different scientific purposes 7:
a) the study of the momentum distribution of quarks inside the proton and the neutron

(partonic densities qi(x)), with special attention to the antiquark density.
b) the study of weak interactions between the W± and the quarks, to find out whether they

conform the V−A structure observed with the leptons.
c) the discovery, and first studies, of new forms of weak interaction, the neutral currents, as

they were indeed brought to light by these experiments.

νµ

µ−

u

d

u

u

q̄

q

W−

X

Let us recall parton model’s idea (Feynman, 1972), whose
rationale is independent of the nature of the interaction
between the projectile and the quarks (either
electromagnetic or weak).
The neutrino strikes the quark (or antiquark), in a short
range reaction that produces its transmutation into
another quark, and the emergence of a muon. The
emitted quark cannot move away from the rest of the
proton, due to the color field stretched between them,
that dissipates the energy stored into an ensemble (X) of
stable hadrons (pions, kaons, baryons, etc.). The
hadronization process is practically instantaneous
(∼ 10−23s), as compared with the time elapsed before
the collision is fired by the weak interaction.

7 neutrino beams are today essential to study neutrino masses, discovered in 2001. This topic is beyond the standard
coloiiiiiielectroweak unification, and is not dealt with in this brief course.
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νq AND ν̄q SCATTERINGνq AND ν̄q SCATTERING

Neutrinos can only scatter off d-quarks in the proton, while antineutrinos only see the
u-quarks, through the reactions νµd→ µ−u and ν̄µu→ µ+d, giving rise to the respective
inclusive charged current processes: νµp→ µ− +X and ν̄µp→ µ+ +X, corresponding to
the Feynman diagrams:

µ−

u

νµ

d

W−

ν̄µ µ+

u d

W+

Note the processes: νµu 6→ µ+d
and ν̄µd 6→ µ−u are forbidden,
since no corresponding charged
currents can be formed, the
neutrinos being blind to the
u-quarks of the hadronic matter
(antineutrinos to the d-quarks).

By explicitating the corresponding spinors of the above amplitudes, for both processes, and
making use of the Casimir rule, we find identical results to those previously obtained for
|Mν |2 and |Mν̄ |2. Indeed, while the latter shows the characteristic suppression of the
backward hemisphere, the former does not, as we have seen, owing to the V−A structure
of the coupling. Thus the differential cross-sections in the CM frame (θ as indicated) are:

θνµ, ν̄µ

µ−, µ+

d

u

dσ

dΩ
(νµd→ µ−u) =

G2
F s

4π2

dσ

dΩ
(ν̄µu→ µ+d) =

G2
F s

16π2 (1 + cosθ)2
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νq̄ AND ν̄q̄ SCATTERINGνq̄ AND ν̄q̄ SCATTERING
Let us now hypothesize that neutrinos (and antineutrinos) may also collide with antiquarks,
in case these are present inside the proton or neutron. It would not be necessary to repeat
the calculations, because we are talking about the charge conjugate processes:

dσ

dΩ
(ν̄µd̄→ µ+ū) =

G2
F s

4π2 and
dσ

dΩ
(νµū→ µ−d̄) =

G2
F s

16π2 (1 + cosθ)2

for which the |M|2 values are identical to the non conjugate ones. It is actually a CP
transformation, in the V−A theory, whereM can only differ by one phase (see Exercise
23). The total cross-section σ of the second process is 1/3 of the first, as we have seen.
The above hypothesis is plausible, given that the small size of the proton (0.84fm), implies
fluctuations in the quark momenta: ∆p ∼ ~/0.84fm ∼ 235 MeV/c that largely exceed the
pair production threshold for u,d and s quarks (2mqc), according to the uncertainty
principle.

Hence the virtual pairs, produced by gluon
exchange between quarks, have a sizeable
probability of being struck by the neutrinos or
antineutrinos, thus triggering an inelastic reaction.
It is then understood why a detailed analysis of
the energy and scattering angle of the outgoing
muon (µ±) has allowed to determine the fraction
of antimatter inside the proton.
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THE BJORKEN (x, y) VARIABLESTHE BJORKEN (x, y) VARIABLES
In order to assess the exact relationship between the outgoing µ± momentum in the LAB
frame and the νq scattering angle in its CM frame, it is necessary to go back to Feynman’s
parton model, and know the precise meaning of the dimensionless variables: (x, y) ∈ (0, 1)
of Bjorken. These are uniquely determined by the 4-momenta of the incoming νµ (k), the
outgoing µ± (k′) (their difference being q = k − k′), and that of the proton (p).

qi(x)N(p)

dσi
dy

qi qj

νµ(k) µ−(k′) After Feynman, x ≡ −q2/2(pq) = −q2/(2Mpν)
(with ν ≡ (pq)/Mp = Eνµ − Eµ− ), means the
fraction of the proton’s longitudinal momentum
carried by the struck quark, at the collision.
y ≡ (pq)/(pk) = (Eνµ − Eµ− )/Eνµ describes
the νq scattering angle in their CM frame,
according to 1− y = (pk′)/(pk) = (1 + cosθ)/2,
with p = pq/x, as it can easily be checked.

The key expression in Feynman’s parton model is:
dσ

dxdy

(
νµN → µ−X

)
=
∑
i

qi(x)
(
dσi

dy

)
ŝ=xs

The differential cross-section of the emitted muon is determined by the incoherent sum of
squared amplitudes over the different partons, 6 in this case: i = u, d, s, ū, d̄, s̄.The quantity
ŝ denotes the s value in the neutrino-quark reference frame. The gluons g are not seen by
the neutrino, in a direct way.
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THE ISOSCALAR TARGETTHE ISOSCALAR TARGET
In Feynman’s formula, the following 4 fundamental processes are defined, in the CM frame:

dσ
dy

(νµd→ µ−u) = G2
F xs

π
dσ
dy

(νµū→ µ−d̄) = G2
F xs

π
(1− y)2

dσ
dy

(ν̄µu→ µ+d) = G2
F xs

π
(1− y)2 dσ

dy
(ν̄µd̄→ µ+ū) = G2

F xs

π

In most of the experiments, the matter interposed by the target had approximately equal
number of protons and neutrons, or u-quarks and d-quarks (isoscalar target N , as marble
(C,O) or Fe, with a small correction). A generic parton density was then defined, of quarks
(Q) and antiquarks (Q̄), taking into account the SU(3) symmetry:

Q(x) ≡ d proton(x) + d neutron(x) = d(x) + u(x)
Q̄(x) ≡ ū proton(x) + ū neutron(x) = ū(x) + d̄(x)

The differential cross-sections (per nucleon) for νµ and ν̄µ were determined from them:
dσ

dxdy
(νµN → µ−X) =

G2
F xs

2π
[
1Q(x) + (1− y)2Q̄(x)

]
dσ

dxdy
(ν̄µN → µ+X) =

G2
F xs

2π
[
Q̄(x) + (1− y)2Q(x)

]
The goal was to illuminate the target in a controlled way with νµ and ν̄µ, with precise
knowledge of the beam energy Eνµ,ν̄µ , to identify the outgoing µ∓, and to measure its
momentum and scattering angle, as a means to determine (x, y) for each event. It is not
required to identify or measure the hadron system X that recoils the nucleus.
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THE V-A COUPLING OF W± TO QUARKSTHE V-A COUPLING OF W± TO QUARKS

One of the most relevant results was obtained from detailed comparison of the y
dependence of the νµ and ν̄µ cross-sections, after x integration of the above expressions.
Recall that the V−A structure of the W± coupling to quarks reflects itself in either a
parabolic (1− y)2 (backward suppresion), or constant 1 (isotropic scattering) behaviour.
As x & 0.1 is naturally selected, the antiquark contribution is small (but non zero, as we
shall see).

It is clearly observed how the ν̄µ
scattering data on marble show the
parabola (1− y)2, while the νµ data
show a constant distribution. The
data show a residual contribution of
antiquarks that slightly mixes both
distributions.
With λν,ν̄ (of De Broglie) being short
enough, these data show the universal
character of the chiral (V−A)
structure of the W± coupling to
quarks and leptons.

Results published by the CHARM collaboration, M. Jonker et al., Phys. Lett. 109B (1982),
133., where a primary proton beam of 400 GeV was used, from the SPS at CERN.
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THE ANTIMATTER FRACTION IN THE PROTONTHE ANTIMATTER FRACTION IN THE PROTON
Another important result obtained with neutrino beams was the determination of the
antimatter fraction inside the proton.
While the electron (or muon) scattering experiments off protons are not able to distinguish
quarks from antiquarks (for having equal electric charge squared), neutrino experiments
are, as we have seen.

MMM	

MMM	

J. Steinberger, Nobel Lecture 1988.

The fraction of antiquarks in the proton was determined
to be:

∫ 1
0 xQ̄dx/

∫ 1
0 x(Q+ Q̄)dx = (15± 3) %, with

< −q2 >= 20 (GeV/c)2 (J. G. H. De Groot et al.,
CDHS collaboration, Z. Phys. C1 (1979) 143.) 8. Note
the virtual W± wavelength h/

√
−q2 amounts to

approximately half the proton radius.
Let us call R = σν̄/σν the ratio of total cross-sections
for ν̄µ and νµ, integrated in x and y. When antiquarks
are not present (Q̄(x) = 0), R = 1/3 is obtained. The
fraction r ≡

∫ 1
0 xQ̄(x)dx/

∫ 1
0 xQ(x)dx is thus related to

the measured value of R through the expression:
r = (3R− 1)/(3−R) (see Problem 9).

The antiquark component in the proton was first observed in 1979 by neutrino experiments
(νµ/ν̄µ), both at CERN with Fe target (CERN/Dortmund/Heidelberg/Saclay
collaboration, CDHS), and at Fermilab with hydrogen target (Purdue/Argonne/Carnegie
Mellon collaboration).

8 this result includes the s-quark contribution.
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Lecture VI
THE NEUTRAL CURRENTSTHE NEUTRAL CURRENTS

1 PARITY VIOLATION
Dirac equation and chirality
The meaning of Gamma-5
The chiral operators
The parity transformation
Discovery of parity violation
The two key experiments
The Garwin-Lederman experiment
The Wu experiment
The Fermi theory
The V-A theory

2 BETA DECAY
Left-handed quarks and leptons
The Casimir rule
The Oxigen-14 decay into positron
The kinematics of beta decay
Insensitivity to nucleon mass
Fermi theory versus V-A theory
The Curie spectrum
Lifetime of beta decay

3 MUON DECAY
The muon decay amplitude
The 3-body phase-space
The unpolarized amplitude
The 3-body kinematics
The Michel spectrum
The muon lifetime
The muon and the Fermi constant

4 PION AND KAON DECAY
Pions and kaons
The helicity suppression
The pion decay constant
Pion and chirality
The pion lifetime
Properties of pion decay
The kaon decay
The creation of neutrino beams

5 NEUTRINO SCATTERING
Elastic amplitudes neutrino-electron and
antineutrino-electron
Backward helicity suppression
Elastic neutrino-electron and antineutrino-electron
cross-sections
The deep inelastic scattering
Neutrino-quark and antineutrino-quark scattering
Neutrino-antiquark and antineutrino-antiquark
scattering
The Bjorken x and y variables
The isoscalar target
The V-A coupling of the W-boson to the quarks
The antimatter fraction in the proton

6 THE NEUTRAL CURRENTS
The discovery of neutral currents
The neutrino experiments
Relative proportion of neutral currents
Generic amplitude for neutral currents
Cross-sections on isoscalar target
Chiral content of the neutral current
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THE DISCOVERY OF NEUTRAL CURRENTSTHE DISCOVERY OF NEUTRAL CURRENTS
In 1973 neutrino interactions were discovered at the CERN Gargamelle bubble chamber,
that could not be explained by the weak interactions known at that time. They belonged to
the following two categories (neutrino energies 1− 10 GeV) :

a) ν̄µe− → ν̄µe
− (later also νµe− → νµe

−).
b) νµN → νµ +X and ν̄µN → ν̄µ +X

with N being a nucleus from the liquid Freon (CF3Br) filling the chamber, and X an
ensemble of hadrons.
Despite having been predicted by S. Weinberg in 1967 (as we shall see), important
theoretical prejudices existed against the existence of weak neutral currents.

The first leptonic neutral current event observed in 1973. The
antineutrino ν̄µ incident from the left pushes an electron for-
ward, creating a characteristic shower of bremsstrahlung photons
and electron-positron pairs (source: CERN).

The neutrino interaction νµ from the left produces 3 charged
particles, all of them identified as hadrons, since they interact
with nuclei in the liquid filling the chamber. It is thus excluded
that any of them can be a muon (source: CERN).
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THE NEUTRINO EXPERIMENTSTHE NEUTRINO EXPERIMENTS
The CHARM detector is a example of the muon neutrino magnetic experiments that
operated in the decade of 1980, associated with very high energy proton accelerators, both
at CERN and at Fermilab.
It is an essential feature of neutrino experiments to interpose a large amount of matter in
the target (692 Tm in the case of CHARM) to compensate for the extremely low neutrino
interaction cross-section. It also becomes necessary to veto neutron interactions.
The goal is being sensitive to the charged currents (CC) νµN → µ− +X and to the
neutral currents (NC) νµN → νµ +X simultaneously on the same apparatus, using tagged
νµ and ν̄µ beams (as earlier explained).
Remarkably, the analysis of neutral currents, where no muon is present, requires measuring
the energy deposited by the hadronic system EX , in order to determine the y variable of
Bjorken. The independent observation of charged current events allows to calibrate the
detector response for EX .
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RELATIVE PROPORTION OF NEUTRAL CURRENTSRELATIVE PROPORTION OF NEUTRAL CURRENTS
The ratios between inclusive cross-sections of neutral currents (NC) and charged currents
(CC) were determined, after a number of new experiments, to be:

Rν ≡
σNC(ν)
σCC(ν)

≡
σ(νµN → νµX)
σ(νµN → µ−X)

= 0.31± 0.01

Rν̄ ≡
σNC(ν̄)
σCC(ν̄)

≡
σ(ν̄µN → ν̄µX)
σ(ν̄µN → µ+X)

= 0.38± 0.02

Being a new kind of weak interactions, the interest focused on the following questions: is
the neutral current chiral (V−A) as the charged current? Is it coupled by the same Fermi
constant GF ?
The proportion of neutral currents was not small, as indicated above. At the beginning,
these events were ignored, due to theoretical prejudices established at the time, related to
the very small decay rate of K0

s → µ+µ−. Actually, the latter had to do with the fact that
neutral currents do not change the quark flavor, as we shall see later on (Lecture IX), as
well as with the unexpected presence of new quarks (the charm c).
Let us recall the definition of the Bjorken variable y, as calculated for a target at rest:
y ≡ (p.q)/(p.k) = (Eνµ − E′νµ )/Eνµ = EX/Eνµ , where q = k− k′ and EX is the energy
of the hadronic system. Noteworthy, it becomes necessary to measure EX in the neutral
currents, in addition to the neutrino beam energy Eνµ , needed for the kinematics.
Note the significantly different values of Rν and Rν̄ , that will be understood in the
Standard Model (see Problem 10 of the course).
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GENERIC AMPLITUDE FOR NEUTRAL CURRENTSGENERIC AMPLITUDE FOR NEUTRAL CURRENTS
The neutral currents (NC) are associated in Weinberg’s theory
with the exchange of a massive neutral boson, the Z0, similar to
the W± for the charged currents. The coupling constant is still
proportional to the boson propagator for q2 → 0 (q2 �M2

Z):

g 2
n

M2
Z − q2 →

4GF√
2
· fn

νµ

q

νµ

q

Z0

The following empirical amplitude is defined, for every generic NC process νq → νq, as:

M(νq → νq) ≡ 4GF√
2

2ρJNCµ JNC,µ
(
recall for CC:M≡ 4GF√

2
JµJ+

µ

)
with JNCµ (ν) ≡ 1

2 ūνγµ(CνV − C
ν
Aγ

5)uν and JNCµ (q) ≡ 1
2 ūqγµ(CqV − C

q
Aγ

5)uq
In the above expressions, the experiment must determine the real signed constants
CqA, C

q
V ∈ R, to allow the coupling having V−A and V+A components, instead of being

purely V−A (chiral), as for the charged currents.
In addition, each quark type q (UP or DOWN) may have different couplings CqV,A, a
situation which obviously does not happen with CC’s. The neutrinos may be assumed to be
purely left-handed, which would be natural, should they be massless, and produced from
charged currents, with CνV = CνA = 1/2.
The ρ constant amounts to a redefinition of CqV and CqA by a common factor, i.e. to an
effective change of the GF constant (factor fn above). In view of a possible mass difference
between the Z0 and W± bosons, ρ must be precisely determined, and turns out to be a
key discriminant for every lagrangian theory, together with the signed ratios CqA/C

q
V .
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CROSS-SECTIONS ON ISOSCALAR TARGETCROSS-SECTIONS ON ISOSCALAR TARGET

In order to calculate νq → νq cross-sections with the above amplitude, it is important to
realise that the characteristic suppression of the backward hemisphere, that we had already
encountered in the V−A theory with the antineutrino, happens here again, when the quark
coupled to the current is right-handed (and the neutrino left-handed), thus generating a
term (1− y)2.
According to the standard definitions: gqL ≡

1
2 (CqV +CqA) and gqR ≡

1
2 (CqV −C

q
A), and the

above-mentioned consideration, it is straightforward to derive, at the partonic level, the
expression:

dσ

dy
(νq → νq) =

G2
F xs

π

[
(gqL)2 + (gqR)2(1− y)2]

If we focus on the chirality 9, it is convenient to perform integration in x and define, for an
isoscalar target N : Q ≡

∫ 1
0 xQ(x)dx =

∫ 1
0 x[u(x) + d(x)]dx and Q̄ ≡

∫ 1
0 xQ̄(x)dx, and

the average couplings for u and d quarks: g2
L ≡ (guL)2 + (gdL)2 and g2

R ≡ (guR)2 + (gdR)2.
The quantities Q and Q̄ may actually be determined with charged currents. Thus:

dσNC

dy
(νµN → νµX) =

G2
F s

2π

{
g2
L

(
Q + (1− y)2Q̄

)
+ g2

R

(
Q̄ + (1− y)2Q

)}
dσNC

dy
(ν̄µN → ν̄µX) =

G2
F s

2π

{
g2
L

(
Q̄ + (1− y)2Q

)
+ g2

R

(
Q + (1− y)2Q̄

)}
9 and ignore a common factor ρ2 in both terms
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The upshot of a whole generation of neutrino experiments, at the end of the 1980 decade,
can be summarized by the results:

g2
L = 0.287± 0.008 g2

R = 0.042± 0.010
highlighting the fact that the neutral current does not have the chiral character shown by
the charged current, unequivocally having a V+A component that the latter does not have.
See Problem 8 for the numerical predictions in the Standard Model.
The detailed study of neutral currents was key for the electroweak unification, and it could
not be performed by neutrino experiments alone. On the one hand, a pp̄ collider was built
at CERN, to produce the Z0 in pp̄→ Z0 +X. Simultaneously several generations of e+e−
annihilation machines were built, that allowed to observe first the Z0/γ interference and
later to study the CqV,A, C

l
V,A, and C

ν
V,A couplings for all quarks, charged leptons l, and

for the neutrinos:

Z0
+

2

µ−

µ+

µ−

µ+
γ

e−

e+

e−

e+

Z0

ū, d̄, s̄, c̄, b̄

u, d, s, c, b

e−

e+

For the Feynman diagram calculations, you may assess Problem 14 and Exercise 18, and
Problem 13 and Exercise 21 for the neutrinos.
Among the multiple lagrangian theories, based on the local gauge invariance principle, that
tried to explain the precision data of the above projects, only one succeeded: the
electroweak unification theory by Glashow-Weinberg-Salam or Standard Model, that we
shall study next.
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KEY RELATIVISTIC LAGRANGIANSKEY RELATIVISTIC LAGRANGIANS
Fermionic field of Dirac coupled to a massless spin 1 field Aµ (mA = 0), through the local
gauge invariance principle, with covariant derivative Dµ ≡ ∂µ + ie

~cAµ:

L/(~c) = i ψ̄γµ∂µψ −
(
mc

~

)
ψ̄ψ −

(
e

~c

)(
ψ̄γµψ

)
Aµ = i ψ̄γµDµψ −

(
mc

~

)
ψ̄ψ

Euler-Lagrange equation:
(
/pc− e /A−mc2

)
ψ = 0 with �Aµ = ∂µ(∂νAν) (free Maxwell)

Real spin zero scalar field, of Klein-Gordon:

L/(~c)2 = 1
2 (∂µφ)(∂µφ)− 1

2

(
mφc

~

)2
φ2

Euler-Lagrange equation:

(
�+

(
mφc

~

)2
)
φ = 0

Real spin 1 vector field of Proca, Aµ = (φ/c,A), with nonzero mass mA 6= 0:

L/(~c)2 = − 1
4FµνF

µν + 1
2

(
mAc

~

)2
AµA

µ con Fµν ≡ ∂µAν − ∂νAµ

Euler-Lagrange equations:
(
�+

(
mAc

~

)2)
Aµ = 0 and ∂µA

µ = 0

because:

(
�+

(
mAc

~

)2
)
Aµ = ∂µ (∂νAν) =⇒ ∂νA

ν = 0

The integral
∫
Ld4x is a relativistic invariant, and it is measured in units of action [J · s],

where the Lagrangian density L is energy per unit volume L [Jm−3].
The scalar or vector fields may take the form w± = (w1 ± iw2)/√2, with real w1,2 fields
following the above L, representing opposite charge particles, with (common) doble mass 2.
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GAUGE THEORY APPROACHGAUGE THEORY APPROACH
Let us build a lagrangian theory that may represent both the weak interaction we have
seen, and the electromagnetism (QED), using the principle of local gauge invariance. In the
theory, the bosons involved in the CC’s (W±), and in the NC’s (Z0), will be real particles,
similar to the photon, that can be emitted or absorbed by the fermions.

The structure of the CC’s suggests the fermionic fields being doublets:
(
u
d

)
or
(
νe
e−
)
, used

interchangeably. Their symmetry is the SU(2) group, that assigns to them, as a conserved
charge, the weak isospin (±1/2). The maximal P-violation observed forces to select only
the left-handed chiral components, under the projector γL = 1

2 (1− γ5).
The 3 generators of the SU(2) group (Pauli matrices) are associated with 3 massless spin 1
bosons (due to the local gauge symmetry), analogous to the photon: W+,W− and W 3.
The SU(2)L theory is assumed universal, with no distinction among the 3 generations of
quarks and leptons. We shall take the first generation of the leptonic sector as a reference
example, although any other of the 6 possible cases are equally valid.
These purely left-handed fields cannot describe all weak interactions of leptons and quarks,
because these couple to the neutral current with a V+A component, as we have seen. In
addition they interact with the photon in a symmetric way V−A/V+A. Thus the theory
must also contain their right-handed chiral fields, under the projector γR = 1

2 (1 + γ5).
The right-handed chiral fields: uR , dR , νR and eR are in the theory different particles
from the left-handed fields, having different conserved charges (isospin zero singlets). It will
be a partial success of the theory to predict that the νR is the only fermion having all of its
conserved charges zero, thus being kept out of all Feynman diagrams.
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Let us recall the Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
σ± =

1
2

(σ1± iσ2 ) σ+ =
(

0 1
0 0

)
σ− =

(
0 0
1 0

)
The 3 fermions (chiral fermionic fields) of the theory are:

χL ≡
(
νe
e−

)
L

(νe)R (e−)R or χL ≡
(
u
d

)
L

(u)R (d)R

It can easily be checked, from what we saw in previous lectures, that the charged and
neutral currents that couple to the bosons take the form:

J+
µ (x) = ν̄LγµeLe

i(pf−pi)x = χ̄Lγµσ+χLe
i(pf−pi)x

J−µ (x) = ēLγµνLe
i(pf−pi)x = χ̄Lγµσ−χLe

i(pf−pi)x

J3
µ(x) =

(
1
2 ν̄LγµνL −

1
2 ēLγµeL

)
ei(pf−pi)x = χ̄Lγµ

1
2σ3χLe

i(pf−pi)x

Which can be joined together in a single weak current: ~Jµ = χ̄Lγµ
1
2~σχLe

i(pf−pi)x, that
couples to the 3 gauge bosons through the lagrangian:
LL = L0 + LG − g ~Jµ · ~Wµ L0 = χ̄L (iγµ∂µ −m)χLe

i(pf−pi)x LG = − 1
4
~Wµν

~Wµν

Note that: 1
2~σ

~Wµ = 1√
2

(
σ+W

+
µ + σ−W

−
µ

)
+ 1

2σ3W
3
µ with W±µ ≡ 1√

2

(
W 1
µ ∓ iW 2

µ

)
The kinetic terms LG of the gauge fields ~Wµ show self-coupling, owing to the way in
which the covariant derivative Dµ acts on the fields: ~Wµν = ∂µ ~Wν − ∂ν ~Wµ + g ~Wµ × ~Wν ,
the last term being determined specifically for the (non abelian) SU(2) group.
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Leaving aside the self-coupling, we see that the above theory is just a ”copy” of QED, with
LQED = −eJµ(x)Aµ(x), where we have replaced the coupling constant e =

√
4πα by

another dimensionless constant g, and Maxwell’s electromagnetic field Aµ(x) by 3 similar
massless fields: W 1

µ(x),W 2
µ(x) and W 3

µ(x).
At each space-time point x, the gauge rotations act on the left-handed fermion doublet, as
defined by 3 arbitrary functions ~α(x): G(x) = exp

(
i
2~σ · ~α(x)

)
, such that the invariance of

LL is ensured by the gauge transformation of the fields: ~W ′µ = ~Wµ − 1
g
∂µ~α− ~α× ~Wµ, the

last term (×-product) being again determined by the specific structure of the SU(2) group.
It is essential to realize that fermion masses must be strictly zero: m = 0, since a Dirac
mass term in the lagrangian: mēe = m(ēReL + ēLeR) would not be invariant under the
above gauge transformations. Indeed, it is evident that the eL field adquires a νeL
component under G(x), while eR remains constant, for being an SU(2)L singlet. Note that
such situation does not happen in Quantum Electrodynamics (QED), lacking any kind of
chirality, where the electron may indeed have mass.
Owing to the very nature of the gauge principle, the bosons may not have mass either. A
Proca term + 1

2M
2WµWµ in L L would not remain invariant under the G(x) rotation.

A critical question now comes up: is the weak interaction theory above compatible with
quantum electrodynamics (QED), that couples the same fermions with the photon? Or
more precisely: is the sum L = LL + LQED invariant under all rotations of the gauge
group SU(2)L×U(1)Q?
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WEAK HYPERCHARGE IN SU(2)L × U(1)YWEAK HYPERCHARGE IN SU(2)L × U(1)Y

The answer to the above question is NEGATIVE. Indeed, let us see that the electromagnetic
current that couples to the photon: 1

|e|J
em
µ = −ēγµe = −ēRγµeR − ēLγµeL (where

q = −|e| is the electric charge) is not invariant under the rotation G(x) of SU(2)L, due to
the term ēLγµeL, in which eL acquires an uncompensated νeL component.
The KEY IDEA that allows a way out of this problem is to couple, instead of Jemµ 10, the
WEAK HYPERCHARGE current, that is indeed invariant under SU(2)L:

J
Y
µ ≡ 2

(
J
em
µ − J3

µ

)
= −2

(
ē
R
γµeR + ē

L
γµeL

)
−
(
ν̄
L
γµνL − ēLγµeL

)
= −2

(
ē
R
γµeR

)
−1
(
χ̄
L
γµχL

)
By observing these coefficients in detail, the weak hypercharges acquired by the fermions of
the theory can be read off: for the right-handed electron singlet Y = −2, and for the
left-handed doublet χL (νe, e−) Y = −1, where Y = 2(Q− T 3), with Q in units of |e|.
Driven by this idea, and introducing a new massless vector field Bµ (that replaces the
photon), with a new coupling constant g′, we get a theory that is gauge invariant under local
rotations of the group SU(2)L×U(1)Y :

L1 = −g ~Jµ · ~Wµ −
g′

2
(JY )µBµ

that is, a Yang-Mills theory, where the invariance of L1 under G(x) rotations of the SU(2)L
group is manifest in the expression above for JYµ , that involves the object: (χ̄LγµχL).
Invariance under U(1)Y is also evident, for local phase changes e±iY α(x) of the fermion
fields, with equal hypercharge Y , compensate each other.

10 from now on, we simply write Jemµ instead of 1
|e|J

em
µ (units of |e|).
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GAUGE BOSONS AND PHYSICAL BOSONSGAUGE BOSONS AND PHYSICAL BOSONS
Now the following obvious questions come up: where is Maxwell’s electromagnetic field Aµ
(the photon) in this theory? What is the value of the electron charge e as a function of g
and g′? Where is the Zµ field that transmits the true neutral current (having a V+A
component, as we know), and what are the V−A and V+A couplings that the neutral
current has for quarks and leptons, in this theory?
To answer the above questions, S. Weinberg postulates in 1967 that the physical neutral
bosons we see in the laboratory are not the gauge bosons present in L1, but two
orthogonal linear combinations of them:(

Zµ
Aµ

)
=
(
c −s
s c

)(
W 3
µ

Bµ

)
=
(
cW 3

µ − sBµ
sW 3

µ + cBµ

)
where c ≡ cosθW and s ≡ sinθW , with θW being the Weinberg angle. In addition,
Weinberg provides the exact Hamiltonian of the interaction that brings the gauge states to
the physical states (the Higgs mechanism), that we shall study in the next lecture.
The equation below provides detailed account of the previous questions:

Lneut =
(
J3,µ , 1

2J
Y,µ
)(g 0

0 g′

)(
W 3
µ

Bµ

)
=
(
JNC,µ , eJem,µ

)(Zµ
Aµ

)
It can easily be checked, by solving the implicit 2× 2 linear system above (see Problem 12)
that this equation shows a unique solution for the unknowns JNC,µ and e, namely:

JNC,µ =
g

c

(
J3,µ − s2Jem,µ

)
e = sg = cg′ e =

gg′√
g2 + g′2
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THE MEANING OF ELECTROWEAK UNIFICATIONTHE MEANING OF ELECTROWEAK UNIFICATION

The first of these equations (JNC,µ) tells us why the neutral current is not purely V−A in
Nature: it is contaminated by the electromagnetic current, as a consequence of the gauge
symmetry SU(2)L ×U(1)Y , with a V+A part predictable and proportional to sin2θW .
The second equation (e) tells us the gauge boson couplings in the Feynman diagrams:
g = e/sinθW (SU(2)) and g′ = e/cosθW (U(1)), as a function of the electron charge. We
see that the interaction is not intrinsically weak with respect to electromagnetism, but
rather the opposite. While waiting to comprehend the boson masses in a realistic unification
theory (to be seen in next lecture), we observe that an experimental determination of θW ,
together with GF and e, would allow us to predict (without understanding) the W± mass,
but not the Z0 mass (as the ρ parameter, defined on p. 57, remains unconstrained).
The previous equations constitute the core of the electroweak unification theory, within the
Standard Model. We see, however, that the SU(2)L ×U(1)Y symmetry is not able to
interpret through its own means the Fermi constant GF , since the latter assumes high
masses of the intermediate bosons (dimension GeV−2), that the theory cannot interpret,
owing to the gauge principle itself, that requires them to have zero mass. Given that the
gauge coupling constant between the W± boson and the fermions is g/

√
2 (p. 63), the

exact relationship follows: GF =
√

2g2/(8M2
W ) 11, from the GF definition on p. 15.

Let us recall that the electron charge is represented by the fine structure constant, that is
dimensionless: α = e2/(4πε0~c) ' 1/137. Its small value justifies a perturbative analysis in
QED, that is therefore also justified in the electroweak theory (sinθW not being too
small). In units ~ = c = ε0 = 1 we have e =

√
4πα.

11 without adopting ~ = c = 1, it becomes: GF =
√

2g2(~c)3/[8(MW c2)2] (units Jm3).
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The SU(2)L ×U(1)Y theory presents 4 conserved charges, according to Noether’s
theorem. Within a given flavor generation, we may use T = |~T |, T 3, Q, and the weak
hypercharge Y = 2(Q− T 3), to distinguish the different chiral states of the quarks and
leptons in the theory, as detailed in the following tables (recall Q in units of |e|):

LEPTONS T T 3 Q Y
νe,L 1/2 1/2 0 −1
e−L 1/2 −1/2 −1 −1
νe,R 0 0 0 0
e−R 0 0 −1 −2

χL =
(
νe
e−

)
L

(νe)R (e−)R

QUARKS T T 3 Q Y
uL 1/2 1/2 2/3 1/3
dL 1/2 −1/2 −1/3 1/3
uR 0 0 2/3 4/3
dR 0 0 −1/3 −2/3

χL =
(
u
d

)
L

(u)R (d)R

The fermion/boson interaction part of the electroweak unification lagrangian is then:

L1 = −g ~Jµ ~Wµ − g′ 12 (JY )µBµ =

−
g
√

2
(J+)µW+

µ −
g
√

2
(J−)µW−µ − e(Jem)µAµ −

g

cosθW

(
J3 − sin2θW Jem

)µ
Zµ
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THE Z0 COUPLINGSTHE Z0 COUPLINGS
The previous lagrangian and tables determine the Z0 couplings in all Feynman diagrams,
for each type of fermion f , by making explicit the CfV and CfA constants:

Z0

f

f̄

−
g

cosθW
ψ̄fγ

µ
[

1
2 (1− γ5)T 3

f − sin2θWQ
]
ψf · Zµ

= −
g

cosθW
ψ̄fγ

µ 1
2

(
CfV − C

f
Aγ

5
)
ψf · Zµ

where the values T 3 = ±1/2 should be used, corresponding to left-handed fermions.
That are summarized in the table below, where CfV = T 3

f − 2sin2θWQf and CfA = T 3
f :

f Qf CfA CfV

νe, νµ, ντ 0 1/2 1/2
e−, µ−, τ− −1 −1/2 −1/2 + 2sin2θW ' −0.03
u, c, t 2/3 1/2 1/2− 4

3 sin2θW ' +0.19
d, s, b −1/3 −1/2 −1/2 + 2

3 sin2θW ' −0.34

from where the RH and LH couplings can be derived as: gfR,L = (CfV ∓ C
f
A)/2.

The value sin2θW ' 0.23 has been used, as initially measured by neutrino experiments.
Today we know that sin2θW = 0.23120± 0.00015.
As we see, the predictive power of the SU(2)L ×U(1)Y theory is huge, and it explains why
subsequent experiments performed at e+e− annihilation machines, in particular PETRA
(DESY, Hamburg) and LEP (CERN), were able to exclude a great deal of alternative
gauge theories.
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THE SPONTANEOUSLY BROKEN SYMMETRYTHE SPONTANEOUSLY BROKEN SYMMETRY
Despite its success, the SU(2)L ×U(1)Y theory postulates, as we have seen, a long
range weak interaction, similar to electromagnetism, with massless bosons. However, the
reality is quite different, with a weak interaction having short range, in contrast with
electromagnetism, and characterized by a dimensionful Fermi constant GF (GeV−2). The
gauge symmetry is therefore broken in Nature. Note the interaction potential for a boson
of mass m: U(r) ∝ −e−mr/r.
The KEY IDEA on how to break a symmetry, while preserving it in L, lies in attributing
to a vacuum the responsibility of the broken symmetry, thus admitting the possibility that
certain fields acquire there a nonzero value. This is generically known in field quantum
theory as Spontaneous Symmetry Breaking (SSB).
Y. Nambu (1960) is credited with this idea, actually staged 10 years earlier by L. D.
Landau and V. Ginzburg in the context of giving the photon an effective mass inside a
superconductor (1950). P. Higgs (1964), T. Kibble (1964), and others, clarified it in the
relativistic and non abelian framework, and it was used in 1967 by S. Weinberg to solve the
problem we are discussing here.
Weinberg adds 4 real scalar fields (spin zero) to the SU(2)L ×U(1)Y theory (L1), two of
them electrically charged (±1): φ+

1 y φ+
2 , and two neutral ones: φ0

3 y φ0
4, in the form of a

new isospin doublet (T 3 = ±1/2):

φ(x) =
(
φ+(x)
φ0(x)

)
=

1
√

2

(
φ+

1 + iφ+
2

φ0
3 + iφ0

4

)
it is immediately seen that, in this configuration, the 4 scalar particles have a weak
hypercharge: Y = +1. The field φ0

3 is forced to have a very high vacuum expectation value
(vev) v: φ0

3(x) ≡ v +H(x).
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The above vev is realized by postulating that the φ(x) field is self-coupled, with the
potential energy: V (φ) = µ2

(
φ+φ

)
+ λ
(
φ+φ

)2, where φ+ now denotes the conjugate
and transpose doublet, with two real constants: µ2 < 0 and λ > 0.

Clearly, a (degenerate) state of minimum
energy is reached when the field (without
particles) takes the constant value:

φ0 = 〈0|φ|0〉 =
1
√

2

(
0 + 0i
v + 0i

)
with the relation v2 = −µ2

2λ . We have plotted
V (φ) over the φ0

3 axis for the observed values
of µ2 and λ, that we shall know soon enough.

The 4 new particles now interact with the ~Wµ and Bµ bosons, by virtue of the local gauge
invariance of L, that demands the presence of the covariant derivative:

L2 = (Dµφ)+ (Dµφ) + V (φ) with Dµ = i∂µ −
g

2
~σ · ~Wµ −

g′

2
Y Bµ

where Y = +1 is the hypercharge of φ. The gauge rotations SU(2)L operate as:

φ′(x) = ei
~Λ(x)·~σ

2 φ(x) ~W ′µ(x) = ~Wµ(x)−
1
g
∂µ~Λ(x)− ~Λ(x)× ~Wµ(x)

where ~Λ(x) are 3 arbitrary functions of space and time. The last term is dictated by the
non abelian character of the SU(2) group, as already seen.
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THE W± AND Z0 MASSESTHE W± AND Z0 MASSES
The new lagrangian density is therefore L = L1 + L2. Let us examine in detail how the
interaction between the spin zero bosons and the gauge bosons takes place. The most
immediate effect is obtained by replacing the φ(x) field by its vacuum expectation value
φ0 = (0, v/

√
2), since the terms obtained will always be present in L:

L2 =
∣∣∣(i∂µ − g

2
~σ · ~Wµ −

g′

2
Y Bµ

)
φ

∣∣∣2 + V (φ)∣∣∣ · · · ∣∣∣2 =
1
8

∣∣∣∣( gW 3
µ + g′Bµ g

(
W 1
µ − iW 2

µ

)
g
(
W 1
µ + iW 2

µ

)
−gW 3

µ + g′Bµ

)(
0
v

)∣∣∣∣2
=
(

1
2vg
)2
W+
µ W

−µ+ 1
8v

2
(
W 3
µ Bµ

)( g2 −gg′

−gg′ g′2

)(
W 3,µ

Bµ

)
The physical meaning of the first term is clear: the W± bosons have acquired a Proca
mass, equal for both: MW = (1/2)vg 12 (not (1/2)M2

WW+
µ W

−µ, but M2
WW+

µ W
−µ en L).

The second term shows what the interaction mechanism is between the W 3
µ and Bµ gauge

bosons that gives rise to the physical bosons Zµ and Aµ, as announced in the previous
lecture. Indeed, on substitution of the expression defining the Weinberg angle, we obtain:

1
8v

2
(
Zµ Aµ

)(c −s
s c

)(
g2 −gg′

−gg′ g′2

)(
c s

−s c

)(
Zµ

Aµ

)
12 without adopting ~ = c = 1, the mass arises from the equation (1/2)vg = MW c2, resulting from ccccc

(1/2)vg/(~c) = MW c/~, after consistently expressing the gauge transformation.
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THE FERMI CONSTANTTHE FERMI CONSTANT
We see that the purpose of the Weinberg angle is no other than diagonalising the above
mass matrix. Its eigenvalues provide masses to the Z0

µ (M2
Z) and the photon Aµ (M2

A):

1
8v

2
(
Zµ Aµ

)(g2 + g′2 0
0 0

)(
Zµ

Aµ

)
= 1

2M
2
ZZµZ

µ + 1
2M

2
AAµA

µ

with result: MZ = (v/2)
√
g2 + g′2 and MA = 0. Aµ = (g′W 3

µ + gBµ)/
√
g2 + g′2 is the

eigenstate that has remained massless from Weinberg’s choice of weak hypercharge, that
we shall comment later on, Zµ = (gW 3

µ − g′Bµ)/
√
g2 + g′2 being the one with mass.

Hence introducing a vacuum expectation value for one of the scalar fields (φ0
3(x)), of

hypercharge +1, has given rise to a nonzero mass for the W± and Z0 bosons, and the
gauge symmetry has made both masses proportional to the same parameter v. Which leads
to a specific prediction of this model for the ratio:

MW

MZ
= cosθW

Thus we have a proper comprehension of the electroweak symmetry breaking, that allows
now to understand the Fermi constant GF , and be able to calculate it precisely, just by
going back to the definition of the generic coupling of the neutral current:

JNC
µ

JNC,µ

Z0 MNC ≡
4GF√

2
2ρJNCµ JNC,µ =

(
g

c
JNCµ

) 1
M2
Z − q2

(
g

c
JNC,µ

)
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ρ PARAMETER, v VALUE AND HIGGS MASS MHρ PARAMETER, v VALUE AND HIGGS MASS MH

We identify ρGF√
2

= g2

8M2
Z

cos2θW
, and recall GF√

2
= g2

8M2
W

(Fermi constant definition on p.
67), to get the important prediction for the ρ parameter:

ρ =
M2
W

M2
Zcos2θW

= 1

Note this result goes beyond the predictions of the SU(2)L ×U(1)Y theory (that would
imply MW = MZ = 0), and could not have been achieved without introducing the Higgs
field and assigning it specifically to a doublet of hypercharge +1.
Remarkably, the expectation value of the Higgs field v is uniquely determined by a single
parameter, the Fermi constant GF = 1√

2
1
v2 . Indeed:

GF√
2

= g2

8M2
W

= g2

8(v2g2/4) = 1
2

1
v2 ,

known with high precision from muon decay. A 3-digit value ready to memorise:
v = 246 GeV. Note that its exact dimension is energy (GeV or J) 13.
By replacing φ0

3 = v +H(x) in the expression of L2, and taking into account
V (φ) = µ2(v +H)2 + λ(v +H)4, we see that a mass term is also produced for the Higgs
boson: 1

2M
2
HH

2 = (µ2 + 6λv2)H2, with M2
H = −4µ2 or MH = 2

√
−µ2.

The theory does not tell us about the physical mechanism behind the vacuum energy v of
the H(x) field, thus no interpretation is provided for the λ and µ2 parameters, neither is
the theory able to predict the value of the Higgs mass. The knowledge of v through GF is
not enough to fix these parameters. However, an additional measurement of MH does
allow to fully determine, empirically, the potential energy V (φ), fixing both λ and µ2.

13 the detailed relationship is GF = (1/
√

2)(~c)3/v2 (Jm3 units), without taking ~ = c = 1.
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THE MASSLESS SCALARS ARE DECOUPLEDTHE MASSLESS SCALARS ARE DECOUPLED
What happens to the other 3 spin zero bosons, charged and neutral: φ+

1 , φ+
2 y φ0

4?
Detailed examination of expression L2 reveals their couplings in the Feynman diagrams of
the theory. However, it is crucial to realize that, unlike the φ0

3 field, their couplings may
always be suppressed from the Feynman diagrams by an appropriate gauge rotation under
the SU(2)L group.
Indeed, let us find the proper rotation to attain such goal, as defined by the three functions
~θ(x) of space-time. We use the Pauli matrices to write: ~θ · ~σ =

(
θ3 θ1 − iθ2

θ1 + iθ2 −θ3

)
and

the equation exp(iα~θ · ~σ) = cos(α|~θ|)1 + i sin(α|~θ|) (~θ · ~σ)/|~θ|. Then the most general
infinitesimal rotation under SU(2)L can be expressed as:

ei
~θ·~σ
~c 1√

2

(
0

v +H(x)

)
= 1√

2

(
v +H(x)

)( θ2(x)
~c + i θ1(x)

~c

1− i θ3(x)
~c

)
for |~θ| → 0

It is evident that the expression of the r.h.s. runs through all possible configurations of the
Higgs field φ(x) when ~θ(x) runs over all possible sets of real functions θ1,2,3(x). Note the
rotation does not need to be infinitesimal, just for simplicity it is written in this way.

Hence the inverse rotation: e−i
~θ·~σ
~c necessarily takes us to a gauge where only the H(x)

boson couples (called unitary gauge). For this reason the φ0
3 particle is specifically called

Higgs boson in the literature, and the other scalars may be ignored from the Feynman
diagrams 14, in specific calculations. Naturally, the observables will never depend on the
chosen gauge. For example, the mean lifetime of the t-quark in Problem 6, or the partial
width into fermions of the Higgs boson, in Problem 17.

14 the degrees of freedom represented by the 3 scalar fields actually become extra components of the longitudinal waves of
palabrrithe massive W± and Z0 fields (see the formalism in the statement of Exercise 21).
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THE PHOTON REMAINS MASSLESSTHE PHOTON REMAINS MASSLESS
Let us see more detail about the reason why the photon has remained masslesss (MA = 0)
in Weinberg’s choice, and its relation with the conservation of the electric charge.

φ
+
2 is removed from drawing (4D→3D)

None of the 4 generators of the SU(2)L ×U(1)Y group
leaves invariant the vev of the Higgs field:

φ0 = 1√
2

(
0 + i0
v + i0

)
.

The global SO(4) ' SU(2)× SU(2) symmetry of V (φ) is
broken by the above vev to an SO(3) ' SU(2) symmetry
(custodial symmetry, in the literature). The hypercharge
Y interaction (g′ 6= 0) then introduces the photon in the
theory, thereby inducing MW 6= MZ.

The non invariance by any of the 3 rotations (~σ ) of SU(2)L is clear, according to the result
of the previous page. For the U(1)Y rotation (with Y = +1) it is also true:

eiα(x)(+1)φ0 = 1√
2

( 0
eiα(x)v

)
However, there is a rotation (linear combination of the above) which does leave invariant
that particular orientation of φ0, the one related to the conservation of the electric charge
of quarks and leptons Q = T 3 + 1

2Y (Q = 1
2σ3 + 1

2 1 on φ0):

eiQθ
(

0
v

)
= ei

σ3
2 θei

1
2 θ
(

0
v

)
=
(
ei
θ
2 0

0 e−i
θ
2

)(
ei
θ
2 0

0 ei
θ
2

)(
0
v

)
=
(

0
ei

1
2 (θ−θ)v

)
=
(

0
v

)
,

that explains why the linear combination (g′W 3
µ + gBµ)/

√
g2 + g′2 remains massless.

Choosing a vev 6= 0 for the charged scalars would have implied electric charge violation.
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HIGHLIGHTS OF ELECTROWEAK UNIFICATIONHIGHLIGHTS OF ELECTROWEAK UNIFICATION
Some highlights that have been decisive in selecting the theory of electroweak unification we
have studied, known as the Glashow-Weinberg-Salam theory (today part of the Standard
Model of particle physics), are cited below:

Discovery of the neutral currents by the Gargamelle experiment at CERN, 1974.
Discovery of the W± boson and measurement of its mass MW± at the upgraded SPS
accelerator at CERN (running pp̄ collisions with

√
s = 540 GeV) by the UA1 and UA2

experiments, 1983 (MW± = 80.36± 0.010 GeV/c2, current value (2024) by CMS).
Discovery of the interference Z0/γ in the charge asymmetry of e+e− → µ+µ− at PETRA
(e+e− with

√
s = 34.6 GeV), DESY (Hamburg), by the experiments MARK J, JADE, and

TASSO, and indirect determination of MZ0 , 1983.
Discovery of the Z0 boson and measurement of MZ0 at the upgraded SPS pp̄ accelerator
at CERN by the experiments UA1 and UA2, 1984.
Precision measurement (10−4) of MZ0 , and of the Weinberg angle sin2θW from the
asymmetries related to CfV,A, at LEP (e+e− with

√
s = 91 GeV) at CERN, by the

experiments ALEPH, L3, DELPHI and OPAL (1991), and at SLAC by SLD (1998). Current
values: MZ0 = 91.1876± 0.0021 GeV/c2 and sin2θW = 0.23120± 0.00015 (MS).
Discovery of the Higgs boson and measurement of MH at the LHC at CERN (pp with√
s = 7 TeV), by the experiments ATLAS and CMS, 2012. Current value:

MH = 125.09± 0.21± 0.11 GeV/c2.
Showing the renormalizable character of the electroweak theory (’t Hooft, 1971), intimately
related to local gauge invariance, was a crucial step in the foregoing process. It means that
calculations to a given order of the perturbative series of the Feynman diagrams, including
loops, always provide a finite result.
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SU(2)L × U(1)Y WITH 3 QUARK REPLICATESSU(2)L × U(1)Y WITH 3 QUARK REPLICATES

THE UP-type quarks (u, c and t, with q = + 2
3 e) and the DOWN-type quarks (d, s and b,

with q = − 1
3 e) that couple in the electroweak theory, are actually copies within a flavor

space of dimension 3 (the number of known replicates). Let us designate with capital
letters their respective massless states, left-handed doublets and right-handed singlets:(

U
D

)
L

, UR, DR with UL,R ≡

(
U

C
T

)
L,R

DL,R ≡

(
D

S
B

)
L,R

Let us recall the 4 terms of the lagrangian density that describe their interactions with the
photon (QED), with the W± bosons (charged currents) and with the Z0 (neutral
currents), using the above notation (remember e = gsw):

L(q)
A = −eAµJµem with Jµem = 2

3

(
ŪLγ

µUL + ŪRγ
µUR

)
− 1

3

(
D̄Lγ

µDL + D̄Rγ
µDR

)
L(q)
W =

g
√

2

(
W+
µ ŪLγ

µDL +W−µ D̄Lγ
µUL

)
L(q)
Z =

g

cw
Zµ
(

1
2 ŪLγ

µUL − 1
2 D̄Lγ

µDL − s2wJ
µ
em

)
where cw ≡ cosθW and sw ≡ sinθW .

Note that L(q)
W contains a second term with the hermitic conjugate expression, that

represents charged current transitions in the opposite direction (after time reversal).
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THE YUKAWA COUPLINGTHE YUKAWA COUPLING

We have seen how the Higgs doublet φ =
(
φ+

φ0

)
=
(

0
(v +H(x)) /√2

)
with a vev of

v = 246 GeV and Y = +1 has generated masses for the W± and Z0 bosons, thus breaking
the electroweak symmetry. Let us now see how the above vev of v also allows the fermions
to acquire mass, beginning with the quarks.
For that purpose, we need to know how the charge conjugate fields are expressed,
representing the antiparticles of the Higgs bosons. We indicate here the solution, for a
doublet of scalar fields (φ̄0 = φ0∗ for the individual fields) and go to the unitary gauge:

φc = +iσ2φ
∗ =
(

+φ̄0

−φ−
)
→ 1√

2

(
v +H(x)

0

)
The coupling of the Higgs fields φ to the fermion fields is inevitable, given that the
following lagrangian density (LYukawa) is invariant under all local gauge rotations of the
group SU(2)L ×U(1)Y :

LYukawa = −
[
Gd
(
ŪLD̄L

)(φ+

φ0

)
DR +Gu

(
ŪLD̄L

)( φ̄0

−φ−
)
UR + H.C.

]
where H.C. = G∗

d
D̄R

(
φ−, φ̄0

)(
UL
DL

)
+ G∗uŪR

(
φ0, −φ+

)(
UL
DL

)
denotes hermitic conjugate.

Each term contains the product of 3 fields, so that the total weak hypercharge equals zero.
For example: Y = −1/3 (doublet) + 1 (Higgs)− 2/3 (singlet) = 0. This ensures its
invariance under U(1)Y . Invariance under SU(2)L is also clear, given that each term shows
two opposite rotations, and one singlet that remains constant.
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THE QUARK MASSESTHE QUARK MASSES

On first reading, we may think that the constants Gu and Gd are just numbers. But
nothing prevents the presence of mixed terms where the L and R quarks belong to different
generations, hence we are talking about 3× 3 matrices. In addition, gauge invariance does
not demand these numbers to be real, thus we are dealing with complex 3× 3 matrices.
Prior to investigating from LYukawa the coupling of the H(x) boson to the quarks, let us
simply replace the vev of the fields in it (with H(x) = 0). It is clear that mass terms will
show up for the DOWN- and UP-type quarks, in the form 15:

Lmass = −D̄LMDDR − ŪLMUUR + H.C. ⊂ LYukawa

which masses are, respectively: MD = vGd and MU = vGu, arising from the common
value v = 246 GeV.
Yet it is evident that the quark generations we observe in the laboratory are characterized
by measurable masses that are different for each generation, hence the matrices MD and
MU must be diagonalizable. In other words, there exists an unknown Hamiltonian that
creates these masses, whose eigenstates are not the weak states, but linear combinations of
them, that can be expressed by the unitary matrices UL,R diagonalizing the Hamiltonian:

UU+
L MU UUR ≡Mu = diag (mu, mc, mt)

UD+
L MD UDR ≡Md = diag (md, ms, mb)

15 recall that in Dirac theory LM = −MDD̄D = −MD(D̄LDR + D̄RDL) is the mass term.
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MASS EIGENSTATES AND WEAK EIGENSTATESMASS EIGENSTATES AND WEAK EIGENSTATES
Notice that the (complex) quark mass matrices MU,D are not hermitian, thus they cannot
be diagonalized by a single unitary matrix, instead two of them: UL and UR are required
(biunitary diagonalization). The squares M+

U,DMU,D are indeed hermitian matrices.
Neither the theory predicts the quark masses, nor does it allow to establish relations among
them. The disparity observed through the 3 generations, from mu = 2 MeV/c2 to
mt = 173000 MeV/c2, arising from a common origin in the vev of the Higgs field
(MU,D = v Gu,d), raises an unsolved problem of mass hierarchies, since the values of Gu,d
alter v by many orders of magnitude.
Let us designate by small letters the mass eigenstates, as it is customary, and use capital
letters for the flavor states (or weak states). Then we can express the latter as a function
of the former ones:

UL = UUL uL UR = UURuR uL ≡

(
u
c
t

)
L

uR ≡

(
u
c
t

)
R

DL = UDL dL DR = UDR dR dL ≡

(
d
s
b

)
L

dR ≡

(
d
s
b

)
R

The 4 matrices UU,DL,R are unitary (U+ = U−1), because they express in Quantum
Mechanics a change of basis to transform the flavor states into the mass eigenstates of two
different and unknown Hamiltonians: HU and HD (HU 6= HD). The massive quarks are
therefore complex linear combinations among the different flavor generations.
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THE KOBAYASHI-MASKAWA MATRIXTHE KOBAYASHI-MASKAWA MATRIX
Given that the quarks we observe in the charged currents, the neutral currents, and the
electromagnetic currents, are massive, we must analyse the impact of the above rotations
in all the corresponding observable processes.

Beginning with the charged currents, we can express L(q)
W right away as a function of the

mass eigenstates::

L(q)
W =

g
√

2

(
W+
µ ūLγ

µVCKMdL +W−µ d̄Lγ
µV +

CKMuL
)

with VCKM ≡ UU+
L UDL

The matrix VCKM was introduced by Kobayashi and Maskawa in 1973. It is a unitary and
complex matrix of dimension N ×N (the data suggest N = 3), that is usually written as:

VCKM =

(
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

)
Should the UP-type (or DOWN-type) quarks be massless, the VCKM matrix would not
exist, since the mass eigenstates would be undefined, the rotation UU+

L being arbitrary.
Indeed, we could take UU+

L = UD+
L , thus making VCKM = 1. This situation does indeed

happen almost exactly in the leptonic sector with the neutrinos (UP-quark counterparts in
the Yukawa couplings), which is why we do not observe transitions between different
generations (so called conservation of the leptonic number).
The VCKM moduli contribute to all CC’s processes, in particular to β-decay and pion
decay: |Vud|2, to kaon decay: |Vus|2, to heavy quark decays such as b→ cūs: |VcbV ∗us|2 or
b→ uµ−ν̄µ: |Vub|2, etc.
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CABIBBO ANGLE AND WOLFENSTEIN’S PARAMETRIZATIONCABIBBO ANGLE AND WOLFENSTEIN’S PARAMETRIZATION
A rotation matrix between the first two generations had already been postulated by
Cabibbo and others in the 1960 decade, being later used by Glashow, Iliopoulos and Maiani
to explain, by the presence of charm c, the strong suppression of K0

s [ds̄]→ µ+µ−.
The first 2× 2 box was written as:

(
Vud Vuc
Vcd Vcs

)
=
(

cosθc sinθc
−sinθc cosθc

)
, with θc =Cabibbo

angle. We have seen earlier how it was determined from K± → l−ν̄l decays (θc = 13.1◦).
The pattern of VCKM moduli reflects a lack of alignment between the quark mass
Hamiltonians HU 6=HD, and no theory has been able to fundamentally interpret it to date.
After the discovery of the mean b-quark lifetime in 1984 at SLAC in the picosecond range,
L. Wolfenstein clarified this pattern with an approximate parametrization of VCKM (of
Wolfenstein, in the literature), as simple powers of λ ≡ sinθc. In essence:

|VCKM | '

(
1 λ λ3

λ 1 λ2

λ3 λ2 1

)
What can we say about the phases of VCKM? Individual phases of its 2N quarks are not
measurable, except for a global phase. Being unitary, VCKM has N2 real parameters, of
which N2 − (2N − 1) = (N − 1)2 are measurable. Should VCKM be real (and unitary), it
would have 1

2N(N − 1) parameters. Therefore the total number of measurable and
independent phases is: 1

2 (N − 1)(N − 2) (the difference). For N = 3, only one phase. Thus
in the Standard Model VCKM has 4 independent real parameters: 3 moduli and one phase.
As shown in 1973 by Kobayashi and Maskawa, this phase is the only source that is able to
generate non conservation of the CP-symmetry in the electroweak theory we have seen (see
Exercise 23 for more insight), with massless neutrinos. This is why this kind of processes
are subject to intense investigation at different accelerators.
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NEUTRAL CURRENTS DO NOT CHANGE FLAVORNEUTRAL CURRENTS DO NOT CHANGE FLAVOR
Let us now see the implication of the quark mass matrix in the neutral currents, including
the electromagnetic current (QED). We can write:

L(q)
Z =

g

cw
Zµ
(

1
2 ŪLγ

µUL − 1
2 D̄Lγ

µDL − s2wJ
µ
em

)
=

g

cw
Zµ
(

1
2 ūLγ

µuL − 1
2 d̄Lγ

µdL − s2wJ
µ
em

)
The second equation is derived from the fact that the implicit flavor rotations in ŪL and
UL are opposite. Indeed: ŪLγµUL = (ūLUU+

L )γµ(UUL uL) = (UU+
L UUL )ūLγµuL with

UU+
L UUL = 1 from unitarity, and analogously for D̄LγµDL. Note the cancellation also

happens inside Jµem, hence in all photon couplings.
The above derivation is simple, yet no less important its physical implication: in the
Standard Model, processes directly mediated by the Z0, or by the photon, cannot change
flavor. When they do, they are called flavor changing neutral currents (FCNC).

For instance, the following processes are
forbidden in the Standard Model, at
lowest order: bs̄→ µ+µ−, e+e− → sd̄,
Z0 → bs̄, the bremsstrahlung b→ sγ,
etc. We show the diagramas for the first
two (see Problem 15).

Z0

µ+

µ−

b

s̄

Z0 γ
e+ s

s̄ e− d̄
Forbidden Forbidden

Such processes may still occur in the Standard Model (SM) through quantum loops, with
very small and calculable probabilities. They are being searched for in precision
experiments, as a signal of new physics, beyond the SM. See Problems 7 and 16.

86



HIGGS COUPLING TO FERMIONS AND BOSONSHIGGS COUPLING TO FERMIONS AND BOSONS
By observing vGf (1 +H/v)/√2 in LYukawa (p. 81), we immediately see the Higgs boson
coupling to fermion pairs in the Feynman diagrams. And doing the same in L2 (p. 73) we
get from (Dµφ)+(Dµφ) a quadratic factor 1

4v
2g2 (1 +H/v)2W+

µ W
−µ, that leads to the

coupling of H0 to W± bosons, and analogously to Z0 boson. See diagrams below:

H0

f

f̄

−i
(mf
v

)
H0

W +
µ

W −
ν

−2i
(M2

W
v

)
gµν=−igM

W
gµν

H0

Z 0
µ

Z 0
ν

−i
(M2

Z
v

)
gµν= −igMZ2cos θW

gµν

Hence the Higgs coupling becomes proportional to the mass in the fermion case, and to the
mass squared in the boson case. The Higgs mechanism is, after all, responsible for the
masses of all elementary bosons and fermions. This is a very specific feature of the
electroweak symmetry breaking through the vacuum, in the Standard Model. Recall that
1/v = (

√
2GF )1/2 .

Higgs boson decay into W+W− and Z0Z0 pairs is possible, despite the fact that one of
the bosons lies below its mass shell. The W± and Z0 bosons typically decay into leptons
(l1, l̄2), and the calculation of the respective H0 partial widths requires evaluating the
boson propagator at q2(pl1 , pl̄2 ), for example in the 3-body process H0 →Wl1 l̄2.
We propose in Problem 17 the calculation of the partial width into fermions Γ(H0 → ff̄).
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EVIDENCE OF THE HIGGS COUPLINGSEVIDENCE OF THE HIGGS COUPLINGS
Proportionality to the mass and mass2 of the Higgs couplings, as a specific feature of the
electroweak symmetry breaking through the vacuum, in the Standard Model, has been
made clear in 2018 to a remarkable level of precision by the ATLAS and CMS experiments
(ATLAS-CONF-2018-031, CERN-EP-2018-263, arXiv:1809.10733v1), thereby confirming
the predictions within a large range of variation of the fermion and boson masses.

The t-quark coupling has been determined
indirectly, by isolating a sample of events
showing tt̄H0 associated production,
accounting for the production
σ(pp→ H0X) and decay H0 → γγ rates,
to which this coupling is very sensitive.
Factors kF,V were determined for the H0

couplings to fermions: kF (mf/v) and
bosons: 2kV (m2

W /v) (W±) or kV (m2
Z/v)

(Z0), with kF 6= 1 and kV 6= 1 signaling
any deviation from the Standard Model.
The fitted values of kF and

√
kV are

shown, multiplied by factors mF,V /v (to
illustrate the comparison), along with their
uncertainty, with the value v = 246 GeV.

These results reveal that the particle found in pp collisions with
√
s = 13 TeV meets the

properties of the Higgs boson studied here, with remarkable precision. Like for the Z0 case
(albeit less accurately) the data have not shown to date any evidence of internal structure.
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PROBLEMS AND EXERCISESPROBLEMS AND EXERCISES
of the course

10 PROBLEMS AND EXERCISES
1 Phase-space of beta decay
2 Garwin-Lederman’s asymmetry
3 Tau lepton mean lifetime
4 Charm quark mean lifetime
5 Bottom quark mean lifetime
6 Top quark mean lifetime
7 Neutral meson oscillation
8 V+A part of neutral current
9 Antimatter fraction in the proton
10 Neutral current fraction
11 Discrete symmetries and CKM matrix
12 The Weinberg angle
13 Three neutrino families
14 Asymmetry in electron-positron annihilation into muon pairs
15 Oscillation, CKM matrix, and CP violation
16 CP-asymmetry in oscillation
17 Mean lifetime of the Higgs boson

11 AUXILIARY EXERCISES
18 Helicity conservation
19 The polarization 4-vector
20 The polarized spin projectors
21 Width of a vector boson
22 Line-shape of the Z0 boson
23 Non conservation of CP-symmetry
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Problem 1 (?)
Phase-space of β-decay

Show that in the decay N1 → N2 e−ν̄e, with N1,2 being spinless nuclei with masses m1,2, with
spin summed amplitude in the V−A theory |M|2, the partial width dΓ = 1

2m1
|M|2dQ takes the

exact form:

dΓ =
G2
F

2
I2
s

∑
spins

|ū(p)γ0(1− γ5)v(k)|2
d3p

(2π)32E
d3k

(2π)32ω
δ(∆m− E − ω) · 2π

where p = (E,p) and k = (ω,k) are the 4-momenta of the electron e− and antineutrino ν̄e, Is a
global isospin factor of the involved nuclei, dQ the invariant 3-body phase-space volume element,
and ∆m = m1 −m2 the mass defect.

The above expression should be proven differently from the way it was pursued in the course.
Instead of assuming that the proton and the neutron are responsible for the decay, with V −A
coupling, simply assume that the spinless nuclei have a scalar relativistic coupling, proportional
to the 4-vector (p1 + p2)µ, to be contracted with the leptonic charged current. When performing
the integral over the 3-body phase-space, use the mass-shell integral of p. 27, and make explicit
the function δ(p2

2 −m
2
2), before taking the limit m1,m2 →∞. In this way, the exact kinematics

is obtained, obviating the Fermi motion consideration. Furthermore, it is made clear that there
is no need to involve the proton and the neutron (let alone the quarks) in β decay, in order to
understand precisely the Curie spectrum. Of course, we have been forced to assume that both
nuclei are spinless (which is certainly not the most general case).
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Problem 2 (? ? ?)
Garwin-Lederman’s asymmetry

Show that in polarized muon decay µ− → e−νµν̄e, the angular distribution of the electron takes
the form dΓ/d(cosθ) = A(1 − 1

3 cosθ), where θ is the angle between the electron and the muon
spin direction. It is suggested to follow the steps of the integration over the 3-body phase-space,
as in the derivation of the unpolarized case made in the course, and then use the following angular
integral, for α, β ∈ R, |α| ≤ |β|, with n1 and n2 being unitary vectors:∫

n(Ω) · n1δ

(
α− βn(Ω) · n2

)
dΩ =

2πα
β2 n1 · n2

The factor −1/3 of the angular distribution is essential to understand the results of the histo-
rical parity violation experiment of Garwin-Lederman in 1957. The result of Exercises 19 and
20, relative to polarized fermions, is actually needed, and should be known, even if these are
not assessed. In order to perform the sum over νµ spin in a given factor, just use the lemma:∑

s
ū(k)Γu(k) = Tr [(/k +m)Γ], where Γ is any product of gamma matrices, independent of s.
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Problem 3 (??)
τ -lepton mean lifetime

Use the exact calculation of the muon lifetime in the V−A theory to perform an approximate
prediction of the mean lifetime of the τ -lepton (ττ ) in ps, as function of its mass. Assess two
different scenarios:
a) the τ may only decay into leptonic modes (electron or muon).
b) it may also decay into quarks, and each type of them should be assigned a partial width Γq ,
from a simple model that takes into account the color factor of 3, and the Cabibbo angle. Take
into consideration the s-quark, indicating which mesons would be present in the final state in this
case. May the τ decay into charm?
Compare the predictions with the tabulated results of the PDG. Do it first for the τ lifetime, and
then for the leptonic and hadronic partial decay widths separately. Justify the hypothesis of zero
mass your are doing for all final state fermions. Express the energy conservation in detail, for a
given mesonic final state of your choice, and calculate the neutrino wavelength in the τ rest-frame,
for that particular choice. Does the neutrino see the quarks, or the mesons? Is the V−A coupling
to the mesons garanteed? Comment freely on the precision attained by your estimate of τ -lifetime.
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Problem 4 (??)
Charm quark mean lifetime

a) The c-quark decays by virtue of its chiral coupling to charged currents. Apply what has been
learned from µ− → e−νµν̄e to understand its mean lifetime in the range of the ps, as function
of its mass. For that purpose write its 8 main decay modes into quarks and leptons and assign
each of them a partial width, taking into account the Cabibbo angle. Make a drastic simplification
of the color treatement by only assuming a factor 3 in those modes involving 2 hadronic charged
currents. Verify that in all cases the squared mass of the final state fermions may be neglected.
b) In accordance with the previous results, ignoring all details of the hadronization process, and
assuming that the light quark acts as a spectator (i.e. non interacting), estimate the lifetimes of
the D+ and D0 mesons, and compare in each case with the tabulated values of the PDG. The
branching fraction for a given final state of a meson A→ i is defined as the ratio Γi/ΓA of partial
width to total width. Estimate the semileptonic (lepton+X) branching fractions, into electron and
muon, and compare with the PDG data for these two mesons.
c) Estimate the purely leptonic decay fraction of the pseudoscalar mesons D+ and D+

s into µ+νµ,
taking into account their chiral suppression (as for the pion), and also compare with PDG data.
Use for that purpose fD+ = 210MeV and f

D+
s

= 250MeV .
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Problem 5 (??)
Bottom quark mean lifetime
Try to understand the mean lifetime of the b-quark in the range of the ps, as function of its mass.
Like the charm, the b-quark decays into other (lighter) fermions by means of left-handed charged
currents in the V −A theory, and the muon decay should be taken as a model. Write down the
main 14 modes in which the b-quark can decay, and neglect squared masses of all final-state
fermions. Notice that now, b-quark decay spans over the three known generations.
Break down the total b-quark decay width into two partial widths, one that includes (e, µ, τ)
leptons (Γl = Γe + Γµ + Γτ ) and another including only hadrons: Γb = Γl + Γhad. Using the
Cabibbo angle (λ ≡ sinθc), and a color factor 3 for hadronic decays, show that both Γl and Γhad
contain a factor |Vcb|2 + |Vub|2. Calculate the b-quark lifetime in two different scenarios for the
quark mixing matrix (CKM):
a) λ is “flavor independent", thus having |Vcb| = λ and |Vub| = 0.
b) Wolfenstein’s conjecture is verified, with: |Vcb| ∼ λ2 and |Vub| ∼ λ3.
Comment on the agreement between each of the above scenarios and the data from the SLAC
experiments in 1983 facilitated in the course, where the mean b-quark lifetime was first measured.
Also compare with current data, specifically refering to B+, B0, and B0

s meson lifetimes. Are they
close enough to each other as to justify the hypothesis of a b-quark lifetime, within the meson?
Would the agreement become better by reducing the available phase space for c and τ?
Now perform a specific prediction for the b-quark branching fraction into electron and muon. Do
they agree well with recent data? Notice that the PDG offers inclusive b-quark data, and not only
meson data.
Finally, estimate the decay fraction of the B+[ub̄] meson into µ+νµ and e+νe, using the formula
seen in Lecture IV for the pion, with decay constant fB = 190MeV and B+-meson mass.
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Problem 6 (??)
Top quark mean lifetime

a) Calculate the mean lifetime of the t-quark (in s), with mass mt = 174 GeV/c2, in the
Standard Model. Take into account that since mt > mb + mW , the top quark can now decay
into a real W , with mass mW = 80.4 GeV/c2, t → bW+, and not just a virtual one, as in
the previous cases. Assuming an unpolarized t-quark, perform the detailed calculation of the
spin sum in the Feynman diagram, using the completeness relation for spin 1 massive bosons∑

λ=±1,0 ε
λ
µεν

λ∗ = −gµν + pµpν/M2 , as given in the statement of Exercise 21. The completeness
relation means summing over the physical polarization states of the vector boson (2 transverse,
with Sz = ±1, and one longitudinal, with Sz = 0).
In the unitary gauge, the above diagram is the only one possible, to lowest order 17.
Proceed to cancel the tensors with opposite symmetry, and assess the final state 4-vectors in the
t-quark rest frame. Justify that the b-quark mass can now be neglected. The generic two-body
partial decay width formula, that is given in Problem 17, must also be used.
b) From the result obtained, provide a reasoned answer to the question: can the t-quark form
mesons or baryons, through the strong interaction in QCD?

17 it is interesting to note that in other gauges, t→ bφ+ also contributes. But then extra, unphysical polarization states of
the W+ need to be included in the sum, yielding for instance:

∑
λ
ελµεν

λ∗ = −gµν . Remarkably, an identical result is

obtained for the mean t-quark lifetime when the t→ bφ+ and t→ bW+ diagrams are summed, as it was to be expected.
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Problem 7 (?)
Neutral meson oscillation
Assuming CPT conservation, the neutral mesons P 0 and P̄ 0 have equal mass m0 and width Γ0. Their most

general weak interaction Hamiltonian is: H ≡M− i
2 Γ,M =

(
m0 |M12|
|M12| m0

)
, Γ =

(
Γ0 |Γ12|eiω

|Γ12|e−iω Γ0

)
withM and Γ Hermitian, ω 6= 0 signaling CP-violation. H can be diagonalized by a similarity transformation:(
µH 0
0 µL

)
=
(
MH − i

2 ΓH 0
0 ML − i

2 ΓL

)
= X

−1
(
M−

i

2
Γ
)
X =

1
2pq

(
q q
p−p

)(
M−

i

2
Γ
)(

p q
p−q

)
with p, q ∈ C and |p|2 + |q|2 = 1. The eigenvectors (eigenstates): |PH,L〉 = p|P 0〉±q|P̄ 0〉 acquire different
masses and widths: ∆M ≡MH −ML > 0 and ∆Γ ≡ ΓH − ΓL, arising from the weak interaction above.
Using Schrödinger’s equation, show that the time evolution of the |P 0(t)〉 and |P̄ 0(t)〉 states, which were
tagged at t = 0 as P 0 and P̄ 0, respectively, is given by:(

|P 0(t)〉
|P̄ 0(t)〉

)
=
(

g+ (t) q
p g− (t)

p
q g− (t) g+ (t)

)(
|P 0〉
|P̄ 0〉

)
(1)

with the functions: g± (t) = 1
2

(
e−ΓHt/2e−iMHt ± e−ΓLt/2e−iMLt

)
, and that these verify (Γ ≡ ΓH+ΓL

2 ):

|g± (t)|2 = 1
2 e
−Γt[cosh(∆Γt/2)±cos(∆Mt)]

g∗+ (t)g− (t) = − 1
2 e
−Γt[sinh(∆Γt/2) + isin(∆Mt)]

(2)

For that purpose take into account the property: eX
−1HDX = X−1eHDX. This result is needed to solve

Problem 16, and may be applied to all cases of meson oscillation that are refered to in Problem 15.
CP-violation is observable in the oscillations, through: δ = |p|2 − |q|2 = (|H12|−|H21|)/(|H12|+|H21|) 6= 0
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Problem 8 (??)
V+A part of neutral current

The detailed analysis of the differential scattering cross-section of muonic neutrinos and antineu-
trinos, off an isoscalar target (marble, Fe), as function of the y variable of Bjorken, allowed to
establish the not entirely chiral nature of the neutral current, in a direct way. With the same
isoscalar target, charged current events were used to determine the partonic densities. Using the
neutral current events, the left-handed (L) and right-handed (R) chiral couplings were defined:
g iso
R,L. For each type of quark i, within the proton and neutron, the definition reads as follows:
giR,L = 1

2 (CiV ∓C
i
A). What is measured for the isoscalar target corresponds to the quadratic ave-

rage of u- and d-quarks, the s-quark contribution being almost zero for x & 0.1. The experimental
result is summarized as: (gisoL )2 = 0.300± 0.015 and (gisoR )2 = 0.024± 0.008.
a) Find out the prediction of the SU(2)L×U(1)Y theory for these two parameters, and compare
them with the data.
b) Determine, by small variations of sin2θW , its best-fit result from both numbers.
These experiments were described in the course.
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Problem 9 (??)
Antimatter fraction in the proton

Show that the total fraction of the proton (or neutron) momentum carried by the antiquarks can
be calculated as: r ≡

∫
xQ̄(x)dx/

∫
xQ(x)dx = (3R− 1)/(3−R), with R ≡ σ(ν̄µ)/σ(νµ) being

the antineutrino/neutrino ratio of total cross-sections measured on an isoscalar target, where
Q(x) ≡ d(x) + u(x) and Q̄(x) ≡ ū(x) + d̄(x) are the generic partonic densities seen in the course.
The Bjorken variable x indicates the fraction of the proton or neutron momentum. Ignore the s
quark contribution in the derivation of the above formula. Which quark is created with highest
probability when an s quark is struck by a neutrino or antineutrino? Indicate specific final states
that could be taken as a proof for the presence of s quarks in the proton, using neutrino beams.
Can R be experimentally determined with the exclusion of the s quark?

98



Problem 10 (??)
Neutral current fraction

Using the SU(2)L×U(1)Y theory of the Standard Model, show the dependence on sin2θW ≡ xw
of the ratios between the total cross-section of neutral currents and charged currents, for neutrino
scattering on an isoscalar target N , for x & 0.1. For simplicity, the antiquark density can be
neglected, and only u and d quarks can be used. The expressions to be proven read as follows:

Rν =
σ(νµN → νµX)
σ(νµN → µ−X)

=
1
2
− xw +

20x2
w

27
Rν̄ =

σ(ν̄µN → ν̄µX)
σ(ν̄µN → µ+X)

=
1
2
− xw +

20x2
w

9

Obtain the best fit to sin2θW from the final data on neutral currents by neutrino experiments in
the 1980 decade, that were reported in the course: Rν = 0.33± 0.01 and Rν̄ = 0.38± 0.02.
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Problem 11 (??)
Discrete symmetries and CKM matrix
a)TheK0

S,L are mass eigenstates of theK0 meson that do not turn out to be perfect CP eigenstates, but contain
some contamination ε from the opposite eigenvalue, in the form: |K0

S,L〉 = 1/
√
N (|K1,2〉+ ε|K2,1〉), where

|K1,2〉 are the perfect CP eigenstates: |K0
1,2〉 ≡ 1/

√
2 (|K0〉 ± |K̄0〉). This contamination was determined

by the historical experiment of Cronin and Fitch in 1964, who obtained the value: |ε| = 2.23(1)× 10−3. To
that end, the K0

L → π+π− decay fraction was used.
It is easily understood that, as we have seen in β-decay, the V−A theory may also produce the semileptonic
decay:K0

L → π−e+νe, as well as its charge conjugate: K̄0
L → π+e−ν̄e. In fact, semileptonic decays represent

41% of the total decays of K0
L. Draw a lowest order Feynman diagram that can represent each of them. In the

absence of phases in the CKM matrix, may these diagrams explain an observable difference between the decay
rates of the above charged conjugate modes? Explain the answer, according to the statement of Exercise 23.
Mention explicitely the chirality of the particles involved, indicating why CP-symmetry comes into play.
b) The result of Cronin-Fitch suggests to perform a precision measurement of the previously mentioned asymmetry.
Do you think that the electron/positron identification can be used to tag the K0

L content of K̄0/K0? Assume
that the following asymmetry has been measured:

δSL ≡
Γ(K0

L → π−e+νe)− Γ(K̄0
L → π+e−ν̄e)

Γ(K0
L
→ π−e+νe) + Γ(K̄0

L
→ π+e−ν̄e)

as it was indeed done for the first time in 1974 (S. Gjesdal et al.), with the result: δSL = 3.27(12)× 10−3

(current value). Can you assess the compatibility or not between this result and that of Cronin-Fitch? If, while
doing this, you find that the ε constant must be a complex number, then determine its phase in degrees. You
must take into account the relativistic expression of a partial decay width from its amplitudeM, and the fact
that K̄0 6→ π−e+νe.
c) Draw a box Feynman diagram, with twoW bosons in a loop, that is able to convert theK0 into its antiparticle
K̄0. May the presence of phases in the CKM matrix be responsible of the |ε| 6= 0 value in the K0

S,L mass
eigenstates? Provide only a qualitative explanation.
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Problema 12 (??)
The Weinberg angle

In the SU(2)L×U(1)Y theory, the neutral spin 1 gauge bosonsW 3
µ and Bµ interact with the fermionic currents

J3,µ and JY,µ according to the lagrangian density:

L neutral =
(
J3,µ, 1

2J
Y,µ

)( g 0
0 g′

)(
W 3
µ

Bµ

)
where JY,µ ≡ 2(Jem,µ − J3,µ). Weinberg postulates that, due to the Higgs mechanism, the physical bosons
Zµ and Aµ are orthogonal linear combinations of the gauge bosons, according to the rotation:(

Zµ
Aµ

)
=
(

c −s
s c

)(
W 3
µ

Bµ

)
with c ≡ cos(θW ), s ≡ sin(θW ), and that the above density may be written as:

L neutral =
(
JNC,µ, eJem,µ

)( Zµ
Aµ

)
where JNC,µ is the physical neutral current that couples to the Z0 and Jem,µ is the electromagnetic current
that couples to the photon, with e being the magnitude of the electron charge. Show that there is a unique
solution to Weinberg’s proposal, given by:
a) the double equation: e = sg = cg′.
b) the neutral current in the form: JNC,µ = g

c (J3,µ − s2Jem,µ).
Is a V+A coupling of the neutral current expected in this model? Why? Simply analyse the 2× 2 linear system
that arises from equating the multipying factors to W 3

µ and Bµ in both equations for Lneutral, taking e and
JNC,µ as unknowns. The above equations are the core of the electroweak unification theory.
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Problema 13 (? ? ?)
Three neutrino families
a) Use the result of Exercise 21, in the framework of the electroweak unification theory, to show
that the partial decay width of the Z0 into νµν̄µ is calculated to be

Γ(Z0 → νµν̄µ) =
GF

12π
√

2
M3
Z

and that it takes the value 166 MeV from the above constants. Make clear whether only the
SU(2)L ×U(1)Y theory has been used to achieve the previous prediction, or scalar fields need to
be added to the theory, with a given hypercharge value, according to the Higgs mechanism.
b) Calculate the partial decay widths of the Z0 (in MeV) into neutrinos, hadrons and charged
leptons. To that end, consider the CV and CA couplings of the neutral current for each type of
fermion, take into account the factor 3 of color, and a precise value of sin2θW . Also note that the
t-quark is not reachable from the Z0. In addition calculate the total decay width of the Z0 and
its mean lifetime in s.
c) Assuming that the confusion between hadronic and leptonic events is very small in a e+e−
collider, with energy

√
s = MZ , explain how could you precisely determine Γνν̄ , and whether by

doing so, you could find out how many light neutrino families exist. Use here the Z0 resonant
production cross-section: σ(e+e− → Z0 → ff̄) = 12π

(
ΓeΓf
M2
Z

)
s

(s−M2
z )2+M2

Z
Γ2
Z

, as it is shown

in Exercise 22. ¿What is the σ(e+e− → Z0 → µ+µ−) value in nb on the peak? Do the theoretical
and experimental values exactly coincide? The above program was carried out in 1991 by the 4
experiments at the LEP collider at CERN. Show that you have understood the method, from the
data of the L3 experiment facilitated in the course. Could Γνν̄ also be determined in a direct way,
by observing the bremsstrahlung photon? Explain why the Z0 line-shapes appear to be equal for
all leptons, and for hadrons.
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Problem 14 (? ? ?)
Asymmetry in electron-positron annihilation into muon pairs

For a sufficiently high collider energy (
√
s =
√
q2), the electroweak contribution to e+e− → µ+µ− becomes

significant, and even exceeds, the electromagnetic contribution. But, more importantly, quantum interference
takes place between the Z0 and the photon, that is very sensitive to the parameters of electroweak unification.
As has been seen, their respective amplitudes are:

Mγ = −
e2

q2

(
µ̄γ

µ
µ
)(
ēγµe

)
MZ = −

g2

4cos2θW

[
µ̄γ

ν(CµV − C
µ
Aγ

5)µ)
]( gνσ − qνqσ/M2

Z

q2 −M2
Z

)[
ēγ
σ(CeV − C

e
Aγ

5)e)
]

where we have assumed ρ = 1 according to the Higgs mechanism. We have denoted the muon and electron
spinors by the symbols (µ, e), reserving (ν, σ) for the relativistic indices. Taking into account the helicity
conservation (see Exercise 18), we may isolate inMZ the only two relevant chiral components (R and L) for
each fermion, as is evident from expression: CV − CAγ5 = 1

2 (CV − CA)(1 + γ5) + 1
2 (CV + CA)(1− γ5),

with the respective coefficients: gR ≡ CV − CA y gL ≡ CV + CA. The helicity conservation happens in the
ultrarelativistic limit of high collision energy (

√
s � 2mµ). Check that the second term in the numerator of

the propagator does not contribute, using Dirac’s equation for µ and e.
Hence the result can be rewritten as:

MZ = −
√

2GFM2
Z

s−M2
Z

[
g
µ
R

(
µ̄Rγ

ν
µR
)

+ g
µ
L

(
µ̄Lγ

ν
µL
) ][

g
e
R (ēRγνeR) + g

e
L (ēLγνeL)

]
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Problem 14 (? ? ?)
Asymmetry in electron-positron annihilation into muon pairs (continued)
a) In the expression |Mγ +MZ |2, isolate each of the 4 helicity contributions to the differential cross-section
in the center-of-mass frame (CM), as indicated in Exercises 18 and 22. Show that the first of them takes the
form:

dσ

dΩ

∣∣∣
CM

(
e
+
Le
−
R → µ

+
Lµ
−
R

)
=
α2

4s
(1 + cosθ)2

∣∣1 + rg
µ
Rg

e
R

∣∣2
and analogously obtain the others, with r ≡ (

√
2GFM2

Zs/e
2)/(s−M2

Z + iMZΓZ). The imaginary part at
the pole of the propagator is the way to take into account the total width ΓZ of the Z0, in a relativistic way,
and α ≡ e2/(4πε0~c) = e2/4π is the fine structure constant.
b) Show that, as a result of the γ − Z0 interference, the angular distribution in the CM frame is:

dσ

dΩ

∣∣∣
CM

(
e
+
e
− → µ

+
µ
−
)

=
α2

4s

[
A0
(

1 + cos2
θ
)

+ A1cosθ
]

with the emergence of an asymmetric component proportional to A1. Determine A0 and A1 in the Standard
Model at lowest order, as function of Re(r) and |r|2. Draw the very different behaviour that Re(r) and |r|2
have, as function of the energy

√
s, in the neighbourhood, and far away, from the Z0 mass. The hypothesis of

universality implies equal couplings: gµ
R,L

= geR,L ≡ gR,L.

c) Define AFB ≡ F−B
F+B , with F ≡

∫ 1

0
(dσ/dΩ)dΩ and B ≡

∫ 0

−1
(dσ/dΩ)dΩ, as the charge asymmetry

refered to the incoming e+ and the outgoing µ+, and calculate it in the Standard Model, to lowest order.
Determine its numerical value (in%) and sign for a collision energy

√
s = 34.6 GeV, that lies below MZ

(s�M2
Z), but much above the vector resonances associated to the 5 light and heavy quarks: u, d, s, c and b.

This result played a decisive role in the selection of the electroweak unification theory of Weinberg-Salam, based
on the Higgs doublet with hypercharge +1 (ρ = 1), when the above asymmetry was measured with 1% precision
at the PETRA accelerator (Hamburg) in 1983. See the data of the Mark J experiment indicated in the course.
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Problem 15 (??)
Oscillation, CKM matrix, and CP violation

a) Justify that, in the Standard Model (where neutrinos do not have mass), the only particles that can
spontaneously convert into their antiparticles, and then oscillate, are the neutral mesons that live long enough.
Explain why there are only four neutral mesons of this type, and indicate their quark content. Draw, for each
of them, a Feynman diagram with 4 virtual particles that may trigger such spontaneous transition, through a
quantum loop. Why the K∗0(892) meson cannot oscillate? Can the neutron do it? Is CP violation a necessary
consequence of the oscillation process?

b) As you know, in the SM a down-type quark cannot convert itself, in a direct way, into another down-type
quark of different flavor, by emitting a photon, or a Z0, or a gluon g. However, such coupling may occur in
an indirect way through vacuum polarization diagrams with a loop (so called penguin diagrams): a virtual W is
emitted and reabsorbed between the two quarks of different flavor, the intermediate quark being coupled to a
gluon g, or to a Z0. Draw at least 3 diagrams of this kind.
Draw a penguin diagram to explain the decay B̄0

s → K+π−, and also a competing tree diagram that achieves
the same goal (tree diagram just means absence of loops). You may let the s̄-quark be a spectator, in both
cases. Explain which observable you would choose experimentally, in order to show the non conservation of CP
symmetry, in this particular decay. Why do you need two amplitudes, instead of only one? Which elements of
the CKM matrix would be decisive?

c) If you were to communicate to someone at a distant galaxy, that may be entirely formed by antimatter, that
the Earth rotates around the Sun counterclockwise in the solar system (from the north pole of the Sun), how
would you do it? Take into account that you need to define some common reference about the helicity sign,
and, without knowing if they live in an antiparticle world or not, there is no way to define the sign of the electric
charge. Would it help using, for this purpose, the semileptonic decay K0

L → π−e+νe, dealt with in Problem
11? Indicate what the message would contain. See another version of this problem in Griffiths’ book, Chapter
4 (p. 114).
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Problem 16 (??)
CP-asymmetry in oscillation

Using the result of Problem 7 for the time evolution of the meson wave function projections |P 0〉 and |P̄ 0〉
(formulae (1) and (2)):

a) Determine the probability density, as function of time (measured at the instant of decay t), that the
meson tagged at t = 0 as |P 0〉:

has remained |P 0〉
has jumped to |P̄ 0〉

b) Show that the particle/antiparticle rate asymmetry, observed at t > 0 through the decays
Bs → D−s Xµ

+νµ and B̄s → D+
s Xµ

−ν̄µ, where X is a set of hadrons, depends on t as:

a
s
SL =

N (Bs)−N
(
B̄s
)

N (Bs) +N
(
B̄s
) = δ ·

(
1−

cos(∆M t)
cosh(∆Γt/2)

)
with δ ≡ |p|2 − |q|2 � 1

Assume that the accelerator collisions produce b and b̄ quarks with equal probability at t = 0. Note it can shown
that δ 6= 0 indicates violation of the CP-symmetry in the oscillation process, as |H12| 6= |H21| in the mixing
matrix of Problem 7. The above asymmetries for the Bs meson are currently under study at experiments with
high time resolution, as LHCb (50fs).
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Problem 17 (??)
Mean lifetime of the Higgs boson
a) Show that, in the Standard Model, the partial decay width of the Higgs boson into a given fermion-antifermion
pair ff̄ is given by:

Γ(H0 → ff̄) =
GFMHm

2
f

4π
√

2

For that purpose, use the lagrangian coupling of the H0ff̄ vertex seen in the course, and perform the
direct calculation of the Feynman diagram, by applying Casimir’s rule for the spin sum. Be reminded of
the generic result for the partial width of a relativistic two-body decay process of a particle A→ 1 + 2:
Γ(A→ 1 + 2) = |p|

32π2m2
A

∫
|M|2dΩ where |p| stands for the common momentum in its rest frame.

b) Assess numerically in MeV the total Higgs width into quarks and leptons, using its massMH = 125 GeV/c2,
and the specific prediction for bb̄ pairs (Γbb̄). Is Γ(H0 → γγ) comparatively relevant? Provide a reasoned
answer, assuming the two photons are produced through a triangular loop involving the t-quark.
c) Neglecting the contribution of W+W− and Z0Z0 pairs to the total width (below their mass shell), provide
an approximate upper bound to the Higgs boson lifetime (in s). Discuss whether it is long enough as to produce
visible secondary vertices, at the LHC 18.The Higgs boson is produced through a t-quark loop in the reverse
process gg → H0, where each gluon comes from a colliding proton. In order to estimate the H0 momentum,
assume a maximum difference between the Bjorken x of the gluons in the collision is of order 0.1, similar to the
one observed with neutrinos for the antiquark distribution in the proton (Lecture V).
The above results for Γ(H0 → ff̄ ) played a decisive role in the interpretation of the Higgs boson discovered
at the LHC by ATLAS and CMS in 2012.

18 semiconductor microvertex detectors cannot reach precisions signiticantly better than 10µm, on individual particle hits.
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AUXILIARY EXERCISESAUXILIARY EXERCISES
General formalism that helps assessing the problems

10 PROBLEMS AND EXERCISES
1 Phase-space of beta decay
2 Garwin-Lederman’s asymmetry
3 Tau lepton mean lifetime
4 Charm quark mean lifetime
5 Bottom quark mean lifetime
6 Top quark mean lifetime
7 Neutral meson oscillation
8 V+A part of neutral current
9 Antimatter fraction in the proton
10 Neutral current fraction
11 Discrete symmetries and CKM matrix
12 The Weinberg angle
13 Three neutrino families
14 Asymmetry in electron-positron annihilation
into muon pairs
15 Oscillation, CKM matrix, and CP violation
16 CP-asymmetry in oscillation
17 Mean lifetime of the Higgs boson

11 AUXILIARY EXERCISES
18 Helicity conservation
19 The polarization 4-vector
20 The polarized spin projectors
21 Width of a vector boson
22 Line-shape of the Z0 boson
23 Non conservation of CP-symmetry
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Exercise 18 (?)
Helicity conservation
a) Show that, in the ultrarelativistic limit (E � m), every external fermionic vertex of a diagram in a vector
theory ūγµu only couples spinors of the same helicity, since ūLγµuR = ūRγ

µuL = 0. And that the same
result applies for an axial-vector theory ūγ5γµu. It is called helicity conservation in the literature, and plays an
important role in QED, in the electroweak theory, as well as in QCD.
b) In particular, for the emblematic process in QED e+e− → µ+µ−, to order α2, express the amplitude
Mγ = −(e2/q2)(µ̄γµµ)(ēγµe) as a sum of its chiral components, and draw the incoming and outgoing
momenta, the spin orientations and the scattering angle in the CM frame, for each of the 4 possible helicity
configurations.
c) The invariance under spatial rotations of the above amplitude has an interesting consequence: these 4
amplitudes must be proportional to the elements of the Wigner matrices: dj

λ′λ
(θ) = 〈jλ′|eiθJy |jλ〉, where

eiθJy represents a rotation of angle θ about an axis ⊥ to the reaction plane. Check in the tables that:

d
1
11(θ) = d

1
−1−1(θ) =

1
2

(1 + cosθ) = −u/s

d
1
1−1(θ) = d

1
−11(θ) =

1
2

(1− cosθ) = −t/s

where the last equality happens in the ultrarelativistic limit. The above allows to derive, only using helicity
amplitudes, the angular distribution obtained in QED (α2) for e+e− → µ+µ−, as the quadratic sum of the
two amplitudes (|M|2 = e4[2(t/s)2 + 2(u/s)2]), with e2 = 4πα, thus:

dσ

dΩ

∣∣∣
CM

=
1

64π2s
|M|2 =

α2

4s

(
1 + cos2

θ
)

=
α2

4s
1
2

[
(1 + cosθ)2 + (1− cosθ)2

]
Check in the previous spin drawings that each amplitude has the characteristic backward helicity suppression,
imposed by angular momentum conservation (similar case to the neutrinos). However, the spin sum is unsuppressed,
the angular distribution of the outgoing µ+ with respect to the incoming e+ being symmetric (cosθ → −cosθ).
This exercise helps understanding Problem 14.
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Exercise 19 (?)
The polarization 4-vector

The most general quantum state of a fermion of mass m is characterized by the mean value of its
spin 〈S〉 in its rest frame, and by its 3-momentum p (4-vector pµ) 19.The spin also admits a 4-
vector representation. Indeed, we may define, in the rest frame, the 4-vector: sµ ≡ (0, 2 〈S〉), with
s · p = 0 and s2 = −1, and then apply a Lorentz transformation (boost) in any desired direction.
Hence a fermion spinor may be denoted as u(p, s) (v(p, s) for the antifermion) whenever it is
required. The 3-vectors p and 〈S〉 form an angle θ that is actually a constant of the free relativistic
motion: 2〈S〉 · p/|p| ≡ cos θ, as it can be shown.

a) Show that the helicity states λ = ±1 of the fermion correspond to the 4-vectors:

sµ = λ(|p|, 0, 0, E)/m with m 6= 0

b) Show that for p = (psinθ, 0, pcosθ) the spinor of helicity λ = +1 takes the form:

u(p, s) = N(cos(θ/2), sin(θ/2), kcos(θ/2), ksin(θ/2))

with the constants k = |p|/(E +m) and N =
√
E +m. To do that, make a rotation of angle

θ about the X-axis (e−iσ2θ/2) on both components of the reference spinor.

19 the relativistic spin operator takes the form: S ≡ (1/2) diag (σ,σ).
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Exercise 20 (??)
The polarized spin projectors

Designating as uλ(p, s) the fermion states with polarization 4-vector λsµ, with sµ = (|p|, 0, 0, E)/m,
and λ = ±1, it is evident that the 4 states: {uλ(p, s), vλ(p, s), λ = ±1}, where vλ = γ5u−λ
corresponds to the antifermion, form an orthonormal basis within the Hilbert space of dimension
4 of its quantum states with given three-momentum p.
That the 4 × 4 matrices: ρuλ = uλ(p, s)ūλ(p, s) and ρvλ = vλ(p, s)v̄λ(p, s) are the projectors, in
the above Hilbert space, over the respective states uλ(p, s) and vλ(p, s), with λ = ±1, becomes
evident, from their own definition.
a) Show that the expression without sum is verified: uλūλ = 1

2 (m+ /p)(1 + λγ5/s), with λ = ±1.
b) Then show that: −vλv̄λ = 1

2 (m− /p)(1 + λγ5/s).
Note that it suffices to perform the proof in the fermion rest frame, since the Lorentz invariance
of the operators is manifest, as they are formulated with slashed 4-vectors.
It is suggested to show that the given expressions without sum uλūλ are nothing but the projectors
ρuλ defined above (that is, they either leave the 4 aforementioned base states invariant, or throw
zero). Alternatively, you can prove the expressions directly, as 4× 4 matrices in the fermion rest
frame, by using the explicit form of the uλ and vλ spinors from Lecture I.
The above expressions allow the assessment of amplitudes of Feynman diagrams with external
polarized fermions. The method consists in including new factors in the trace calculations, when
applying Casimir’s rule. In particular, this result is key to solve Problem 2.
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Exercise 21 (??)
Width of a vector boson
Assume that a spin 1 boson A of mass MA decays into two fermions f1 and f̄2 of spin 1/2 with
a lagrangian coupling given by: Γµ ≡ −igXγµ 1

2 (CV −CAγ5), with mfi �MA, and CV,A ∈ R.
In absence of polarization, no angle is relevant in the center-of-mass frame. Show that the partial
width is given by:

Γ(X → f1f̄2) =
g2
X

48π
(C2
V + C2

A)MA .

Start from the amplitude: M = ελµ (ū(k′)Γµu(k)), where ελµ is the 4-vector of polarization λ of
the spin 1 boson. Then use the completeness relation:

∑
λ=0,±1 ε

λ
µεν

λ∗ = −gµν + pµpν/M2
A,

with Aµ = ελµe
−ip·x being the general solution to the differential equation (�+M2

A)Aµ = 0,
where the condition ∂µAµ = 0 must be fulfilled (MA 6= 0). Therefore ελ · p = 0, and we have 3
independent modes of oscillation λ = 0, ±1 defined by the 4-vector ελµ, with the normalization:
|ελ|2 = −1 ∀λ. Note the analogy with the sµ 4-vector for the fermions.

Next show that:
∑

λ
MM∗ = (g2

X/4)
(∑

λ
ελµε

λ
ν
∗
/3
) [(

C2
V + C2

A

)
Tµν1 − 2CV CATµν2

]
is the

spin averaged squared amplitude, after identifying the tensors Tµν1,2 , on application of Casimir’s
rule. The generic result of the partial decay width for a two-body process, indicated in Problem
17, should also be used. Assess the 4-vectors of the particles involved in the boson rest frame.
This result has a direct application to the Z0 boson decays (in particular to Problem 13), as well
as to W±,Υ[bb̄] and J/ψ[cc̄] decays, and can be extended to the polarized case.
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Exercise 22 (? ? ?)
Line-shape of the Z0 boson

Show that σ(e+e− → Z0 → ff̄) = 12π
(

ΓeΓf
M2
Z

)
s

(s−M2
z )2+M2

Z
Γ2
Z

is the e+e− annihilation cross-

section that corresponds to the amplitudeMZ of Problem 14, for
√
s = 2EB in the neighbourhood

of MZ , and f being a particular family of quarks or leptons. Follow the steps below:
a) Start from the 4 chiral components ofMZ that are explicitated in Problem 14.
b) Apply the results of Exercise 18 for the photon, replacing e2

s
by g2

z
gi
egi

f

s−M2
Z

in each of them,

with gz = g/(2cw) and 1/(s−M2
Z) being the Z0 propagator, to show:

|Mii|2 = s2

∣∣∣∣ g2
z

s−M2
Z

∣∣∣∣2(gie)2(gif )2(1 + cosθ)2 i 6= j

|Mij |2 = s2

∣∣∣∣ g2
z

s−M2
Z

∣∣∣∣2(gie)2(gjf )2(1− cosθ)2 i 6= j

where the indices i, j refer to the helicity (R or L) of the electrons e and fermions f , respectively,
with gL,R ≡ (cV ± cA)/2. Draw a spin diagram for each amplitude.
c) Using dσ

dΩ = 1
64π2s

|MZ |2, integrating over cosθ, and making use of the partial widths Γe and

Γf calculated in Exercise 21, arrive to the expression: σZ = 12π
(

ΓeΓf
M2
Z

)
s

(s−M2
z )2

.

d) The resonance width ΓZ corresponds to the imaginary part of the energy, that describes the
particle decay, given that ψ ∝ eiMte−Γt/2 implies ψ∗ψ ∝ e−Γt = e−t/τ , with Γ being its total
width. Complete the derivation by making the substitutionMZ →MZ − iΓZ/2 in the propagator
expression, assuming that ΓZ �MZ , and then do | propagator |2.
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Exercise 23 (??)
Non conservation of CP-symmetry
Let us consider a generic charged current process between quarks ab → cd, governed by two
elements of the VCKM matrix, with amplitude (we leave out the factor GF /

√
2 in what follows):

M = VcaV
∗
db

[
ūcγ

µ(1− γ5)ua
] [
ūbγµ(1− γ5)ud

]+
= VcaV

∗
db

[
ūcγ

µ(1− γ5)ua
] [
ūdγµ(1− γ5)ub

]
It is taken as known that the hermitic conjugate amplitudeM+ is obtained by inverting the fermion
arrows of the charged currents in the Feynman diagram (i.e. by running the time backwards).
Hence:

M+ = V
∗
caVdb

[
ūaγ

µ(1− γ5)uc
] [
ūbγµ(1− γ5)ud

]
By first applying the CP operator product on every spinor in M, show that the CP -conjugate
amplitude takes the form:

MCP = (Jµca)CP (J+
µ,bd)

CP
= VcaV

∗
db

[
ūaγ

µ(1− γ5)uc
] [
ūbγµ(1− γ5)ud

]
Now the necessary and sufficient condition for CP-conservation is that MCP = M+. Thus it becomes
evident that only the presence of measurable phases in the VCKM matrix may cause the breakdown
of CP -symmetry, when VcaV ∗db 6= V ∗caVdb.
The essential part of the proof is showing that:

(Jµca)CP = (−1)Vcaūaγµ+(1− γ5)uc

For that purpose use the form these operators take in the Dirac-Pauli representation: C = iγ2γ0

and P = γ0, together with the expression of the charge-conjugate spinors: uC = CūT and its
adjoint ūC = −uTC−1. Also take into account that γµ+ = g0µγµ.
Note the amplitude MCP only differs from M+ (and from M) by one phase, thus CP -violation
can only manifest itself by means of quantum interference processes, with at least two amplitudes.
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