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Chapter 1: Introduction  
 
 
In their transition-state model, Bohr and Wheeler [BoW39] described the fission competition in 
the deexcitation process of an excited heavy nucleus according to a purely statistical point of 
view where the evolution of the system is exclusively ruled by phase-space considerations. 
However, it was found by different groups in the 80's [GaB81, HiH81] that measured pre-scission 
neutron multiplicities were much larger than the transition-state model predictions. This 
discrepancy was interpreted as an indication that the deexcitation process of a highly excited 
heavy nucleus requires a dynamical description where the system needs time to populate the 
available phase space and reach equilibrium. A dynamical description of the deexcitation process 
in terms of a purely microscopic theory is not possible to the present day due to the large number 
of degrees of freedom involved. For this reason, most of the current theoretical models are 
transport theories [Wei80] that try to portray the process using a small number of variables. In 
these theories one distinguishes between collective or macroscopic and intrinsic or microscopic 
degrees of freedom, and the latter are not considered in detail but in some average sense as a heat 
bath. The collective degrees of freedom of the nucleus correspond to the coordinate motion of 
part or all the nucleons, e.g. vibrations, rotations and all kind of deformations. The intrinsic 
degrees of freedom are the individual states of the nucleons. Here, one is faced with a self-
consistency problem since the collective degrees of freedom are “made up” of the individual 
nucleons. The fundamental idea underlying the concept of dissipation is that the collective 
degrees of freedom and the heat bath are coupled, that is, excitation energy can be transferred 
between them. The process of transfer of energy between the collective degrees of freedom and 
the heat bath is denominated dissipation. Dissipation is quantified by the reduced dissipation 
coefficient β, which is defined by the equation: 
 

[ ]coll
eq
coll

coll EE
dt

dE
−= β                                                  (1.1) 

 
where Ecoll is the average excitation energy in the collective degree of freedom at a given time t 
and eq

collE  is the average excitation energy of the collective degree of freedom at thermal 
equilibrium. From equation (1.1) it follows that the reduced dissipation coefficient measures the 
relative rate with which the excitation energy of the collective degree of freedom changes.  Since 
β is a positive quantity, if eq

collE >Ecoll then dEcoll/dt > 0, meaning that the excitation energy is 
transferred from the heat bath to the collective degree of freedom. Here, the time evolution of the 
excitation energy of the collective degree of freedom is given by an exponential-like in-growth 
from the initial value Ecoll(t0) to the value at equilibrium. On the other hand, if eq

collE < Ecoll then 
dEcoll/dt < 0 and the excitation energy is transferred from the collective degree of freedom to the 
heat bath.  In this case, the solution of the differential equation (1.1) is an exponential decay from 
the initial value Ecoll(t0) to the equilibrium value. In both cases, the time constant is the inverse of 
β. Thus, dissipation rules the relaxation of the collective degrees of freedom.  
 
According to a semi-classical picture, the time evolution of a collective degree of freedom is 
described by the appropriate equation of motion where the reduced dissipation coefficient 
appears as a parameter. In an ideal situation the experimentalist would then compare the 
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measured trajectory of the selected degree of freedom with the predicted one and from this infer 
the value of the dissipation coefficient. However, in reality it is not possible to obtain such 
straight information experimentally because it is not possible to directly follow the evolution of 
the collective degree of freedom. Instead, the experimentalist has to keep track of the “finger 
prints” left by the collective degree of freedom on the way to equilibrium. With this information 
and an appropriate theoretical model, the trajectory of the collective degree of freedom can be 
reconstructed.  
 
The fission process represents the clearest example of large-scale collective motion. For this 
reason, theoreticians and experimentalists based their dissipation studies on the investigation of 
the collective degrees of freedom that describe the fission process. Intense work has been 
performed during the last three decades to understand the process of dissipation in nuclei. 
Nonetheless, the current theories on dissipation give rather contradictory results [HiG94]. The 
predicted magnitude for dissipation varies drastically from one theory to the other, as well as its 
dependence with deformation. Regarding the temperature dependence of the reduced dissipation 
coefficient, the divergence between the various theories is even more evident. While the 
formalism based on the linear response theory [Hof97] predicts an increase of the reduced 
dissipation coefficient β with the temperature, the model of Nörenberg [Nör81] predicts a 
decrease of the dissipation coefficient with temperature and the one-body dissipation mechanism 
[BlB78] a constant behaviour. A similar controversial situation is found from the experimental 
side [HiR92]. In our opinion, this is due to the existence of a large number of side effects that 
increase the complexity of the models required for the interpretation of the experimental 
observables and to the difficulty for determining additional observables sensitive to dissipation. 
Moreover, one should be cautious when contrasting the different results because there might be 
cases where the outcomes obtained from different techniques are not comparable. Nevertheless, 
according to recent experimental results, a certain agreement in terms of the deformation 
dependence of β seems to emerge. It has been found that dissipation increases on the way to the 
scission configuration. Strong dissipative effects have been observed within the large-
deformation regime from the saddle point to scission [HiH92, VeM99, KaN01], while in the 
small-deformation regime from the ground state to the saddle point the effects of dissipation are 
rather weaker. However, in the small-deformation regime the concrete magnitude of the 
dissipation effects is rather uncertain. Some works point to clear effects [DiS01, BeA02], 
whereas others observe no deviation from the transition-state model predictions [HuB00, Dio01].  
 
The aim of this work is to put some light in the knowledge of dissipation in this small-
deformation regime. Our contribution has different aspects. We introduce an experimental 
approach to induce fission based on peripheral heavy-ion collisions at relativistic energies. This 
method leads to very specific and well-defined initial conditions of the fissioning nucleus, 
namely, small shape distortion and low angular momentum [JoI97]. Under these conditions, the 
theoretical description of the process can be considerably simplified, and the relevant information 
can be better extracted. In addition, this experimental approach induces very high excitation 
energies. This condition is necessary since, in the small deformation regime, the dynamical delay 
introduced by dissipation is expected to be very short. Thus, the statistical decay of the nucleus 
has to be very fast in order to observe the effects of the dynamical time. The use of an 
experimental set-up especially conceived for fission studies in inverse kinematics allowed us to 
introduce two new observables sensitive to dissipation at small deformations, the fission cross 
sections as a function of the fissioning element and the widths of the charge distributions of the 
fission fragments. The equation of motion that we use to reconstruct the evolution of the fission 
collective degree of freedom is the Fokker-Planck equation [Ris89]. Grangé and Weidenmüller 
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[GrJ83] solved numerically this equation for a fissioning nucleus with similar initial conditions as 
the ones induced by our experimental approach. The result was a time-dependent fission decay 
width. We have made special efforts in understanding what is the influence of widely used 
approximate formulations for this fission decay width on the deduced value of the reduced 
dissipation coefficient.   
 
This work is organized as follows. In chapter 2 the main features of several theoretical models 
devoted to determine the magnitude of the reduced dissipation coefficient β are illustrated. In 
addition, the physical concepts underlying the Fokker-Planck equation are described. Chapter 3 
shows the most relevant experimental techniques applied up to now to the investigation of 
dissipation and reports on recent results. The new experimental approach introduced in this work 
is described in chapter 4. A detailed description of the analysis of the experimental data to derive 
the observables sensitive to dissipation can be found in chapter 5. Finally, the comparison of the 
experimental data with a nuclear reaction code is discussed in chapter 6.  
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Chapter 2: Theoretical view on dissipation in nuclei 
 
 
As was mentioned in the introduction, a full microscopic theory that describes the dynamic of 
heavy nuclei does not exist up to now. A first step in this direction is the time-dependent Hartree-
Fock method [RiS80, KeK76] with inclusion of two-body residual interaction. In the frame of a 
microscopic theory, the concept of dissipation is not needed. This concept appears in mixed 
theories where a set of collective coordinates is introduced that interact with the heat bath 
constituted by the microscopic coordinates. There exist a whole spectrum of these mixed or 
transport theories, see for example the review article accomplished by Weidenmüller [Wei80]. 
We have selected three examples of these theories whose main features are briefly explained in 
section 2.1. The quantitative results on the reduced dissipation coefficient β that these theories 
deliver are also discussed. Provided the magnitude of the dissipation coefficient is known, the 
evolution of the nuclear collective degrees of freedom is well understood in terms of the 
evolution of a collective variable in the field of a stochastic force. Such process is described by 
the Langevin and Fokker-Planck equations. These ideas are explained in section 2.2. The 
application of the Fokker-Planck equation to describe the fission process is treated in section 2.3. 
 
2.1. Theoretical approaches to determine the magnitude of nuclear 
dissipation 
 
There exist several theories from which the magnitude of the reduced dissipation coefficient can 
be derived. In this section we will illustrate briefly the main considerations of three of these 
theories. As we will see, no agreement is found between them neither in the magnitude of the 
reduced dissipation coefficient β nor in its deformation or temperature dependence. In the view of 
this strong controversy, the need of clear experimental information becomes more evident.  
 
2.1.1. A quantal transport theory  
 
Hofmann and co-workers [Hof97, Hof98, HoI01] extended the pioneering transport theory for 
large-scale collective motion of Kramers (see section 2.3) into the quantum regime. As in 
Kramers picture, this model assumes that the time needed for the collective degree of freedom to 
experience remarkable changes is much larger than the time needed for the nucleonic degrees of 
freedom to relax. This allows performing numerical calculations within the linear response theory 
and the locally harmonic approximation. The latter means that the residual part of the 
Hamiltonian is supposed to be proportional to the variation of the collective degree of freedom. 
Thus, the evolution of the collective degree of freedom in phase space is derived considering 
macroscopically small time intervals in which the nuclear potential as a function of the collective 
degree of freedom is approximated by a parabola. Consequently, for each time step the collective 
degree of freedom follows the equation of motion: 
 

0)(2

2
=++ tCx

dt
dx

dt
xdM η                                             (2.1)  
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where x=X-X0 measures the deviation of the collective variable X from some fixed value X0 and 
the quantities M, η and C are the transport coefficients of inertia, friction and stiffness, 
respectively.  
This theoretical approach permits one to calculate the transport coefficients as a function of the 
deformation and the temperature. The authors of this model stress the importance of the variation 
of the inertia M with the deformation and the temperature, which is generally disregarded in other 
works. Moreover, in the overdamped regime (see section 2.3) the inertia does not affect anymore 
the evolution of the collective degree of freedom. 
 
Due to the complexity of this method most of the computations have been done for particular 
nuclei. As shown in reference [Hof98], for the nucleus 224Th this model predicts a rather soft 
dependence of the reduced dissipation coefficient with the deformation, especially for 
temperatures larger than 1 MeV. However, in reference [HoI01] more generic expressions that 
can be extended to a wider class of nuclear systems are suggested for the temperature dependence 
of the transport coefficients. The following approximation for the dependence of the reduced 
dissipation coefficient β = η/M with the temperature is proposed: 
 

401
6.0)( 2

2

T
TT

+
⋅≈β                                                         (2.2) 

 
with T in MeV and β in units of MeV/h. Thus this formalism predicts a rather strong increase of 
the reduced dissipation coefficient with the temperature. We will see later that it is a big 
challenge to deduce any information of the temperature dependence of β from experimental 
results. 
  
2.1.2. One-body dissipation, the wall and window formula 
 
Among the different theoretical formalisms, the one described in this section represents the more 
phenomenological side. In a cold nucleus the number of interacting nucleons decreases and 
consequently, the mean free path of the nucleons increases. In the case of a system of non-
interacting nucleons, dissipation is explained by means of the one-body mechanism, that is, by 
the interaction of the nucleons with a moving wall that represents the nuclear potential. This is 
the basic physical idea of the “piston model” of Gross [Gro75]. The concept of one-body 
dissipation also includes the collective energy transfer caused by the difference of the velocity 
distributions of two nuclei in contact. Analytical expressions for the rate of energy exchange 
[BlB78] between the nucleons and moving walls in this long mean free-path regime exist for two 
limiting cases. The wall formula that describes dissipation in a mononucleus and the window 
formula that is suited for a dinuclear shape with a neck. These two formulas are qualitatively 
explained in the following lines.  
 
The energy dissipated into the nucleon heat bath by a surface or nuclear wall moving with a 
normal velocity n�  is given by 
 

         � −=�
�

�
�
�

� 2)( DndSvk
dt
dE

ms
wall

�ρ                                       (2.3) 
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where ρm is the mass density of nucleons, v =3/4vF is the mean velocity of the nucleons in a 
Fermi gas, dS is the nuclear surface element, D the overall drift of the nucleon gas, and ks is a 
scaling factor. The quadratic term of the effective wall velocity indicates that the transference of 
energy is irreversible. The full one-body dissipation corresponds to β = 22⋅1021s-1, according to 
[HiR92]. The scaling factor ks accounts for a general reduction of the one-body dissipation that is 
discussed below.  
 
For the case of colliding ions or nascent fission fragments where a neck is formed, we can 
consider the system as two almost separated fragments connected by a small window. If the two 
systems are in relative motion, any particle passing through the window will damp the motion 
because of the momentum transferred between the fragments. In this case, to determine the total 
energy dissipated we have to add to the two wall terms a window term: 
 

( )2
||

2 2
4
1 uuSv

dt
dE

wm
window

+=�
�

�
�
�

�
⊥ρ                                         (2.4) 

 
where Sw is the area of the window and ⊥u  and ||u  are the components of the velocity of the 
particles perpendicular and parallel to the window, respectively. Notice that, according to 
equations (2.3) and (2.4), dissipation is not expected to vary with temperature in the one-body 
dissipation regime. The central assumption in the derivation of these formulas is that the nucleons 
constitute a randomised gas at any time. If the particles are assumed to be strictly independent, 
the randomisation has to rely on the collisions of the particles with the boundary. We may expect 
this hypothesis to be satisfied if this boundary and its motion are sufficiently irregular. However, 
if the boundary is regular and symmetric, the strength of the wall formula will decrease. A 
scaling factor of ks = 0.26 was suggested by Nix and Sierk [NiS87] in their analysis of mean 
fragment kinetic energy data. In the same way, a recent work [ChP01] proposes a modified form 
of the wall friction. In this new formulation only the chaotic (non-periodic) trajectories, which 
give rise to irreversible energy transfer, contribute to the wall dissipation. The result is a strong 
suppression of the wall friction to β ≈ 2⋅1021s-1 for near-spherical shapes of the nucleus. As the 
shape becomes more oblate and approaches the scission configuration, the friction increases. 
However, the full wall formula is not reached even at the scission configuration.   
 
Quantal effects also set a limit to the applicability of the macroscopic formulas (2.3) and (2.4). In 
reference [AbR01] Abal et al. discuss the apparent paradox of suppression of the dissipated 
energy when the quantum version of the wall formula is considered. Their calculations show that 
this suppression disappears when the interaction of the system with the enviroment, for instance 
in the form of neutron emission, is considered. 
 
Finally, it is interesting to remark that apart from the parameter ks, there is still an ambiguity in 
the description of the transition from a mononucleus shape to a system with two walls plus a 
window. Some examples on the choice for this transition can be found in references [VeM99, 
ChP02]. 
 
2.1.3. Dissipative diabatic dynamics 
 
This model was conceived to describe dissipation in heavy-ion reactions with energies typically a 
few MeV per nucleon above the interaction barrier. The one-body interaction is expected to be 
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realistic only at the initial stage of a heavy-ion collision. In subsequent stages of the reaction the 
temperature increases and the mean free path of the nucleons becomes much shorter than the size 
of the nucleus. In such situation the damping of the collective motion is dominated by the (two-
body) interactions between the nucleons.  
 
According to dissipative diabatic dynamics (DDD) [Nör83], energy dissipation is the result of 
diabatic excitations of particles and holes and subsequent equilibration by two-body collisions. 
The basic ideas on which this model is based are represented in figure 2.1. In the first stage of the 
heavy-ion collision the two nuclei approach with the ground-state distributions for the single-
particle occupation probabilities. The collective motion is directly coupled to the diabatic shift of 
single-particle levels. If the collective velocity is not too small, a nucleon occupying the lower 
level before the crossing of an unoccupied level will stay in the diabatic level and finds itself in 
the upper level after the crossing. Thus, a diabatic excitation of particle-hole states takes place. 
This will produce a repulsive force on the collective motion and kinetic energy is temporally 
stored. However, two-body collisions try to establish a new equilibrium distribution for the 
occupation probabilities destroying the diabatic part of the potential. The local equilibration via 
two-body collisions is time-irreversible and leads to the dissipation of the stored collective 
energy.  
 
The concept of DDD has been treated analytically for an interacting Fermi gas within moving 
walls [Nör81].  From this study follows that in the stationary limit dissipation is proportional to 
1/T2 and considerably larger than the wall formula one-body dissipation. Hilscher et al. [HiR92] 
estimated that in this limit the corresponding value of β is 40⋅1021s-1 at T = 2.5 MeV.  

 
 
 
 
 

 
 
 
 
 
 
Figure 2.1:  Schema of diabatic single-particle motion and dissipative two-body collisions as the 
basic elements of dissipative diabatic dynamics. The illustration was taken from reference 
[Nör83]. 

 
2.2. The Fokker-Planck equation 
 
The Fokker-Planck equation [Ris89] (hereafter called FPE) is a powerful method for solving 
many problems concerning stochastic processes. It usually appears for variables describing a 
macroscopic but small subsystem in the field of a stochastic force. The FPE was first applied by 

Dissipative 
Two-body 
collision

Diabatic 
motion 

Adiabatic 
levels 

Diabatic 
Levels 

Collective variable 
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Fokker and Planck to describe the Brownian motion of particles. It is worthwhile to consider this 
process more carefully. 
 
If a small particle of mass m moves in a fluid, its motion is determined by the collisions between 
the particle and the medium molecules. These collisions lead to two effects, to a damping or 
friction force expressed by the well known term –βv (Stokes’ law) and to a stochastic force F’(t) 
that causes statistic fluctuations of the motion. Considering the more general case with an 
additional external force F, the equation of motion is given by the so-called Langevin equation: 

 

     
m
F

m
tFv

dt
dv +

′
+−= )(β                                                     (2.5) 

 
If the mass of the particle is large so that its velocity due to thermal fluctuations in the fluid is 
negligible, the fluctuating force F’(t) can be disregarded and equation (2.5) transforms into a 
deterministic equation. However, because of the random nature of F’(t), the equation of motion 
(2.5) must be treated statistically. As usually done in thermodynamics, one considers an ensemble 
of systems (each one formed by the particle and the fluid). Since the initial states are different for 
each system, the force F’(t) varies from system to system and we can only consider averages of 
this force for the ensemble. In the Brownian motion the average over the ensemble of the 
fluctuating force is zero < F’(t)> = 0 and the duration time of a collision is much smaller than the 
relaxation time of the velocity of the small particle given by (β )-1. The latter implies that the time 
the fluid (or the heat bath) needs to recover the equilibrium after a collision is so short that the 
position of the particle does almost not vary in this time. In this way, the fluid is considered to be 
in equilibrium throughout the whole process.  

 
One may solve equation (2.5) many times numerically with specific initial conditions at time  
t = t0 by generating F’(t) from a random-number generator. The result is a bundle of trajectories 
in phase space, all originating from the same point at t0. Due to the statistical character of the 
force F’(t), the velocity of the particle fluctuates in a stochastic way. Thus, instead of solving 
equation (2.5) many times, one may ask for the probability distribution W(v, t) for finding the 
particle in the velocity interval (v,v + dv) at a time t if at t0 the velocity of the particle was v0. 
Such question can be solved applying the FPE, which is just an equation of motion for the 
probability distribution of fluctuating variables. This means that the Brownian motion explained 
by the Langevin equation (2.5) can also be described by a FPE whose variable is the probability 
distribution W(v, t).  
 
The most general form of the FPE is the FPE for N-variables: 
 

 ( ) ( ) WxxD
xx

xxD
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i

N

i
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�
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1 ,...,,...,                (2.6) 

 
where D1(xi,…,xN) is called the drift vector and D2(xi,…,xN) the diffusion tensor. The diffusion 
term of the FPE is the result of the stochastic force F’(t). The number of variables of the FPE and 
the dependence of the drift vector D1 and of the diffusion tensor D2 on the variables depends on 
the scenario. Usually, it is difficult to solve the FPE, in most of the cases this must be done 
numerically. However, we will present in section 6.2.2 a case where an analytical solution for the 
FPE exits. 
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2.3. Fission as a diffusion process 
 
In order to describe the time evolution of a fission process, the shape of the nucleus is 
parameterised according to different variables [BrD72], for instance, the distance between the 
centres of the emerging fragments. These variables can be considered as nuclear collective 
degrees of freedom. In 1940 Kramers [Kra40] suggested describing fission as a diffusion process 
where one or more collective degrees of freedom behave like “a particle that moves in an external 
field force, but is subject to the irregular forces of a surrounding medium in temperature 
equilibrium (Brownian motion). The conditions are such that the particle is originally caught in a 
potential hole but may escape in the course of time by passing over the potential barrier.” That is, 
in analogy to the Brownian particle, the motion of the nuclear collective degrees of freedom is 
affected by the heat bath formed by the individual nucleons. The external force is given by the 
nuclear deformation potential. In this specific case, the corresponding Langevin equations are: 
 

m
tFxU

xm
v

dt
dv )(')(1 +

∂
∂−−= β  

(2.7) 

( )'2)'(')(' tt
m
kTtFtF −= δβ  

 
where U(x) is the nuclear potential as a function of the deformation, k is Boltzmann’s constant 
and T is the temperature of the heat bath. The lower part of equation (2.7) follows from the 
assumption that there is no correlation between the stochastic force at two different times t and t’, 
where the macroscopic time difference tmacro = t - t’ is of the order of the time that the collective 
degree of freedom needs to change significantly. This assumption is violated if the microscopic 
time tmicro needed for the heat bath to recover the equilibrium is comparable or larger than tmacro. 
This question is of great importance and it is questionable whether the nucleus fulfils the 
condition tmacro >> tmicro in all cases. In the usual terminology when this condition is satisfied the 
process is called Markovian. Only under the assumption [Wei80] that tmacro >> tmicro the Langevin 
equations (2.7) can be transformed into a FPE. The corresponding FPE is  
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where the variable is the time-dependent probability distribution W(x,v,t) as a function of x and v. 
Where x is the deformation in fission direction, and v its canonically conjugate momentum 
divided by the mass. Kramers found that the stationary solution of equation (2.8) for a realistic 
nuclear potential (figure 2.2a) leads to a reduction of the fission width compared to the fission 
width predicted by the transition-state model of Bohr and Wheeler [BoW39] by a factor  
  

γγ −+= 21K                                                     (2.9) 
 

with  
 

02ω
βγ =                                                             (2.10) 



 
where ω0 is the frequency of the harmonic-oscillator potential that osculates the fission barrier at 
the saddle point (see figure 2.2a).  
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Figure 2.2: a) Nuclear potential as a function of the deformation. The potential is given by the 
expression (U = 8.61⋅10-3(x-3.41)2⋅[(x-23.098)(x+1.59)]+3.7) taken from reference [BhG86]. 
Using the reduced mass A/4 [BhG86] with A = 248 leads to the ground-state frequency  
ω1 =1.83⋅1021s-1 in the harmonic approximation. The maximum of the potential reproduces the 
fission barrier with a frequency ωo = 1.65⋅1021s-1. b) Fission rate λf(t) = Γf(t)/�  as a function of 
time. The full line was obtained from the numerical solution of the FPE [BhG86] for  
β = 5⋅1021 s-1, T = 3 MeV and A = 248 using the nuclear potential represent in part a). τf is the 
corresponding transient time. The dashed-dotted line represents fission rate according to the 
transition-state model.  
 
However, the success of the transition-state model prevented this idea of Kramers to establish. 
Approximately forty years later, experimentally observed high pre-scission neutron multiplicities 
[GaB81, HiH81] gave the impetus to Grangé, Jun-Qing and Weidenmüller [GrJ83] and others to 
theoretically investigate the influence of nuclear dissipation on the fission time scale. They 
solved the time-dependent FPE numerically assuming β to be independent of temperature and 
deformation, starting from a system with high intrinsic excitation energy but no excitation energy 
in the fission collective degree of freedom. Under such conditions, the solution of the FPE leads 
to a time-dependent fission decay width Γf(t) that is first suppressed, then increases and finally 
reaches the asymptotic value given by the Kramers factor multiplied by the Bohr and Wheeler 
fission width. Figure 2.2b) compares the time-dependent fission decay rate λf(t)= Γf(t)/� obtained 
in reference [BhG86] solving numerically equation (2.8) (full line) with the transition-state 
fission decay rate (dashed-dotted line). The latter has been calculated dividing the stationary 
value that follows from the numerical calculation by the Kramers factor of equation (2.9). One 
sees that dissipation has not only the effect of reducing the fission rate but it also introduces 
transient effects, i.e., effects that occur before the stationary flow over the barrier is attained. This 
establishes a very important conceptual difference with respect to the transition-state model. 
 
The time evolution of the fission width can be characterised by the transient time τf , defined in 
[BhG86] as the time in which Γf(t) reaches 90% of the asymptotic value, see figure 2.2b). Figure 
2.3a) shows three examples of the fission width in-growth function for different values of β 
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calculated using the approximate solution of the FPE that will be discussed in section 6.2.2. One 
distinguishes between two different dissipation regimes, the underdamped regime with values of 
β < 2ω1, where ω1 is the frequency that describes the curvature of the potential at the ground 
state, and the overdamped regime with values of β > 2ω1. The critical damping takes place for  
β ≈ 2ω1. Figure 2.3a) depicts the fission decay-width as a function of time for these different 
regimes. For β = 0.5⋅1021s-1 (dashed line) the fission width behaves in an oscillatory way, this is 
typical for an underdamped motion where the collective degree of freedom osculates several 
times the potential at the ground state before attaining the stationary state. The value β = 5⋅1021s-1 
(dashed-dotted line) belongs to the overdamped regime, the in-growth of the fission width is 
monotonic and its asymptotic value is considerably reduced.  The case of β = 2⋅1021s-1 (full line) 
corresponds to the critical damping. We see that within the underdamped regime τf decreases with 
increasing β and that in the overdamped regime τf increases with increasing β. This dependence 
can be understood recalling equation (1.1) of chapter 1. When β increases from zero to values 
below the critical damping, the transfer of excitation energy into the collective degree of freedom 
becomes faster and faster and so is the evolution of the collective degree of freedom in the 
deformation space. As β increases beyond 2⋅1021s-1 or so, the energy is injected very fast and the 
momentum of the collective degree of freedom equilibrates very rapidly. However, the drift 
motion in the deformation space is damped more and more effectively, increasing the time 
needed for the collective degree of freedom to achieve the stationary state. The critical damping 
represents the optimum case in which the rate of the energy transfer and the hindrance of the drift 
motion of the collective degree of freedom leads to the fastest possible population of the phase 
space and hence to the shortest transient time.   
 

Figure 2.3: a) Fission decay width as a function of time for different values of β, A = 248 and  
T = 3 MeV. The dashed line corresponds to β = 0.5⋅1021s-1, the full line to β = 2⋅1021s-1 and the 
dashed-dotted line to β = 5⋅1021s-1. The curves result from an approximate description of the 
fission width that will be introduced in section 6.2.2. The corresponding transient times τf  are 
also indicated. b) Calculation taken from reference [BhG86] that represents the relation between 
β and τf  for a system of mass A = 248 and T = 1 MeV.  
 
The relation between the transient time and the reduced dissipation coefficient β can be deduced 
by solving the FPE. In figure 2.3b) a calculation taken from reference [BhG86] shows this 
relation for a system of mass A = 248 at T =1 MeV in comparison with two analytical 
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approximations that are valid in the underdamped (dashed line) and in the overdamped (dashed-
dotted line) regimes. In reference [BhG86] these two approximations are given by 
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where Bf is the fission barrier, T is the nuclear temperature and ωx is an effective oscillator 
frequency1 at the ground state. 

                                                 
1 According to [BhG86], ωx is the effective harmonic oscillator frequency around the ground state for a realistic 
nuclear potential (see figure 2.2a). It deviates slightly from the frequency ω1 of the harmonic approximation. 
Nevertheless, in literature, expression (2.11) is mostly used approximating ωx by ω1. 
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Chapter 3: Review on previous experimental results on 
nuclear dissipation 

 
 
Fission is a very appropriate tool for studying nuclear dissipation, because it constitutes the most 
glaring case of a large-scale collective motion in nuclei. In addition, the two fission fragments 
that result from the excitation of this collective motion represent a clear signature that allows 
identifying this mechanism univocally. In the last years, a large amount of experimental work 
based on fission reactions has been devoted to the investigation of dissipation. The aim of this 
chapter is to introduce the standard observables that have been analysed up to now, to discuss the 
characteristics of the methods applied to induce fission and to report on the main recent 
experimental results. This is important in order to define in which domains additional 
experimental information and new techniques are required. We do not intend here to cover all the 
existing results and to explain the differences between them, but rather to present an overview on 
the experimental techniques currently used to study dissipation. 
 
3.1. Standard observables sensitive to dissipation in fission 
 
Due to the development of the experimental techniques, during the last years a large variety of 
experimental observables sensitive to dissipation has been introduced. In the following sections, 
the most important ones will be explained together with some related results.  
 
3.1.1. Even-odd structure in fission fragment yields 
 
Dissipation at low temperatures can be investigated analysing the even-odd structure in fission-
fragment yields. Due to dissipation, part of the energy released from saddle to scission (E*intrinsic) 
will be transferred to the intrinsic degrees of freedom, as illustrated in figure 3.1. Consequently, if 
we consider a cold fissioning nucleus with an even number of protons, the existence of fission 
fragments with an odd number of protons indicates that part of the available kinetic energy has 
been dissipated to break at least one proton pair. Theoretical investigations on the nature of the 
dissipation process in superfluid systems are reported in references [Sch77, BoA98, KrF01].  
 
A new theoretical description published by F. Rejmund et al. [ReI00], based on the statistical 
model, was used in the analysis of even-odd effects in the nuclear-charge yields of different 
nuclei measured in thermal-neutron induced fission and in electromagnetic-induced fission. From 
this study it followed that, starting from a cold system at the barrier, the fraction of the potential 
energy gain dissipated during the descent to the scission configuration varies from approximately 
35% to 45% depending on the nuclei. In the following we will only consider experimental 
signatures related to dissipation in excited nuclei.  
 
3.1.2. Kinetic energy of fission residues 
 
The measurement of the kinetic energy of the fission fragments was introduced in the 60s and 70s 
as one of the pioneer experimental methods to obtain information on dissipation. The kinetic 
energy of the fission residues is the sum of the kinetic energy that the emerging fission fragments 
gain through the descent from the saddle point and the potential Coulomb energy of the 
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fragments at scission, see figure 3.1.  The potential Coulomb energy depends on the shape of the 
fission fragments, which is strongly affected by shell effects. However, if we consider highly 
excited nuclei for which the shell effects are washed out, the kinetic energy of the fission 
fragments is very sensitive to the energy gained by the collective motion of the composite system 
from saddle to scission. Depending on the strength of dissipation, a certain amount of this kinetic 
energy will be transferred into internal single-particle motion slowing down the collective motion 
and increasing the excitation energy of the fission residues. Moreover, dissipation has also an 
effect on the shape of the fissioning nuclei. It was discussed by Davies, Sierk and Nix in 1976 
[DaS76] that the shape of the fragments depends on the mechanism assumed for the nuclear 
viscosity. While two-body dissipation leads to rather elongated scission configurations, one-body 
dissipation leads to more compact shapes. 
 
 
 

 
  
 
 
 
 
 
 
 
 

 
 
Figure 3.1: Schematic view of the nuclear potential energy as 
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3.1.3. Particle and γ-ray multiplicities 
 
Dissipation lengthens the fission time scale, thus an additional approach to study nuclear 
dissipation is to measure this time. Since the early 80s suitable “nuclear clocks” based on the 
measurement of particle and γ-ray multiplicities have been developed leading to surprising new 
insights into fission dynamics. In fact, in 1981 different groups [GaB81, HiH81] discovered 
independently that pre-scission neutron multiplicities were much higher than expected from the 
statistical model, which revived the interest in nuclear dissipation. The measurement of neutron 
multiplicities prior to scission (neutron clock) and the measurement of GDR (Giant Dipole 
Resonance) γ-ray multiplicities (GDR clock) are the most applied nuclear clocks. The neutron 
clock and the GDR clock have been extensively described in the review articles of Hilscher and 
Rossner [HiR92] and Paul and Thoennessen [PaT94], respectively. Here we will just illustrate 
their main features. 
 
The basic idea of the neutron clock is to measure the number of neutrons (or other light particles) 
evaporated prior to and post scission. The pre-scission lifetime can be deduced from the pre-
scission neutron multiplicity pre

nM according to the expression 
 

   �
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=
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npre
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ττ                                                           (3.1) 

 
where τn is the mean partial neutron evaporation time. τn can be calculated using the statistical 
model. However, this requires a good knowledge of the ratio of the level densities of the initial 
and final state, which is not the case at very high excitation energies. Nevertheless, at high 
excitation energies one can use the post-scission neutron multiplicities to derive the pre-scission 
lifetime. Since the neutron emission time τn decreases exponentially with the excitation energy, 
the emission time of the last neutron before scission determines the pre-scission lifetime. The 
excitation energy at the scission configuration *

scissionE  is found as excitation energy in the 
separated fragments, which deexcite mainly by neutron emission. According to figure 3.1 the 
total excitation energy of the fission fragments after scission is, 
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where *

saddleE  is the excitation energy above the saddle point, *
int rinsicE is the part of the energy 

gain from the saddle to the scission point that is transferred to the intrinsic degrees of freedom 
and *

collectiveE [WiS76] is the part of the energy gain from the saddle to the scission point that is 

transferred to other collective degrees of freedom like vibrations or rotations. *
ndeformatioE 2 is the 

excitation energy that the fission fragments acquire when they snap back to their normal shape. 
Thus, measuring the post-scission neutron multiplicity, the excitation energy at the moment of 
emission of the last neutron prior to scission can be reconstructed, and the pre-scission time can 

                                                 
2 The potential energy at the scission point is the sum of the coulomb interaction of the fragments and their 
deformation energy *

ndeformatioE . The first is transferred into kinetic energy and the second adds to the excitation 
energy of the fragments after separation. 
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be approximated by τpre ≈ τn( *
scissionE ). Since the excitation energy at scission is low, the level 

densities from a well-known excitation-energy region can be employed. 
 
The kinematical focusing is used to disentangle between pre-scission and post-scission neutrons. 
This feature relies on the fact that in thermal equilibrium, neutrons are evaporated isotropically in 
the rest frame of the emitting source. Thus, in the laboratory frame, the neutrons emitted by the 
compound nucleus will follow a homogeneous angular distribution, while the angular distribution 
of the neutrons emitted after scission will be peaked around the velocity vectors of the fission 
fragments. The measured pre-scission time is given by  
 

τpre = τformation  + τf  + τssc + τacceleration                                     (3.3) 
 
where τformation  is the time to form the compound nucleus, τf  is the time for the system to decide 
to fission, τssc is the time for the transition from saddle to scission and τacceleration is an additional 
time induced by those post-scission neutrons emitted before the kinematical focussing is strong 
enough to disentangle them from the pre-scission neutrons. The charged-particle clock leads to 
larger uncertainties in the determination of reaction time scales than the neutron clock. The 
reason is that the measurement and interpretation of charged particle multiplicities is hindered by 
the low multiplicity in most reactions, the anisotropic angular distribution, which makes more 
difficult to apply the kinematical focussing, and the sensitivity of the decay widths to the 
deformation of the emitting source and to the not well defined emission barriers. 
 
Although with a modest relative probability, high energetic γ-rays (Eγ ~ 5-20 MeV) originating 
from the deexcitation of the giant dipole resonance (GDR) are emitted during the fission process. 
In analogy to the case of the pre-scission neutron multiplicities, Thoennessen et al. [ThC87] 
established that the GDR γ-ray multiplicities were around 50% larger than expected by the 
statistical model. They found the explanation to this phenomenon on the slowing down of the 
fission process caused by dissipation. The measurement of the multiplicity of the GDR γ-rays 
emitted prior to scission constitutes the basis of the GDR clock. The γ-ray spectrum registered 
results from two sources: the GDR γ-rays emitted from the compound nucleus before scission, 
and the γ-rays emitted from the fission fragments. Due to the dependence of the energy of the 
GDR γ-rays on the deformation and the mass of the emitting system, these two sources contribute 
in different ways to the spectrum. While the pre-scission GDR γ-rays dominate at energies from 8 
to 15 MeV, the fission fragment component is the strongest at the lowest energies (statistic γ-rays 
emitted at the end of the deexcitation process) and at the highest energies (γ-rays resulting from 
the GDR). These different contributions cannot be disentangled experimentally and must be 
extracted by comparing with model calculations. 
 
To transform the measured particle pre-scission and the GDR γ-ray multiplicities into the pre-
scission lifetime, Monte-Carlo codes are used. In general, these calculations neglect τformation and 
τacceleration assuming that the equilibrium is reached very rapidly and considering only the process 
until the scission point is reached. In fusion-fission reactions τformation plays a considerable role 
and the pre-scission time scale is affected by the increase of excitation energy that, due to 
dissipation, the system experiences on the way to scission. Therefore, determining the reaction 
times for such processes requires the use of dynamical codes. In such codes, dynamical 
trajectories are obtained by solving the classical equations of motion of the system, the Langevin 
equations, see section 2.2. They are coupled to a statistical code to account for the evaporation of 
particles. Incidentally, a considerable effort has been made lately in the development of 
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dynamical codes. For instance, a recent formulation of such description based on a three-
dimensional Langevin equation is presented in reference [KaN01], and in reference [AlC01] it is 
investigated whether the statistical evaporation model is applicable for particle emission along 
quasifission trajectories. In addition, the GDR γ-ray multiplicity data have been analysed 
according to a statistical model [BuH91] in which the time-dependent fission decay width is 
given by an exponential in-growth function. We will explain in chapter 6 various arguments that 
shed severe doubts on the validity of this function to describe the time evolution of the fission 
decay width.  
 
3.1.4. Angular, mass and charge distributions 
 
To understand how these observables give information on the reaction time scales, it is necessary 
to consider the evolution of deep-inelastic collisions. A comprehensive review on these reactions 
can be found in reference [ScH84]. Once the repulsive Coulomb force has been overcome and the 
surfaces of the two nuclei come into contact, nucleons diffuse through the contact zone from one 
nucleus to the other in both directions. During the mass diffusion, the kinetic energy of the 
projectile is dissipated into thermal excitation of the nuclei. If the angular momentum is large, the 
nuclei do not fuse and they fly apart after exchanging some nucleons and losing kinetic energy. 
The mass transfer is a statistical process that increases with the time the two nuclei stay in 
contact. In general, there exists a strong correlation between the exchange of mass and charge 
between the reaction partners and the angular distribution. All these observables are sensitive to 
the reaction time. However, for their interpretation in terms of time scales one has to consider 
that they also depend strongly on the projectile-target combination and on the bombarding 
energy. For the cases of reactions with heavy systems, less asymmetric than the Businaro-Galone 
maximum, the drift towards symmetry of the mass and charge distribution of the residues from 
non-fusion reactions represents a proof of longer reaction times, and hence of the dissipative 
forces acting between the reaction partners. Normally, the anisotropy of the angular distribution 
decreases with increasing reaction time. For short time scales in which the system made less than 
one turn before separating, the angular distributions (selected for a certain fragment mass) present 
a typical forward-backward asymmetry. In [ShA87] the mean angle by which the dinuclear 
system has rotated while sticking together was used to extract the dynamical time scale of the 
reaction. The results were consistent with the one-body nuclear dissipation mechanism. As for 
the case of the neutron and charged-particle multiplicities, the correct interpretation of these 
signatures involves using dynamical codes. For example, Feldmeier [Fel87], applying his 
dynamical code HICOL, found that window dissipation could describe satisfactorily the 
scattering angle, mass and charge distributions of a large group of lightly damped heavy-ion 
collisions.   
 
3.1.5. Fission and evaporation-residue cross sections 
 
If the excited nucleus experiences a dynamical hindrance on its way to the saddle point, contrary 
to what is assumed by the statistical model, the fission channel will be initially closed in the 
deexcitation process of the system. Hence, if the particle decay time is shorter than the dynamical 
fission delay, the nucleus will release excitation energy evaporating particles. Due to the loss of 
excitation energy and to the decrease of fissility caused by the emission of light charged particles, 
the fission probability of the resulting system after the dynamical delay will be considerably 
smaller than the one of the original compound nucleus. Consequently, the fission cross sections 
will be reduced compared to the statistical-model predictions. Since the decay time for particle 
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emission decreases exponentially with increasing excitation energy, even without considering a 
temperature-dependent dissipation coefficient, there is a threshold excitation energy from which 
fission cross sections start to be sensitive to the dynamical delay. As will be shown in section 3.2, 
the determination of this threshold excitation energy is currently a subject of controversy. It is 
important to notice that fission cross sections give information on dissipation up to the saddle 
point, whereas pre-scission particle multiplicities and angular and mass distributions are sensitive 
to the whole deformation range up to the scission point. 
 
The complementary effect to the drop of the fission probability at high excitation energies with 
respect to the statistical model is the increase of the evaporation-residue cross sections. 
Therefore, the excitation functions of the evaporation residues represent a clear signature of 
dissipation up to the saddle point as well.  In a very recent work [HuB00, Dio01], the angular-
momentum distribution of the evaporation residues has been introduced as an additional 
observable sensitive to dissipation inside the saddle, since the mean value of the spin distribution 
shifts to larger values with increasing dissipation. 
 
Nevertheless, it should be noted that the interpretation of all these observables to deduce 
quantitative results on dissipation depends strongly on other parameters like the ratio of the level 
density parameters af/an and the temperature dependence of the fission barriers.  
 
3.1.6. The crystal blocking technique  
 
The crystal blocking technique [Gib75] is based on the fact that a positively charged particle that 
moves inside a crystal is blocked or deflected by the atoms in the crystal row or plane, hence the 
term crystal blocking. The angular distribution of the emerging particles will show a yield 
reduction in the angle corresponding to the crystal row or plane. When an excited compound 
nucleus is produced by a nuclear reaction between a projectile and a lattice atom, the excited 
nucleus recoils with a well-known velocity. If the nucleus fissions before it has a chance to move 
away from the original lattice location, the emerging fission fragments will be blocked by the 
lattice row or plane and their angular distribution will show what we will call a “prompt blocking 
dip”. If, however, some of the nuclei live long enough to recoil into the open space between the 
crystal rows or planes, the corresponding blocking dip will become shallower than the “prompt 
blocking dip”, see figure 3.2. Thus, contrary to the observables described up to now, the crystal 
blocking technique allows for a direct observation of the deviation from very fast fission decay 
times. This technique is only sensitive to a certain interval of the fission decay-time distribution. 
The lower limit is given by the time needed for the nucleus to move away from the thermal 
vibration of the crystal atoms. The upper limit is reached when the mean recoil distance becomes 
larger than the distance to the next atomic row or plane. The limits of the sensitivity interval 
depend on the beam energy. In the current experiments the lower limit reaches values of 
approximately 10-19 s and the upper limit of 10-14 s. 
 
In reference [GoM99] fission decay times of reaction products close to uranium were measured at 
different excitation energies up to 250 MeV by applying this technique. The times found were 
larger than 3⋅10-19s, one order of magnitude larger than the ones obtained from the measurement 
of prescission particle multiplicities for similar nuclei. In a recent work Gontchar et al. [GoM02] 
used a dynamical code based on the Langevin equations combined with a statistical model to 
interpret some of the fission times of reference [GoM99]. They calculated the scission-time 
distribution and compared it with the neutron emission-time distribution and with the γ-ray 
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emission-time distribution. This comparison showed that the scission-time distribution delivered 
by the analysis of neutron multiplicities does not include the largest scission times located in the 
tail of the complete distribution. In this way they explained why the scission times inferred from 
pre-scission neutrons are shorter than the values obtained from the blocking technique. The 
model calculations were also used to determine the strength of dissipation from neutron and γ-ray 
multiplicities. It resulted that the fission-time distribution and the γ-ray multiplicities required a 
reduction of the one-body dissipation given by the wall formula by a factor ks ≈ 0.45, while the 
neutron multiplicities needed a stronger dissipation to be reproduced. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic representation of the crystal blocking technique for determining the 
fission decay time τfiss. The trajectories of the fission products where one is emitted in the 
direction of the lattice are schematically shown for prompt and delayed fission.  

 
In the light of the previous paragraph, we would like to stress the fact that one should be cautious 
when comparing the fission time scales inferred from the various observables presented here. Let 
us consider first the ideal case in which the pre-scission time of individual events i
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In the case of neutron clock, the measured quantity is the (linearly averaged) mean value of the 
pre-scission neutron multiplicity < pre

nM >. From this magnitude the pre-scission time is derived 
according to equation (3.1). In order to have a more direct understanding of the relation between 
< pre

nM > and τpre, we will consider the approximation discussed in section 3.1.3 where the pre-
scission time is derived from the mean neutron decay time of the last neutron emitted τnlast. 
According to the statistical model the mean neutron decay time is given by 
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where ρ(E) is the level density of the compound nucleus, Sn is the neutron separation energy, mn 
is the neutron mass, R is the nucleus radius, ρr(E) is the level density of the daughter nucleus after 
neutron emission and Tr is the temperature of the daughter nucleus after neutron emission. Thus, 
for the mean decay time of the last neutron we have   
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where we have used the expression for the level density that follows from the Fermi model, with 
a the level density parameter and E* the initial excitation energy. Equation (3.6) shows that the 
time that follows directly from the mean pre-scission neutron multiplicity is not the mean pre-
scission time defined in equation (3.4). To calculate a mean pre-scission time from the 
measurement of pre-scission neutron multiplicities it is neccesary to average over a complicated 
function (equation 3.6) of the measured mean multiplicity. These ideas can be also expressed by 
means of the following generic expression. If the quantity y is a function f of another quantity x 
 

)()( xfxfy ≠=                                                      (3.7) 
 
In the same way, there exists a relation between the parameters of the measured blocking pattern 
and the pre-scission time that has to be considered when averaging. Moreover, the largest fission 
decay times to which the blocking technique is sensitive might be related to fissioning nuclei 
with very low excitation energies. In such cases, the statistical decay time is anyhow very long 
and thus, one is not sensitive to an increase of the dynamical fission time due to dissipation. 
When averaging over the pre-scission times obtained applying the blocking technique, all the 
events that do not lead to a deviation from the “prompt blocking dip” should be included. If this 
is not done and the mean pre-scission time is derived from averaging among the long-term tail of 
the fission decay-time distribution, the resulting pre-scission time and the pre-scission time that 
follows from the neutron clock should not be comparable. 
  
3.2. Reaction mechanisms to induce fission  
 
One way of classifying the various experimental approaches dedicated to dissipation studies is by 
considering the mechanism used to produce the excited system. The reaction mechanism 
determines the excitation energy, deformation and angular momentum of the fissioning system. 
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These magnitudes have to be considered correctly in the theoretical description of the fission 
process because they significantly influence any conclusion on dissipation. In this section the 
most important reaction mechanisms will be illustrated together with some recent results.   
   
3.2.1. Fusion-fission, fast fission and quasifission reactions  
 
The majority of the experimental approaches dedicated to the study of dissipation are based on 
nucleus-nucleus collisions at energies that range from 5 A MeV to about 100 A MeV. The 
evolution of such reactions for the largest impact parameters has already been explained in 
section 3.1.4. As the impact parameter decreases, the contact time of the two systems increases 
and so does the dissipated kinetic energy. For the smallest impact parameters, that is, for the 
largest mass diffusion, the entire total kinetic energy with respect to the centre of mass is 
transformed into excitation energy. Among the nucleus-nucleus collisions leading to fission, one 
distinguishes between fusion-fission, fast fission and quasifission reactions. 

 
Fusion-fission reactions are characterized by the formation of a compound nucleus. The 
compound nucleus, in the definition used in the present work, is a stage of thermal equilibrium of 
all intrinsic and collective degrees of freedom. This means that, except for the excitation energy 
and the angular momentum induced, its subsequent decay is independent of how it was formed. 
Fusion-fission reactions are characterized by a symmetric mass distribution of the fission 
fragments. The angular distribution is described by the probability distribution of the K quantum 
number3 as explained by Vandenbosch and Huizenga in reference [VaH73]. In the case of fusion-
fission reactions the angular distribution for the particles and fission fragments is of 1/sinθ-type 
but relatively attenuated at 0° and 180°.  
 
In fast fission and quasifission reactions, the full equilibration is not acquired. Although there is a 
considerable mass transfer and the kinetic energy is completely dissipated, the contact of the 
projectile and target nuclei is not followed by compound-nucleus formation inside the saddle 
point. Thus, there is some residual memory of the entrance channel. In the case of fast fission the 
compound nucleus is not formed because there is no fission barrier. In quasifission, even though 
there exists a fission barrier, there is no compound-nucleus formation because after overcoming 
the fusion barrier of the entrance potential, the composite system adopts directly the saddle 
configuration and is not kept in the fission potential well. Due to the strong statistical 
fluctuations, both types of reactions are characterized by fragment mass distributions wider than 
the mass distributions resulting from fusion-fission reactions. Besides, the composite systems 
formed do not last long enough to evolve to configurations different than the K = 0 configuration 
and the angular distributions are more peaked at the extremes 0° and 180° than in the case of 
fusion-fission reactions.  
 
As was already mentioned in section 3.1, the interpretation of the experimental observables 
related to such reactions requires the use of elaborated dynamical codes that describe the 
complete evolution of the composite system along the dynamical trajectory. Moreover, to give 
reliable results such codes have to deal with the large angular momenta of the composite system 
and to include the effects of fluctuations around the mean trajectory. 
 

                                                 
3 K is the projection of the angular momentum onto the symmetry axis of the fissioning nucleus. 
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In 1992 Hilscher and Rossner [HiR92] compiled the most important results on fission dynamics 
paying special attention to fusion-fission and quasifission reactions. Their investigations showed 
already rather controversial results. In the following, we proceed to report on the most recent 
results obtained from investigating this type of reaction mechanism. In reference [FrG93] 
Fröbrich, Gontchar and Mavlitov analysed the pre-scission neutron multiplicities and fission 
probabilities as a function of the excitation energy for several systems covering a broad range of 
fissilities. They interpreted the experimental data by means of a dynamical code based on the 
one-dimensional, overdamped Langevin equation coupled to a statistical code. In order to 
describe all the different reactions with a universal coefficient β, they introduced the following 
deformation dependence: β =2⋅1021s-1 until the necking of the fissioning nuclei starts to set in and 
a linear increase with deformation for the rest of the process. They interpreted this dependence as 
an evidence for two-body viscosity in the range of the compact shapes and the onset of one-body 
dissipation for the more deformed ones. Later [FGo93], the same model was successfully applied 
to reproduce the pre-scission neutron and charged-particle multiplicities, the GDR γ-ray 
multiplicities, the evaporation-residue and the fission cross sections of the reaction 16O + 208Pb at 
different excitation energies. It was observed that γ-multiplicities and evaporation-residue cross 
sections clearly disagreed with an alternative description proposed by R. Butsch et al. [BuH91] to 
explain the same reaction where β was independent of the deformation and equal to 20⋅1021s-1.  
 
Wilczynski et al. [WiS96] applied the dynamical code HICOL [Fed87] coupled to a statistical 
cascade code to interpret the pre-scission neutron multiplicities emitted along several fast-fission 
trajectories. In the initial part of the reactions, the one-body dissipation expressed by the wall-
and-window formula (section 2.1.2) was reduced by a factor ks

in ≤ 0.5 until the formation of the 
composite system. From the mononucleus shape to scission, the one-body dissipation had to be 
increased drastically by factors that range from ks

out = 4 to ks
out = 12 depending on the reaction. 

The decrease of the dissipation coefficient as a function of the calculated temperature at the 
outgoing part of the trajectories was interpreted as the onset of two-body dissipation at a nuclear 
temperature of about 2 MeV. Nevertheless, in reference [VeM99] the fission-fragment mass and 
angular distributions of one of the previous reactions were measured at two different energies and 
analysed with HICOL coupled to a different evaporation code. In contrast to reference [WiS96], 
here the full wall-and-window formula was used with a smooth transition from the two walls plus 
window formula to the monowall formula. The mass and angular distributions were consistent 
with the one-body dissipation, and the analysis led to reaction times of (15-16)⋅10-21s in good 
agreement with the results obtained from the analysis of the neutron multiplicities performed by 
Hinde et al. [HiH92] for the same reaction. Consequently, in [VeM99] the onset of two-body 
dissipation supported by Wilczynski et al. was not confirmed for nuclear temperatures smaller 
than 2.5 MeV. It is interesting to notice that Hinde and co-workers [HiH92, HiB99] studied 
similar fusion-fission reactions using non-dynamical codes. In their models, the suppression of 
the fission channel for a fixed time of the order of (20-30)⋅10-21s accounted for dissipation effects.  
 
Karpov et al. [KaN01] compared three-dimensional Langevin calculations with mass-kinetic-
energy distributions and neutron multiplicities of several fusion-fission reactions. They used the 
dissipation tensor that results from the wall-window formula. The calculations agreed well with 
the experimental data when the contribution to the dissipation from the wall term was reduced by 
a factor ks that varied from 0.25 to 0.5, depending on the reaction. Finally, in a very recent 
publication [ChP02] the chaos-weighted wall formula, a modified form of the wall friction 
introduced by the same authors in a previous reference [ChP01] (see section 2.1.2), has been 
applied to a dynamical description in the framework of the one-dimensional Langevin equation 
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coupled with a statistical evaporation code. The reduced dissipation coefficient β that follows 
from the chaos-weighted wall formula is about 10 times smaller than the value of β that results 
from the original wall formula. Pre-scission neutron multiplicities and fission probabilities of a 
number of compound nuclei formed in heavy-ion induced fusion reactions could be much better 
reproduced with the chaos-weighted wall formula than with the normal wall formula. Their 
calculations showed that for the compound nuclei 178W, 188Pt, 200Pb, 213Fr, and 224Th, the pre-
saddle neutrons account for most of the pre-scission neutrons at low excitation energies. 
However, for very heavy nuclei as 251Es they found that the majority of the pre-scission neutrons 
is emitted in the post-saddle stage. Their calculations could not reproduce the experimental pre-
scission neutron multiplicity for this case. They suggested that one of the possible explanations 
for this discrepancy is a considerable increase of the dissipation in the post-saddle region. 
 
An important set of results has been gained from applying the GDR clock to fusion-fission and 
quasifission reactions. In reference [ThB93] the threshold excitation energy from which the 
statistical model failed to reproduce a large amount of excitation functions of particle and γ-ray 
multiplicities was investigated. It was found that the ratio of the threshold temperature and the 
temperature-dependent fission barrier was independent of the mass of the fissioning nucleus and 
equal to 0.26. The authors suggested that this could reflect an onset of dissipation with increasing 
temperature. However, in [PlB95] this systematic behaviour was explained without any 
assumption of an onset of dissipation effects or temperature dependence. This work showed that 
the reason why the statistical model fails to reproduce the experimental data for Tthreshold/Bf > 0.26 
is because at this point the dynamical delay time starts to be larger than the decay time predicted 
by the statistical model. Hofman, Back and Paul [HoB95] even found an analytical expression for 
the temperature dependence of dissipation from the study of the GDR multiplicities associated 
with several fusion-fission and quasifission reactions. According to this dependence, γ, defined as 
the ratio β/2ω0, is about 0.2 for temperatures smaller than 1.17 MeV, while for larger 
temperatures, both, a linear dependence with T and with T2 reproduced well the experimental 
data. An independent work [SoH98] based on the study of the yields and velocity distributions of 
heavy residues and fission fragments from the reaction of 197Au at 20 MeV on carbon and 
aluminium targets led to dissipation values consistent with the temperature dependence pointed 
out in [HoB95]. The most recent works concerning the study of GDR multiplicities in fusion-
fission and quasifission reactions, though, were interpreted assuming a deformation dependence 
of dissipation instead of a temperature dependence. For instance, in [ShD00] a value of γ = 2 
inside the saddle point and of γ =10 outside the saddle point was required to reproduce the GDR 
multiplicity emitted in the fission process of 240Cf. Diószegi et al. [DiS01] found that the GDR 
multiplicities of the reaction 19F + 181Ta at 161 and 181 MeV were not enough to determine the 
dissipation coefficient unambiguously. They used the evaporation-residue cross sections of the 
same reaction to determine the dissipation up to the saddle point, γsaddle = 3. Fixing this value of 
the dissipation coefficient up to the saddle deformation, they varied the dissipation coefficient 
from saddle to scission to reproduce the gamma-multiplicities obtaining γscission=10. Such 
deformation dependence with very low values of dissipation for the compact shapes up to saddle 
is compatible with the examination of the angular-momentum distribution of the evaporation 
residues presented in [HuB00, Dio01]. For the latter case, the experimental data could be 
reproduced using the code CASCADE without any dissipation.  
 

Further results have also been obtained by studying α-induced fission. This method was used in 
[EmM96] to investigate fission of Pu isotopes produced in the reaction of 238U + α with Eα = 37 
and 43 MeV. At low excitation energies, the double-humped structure of the fission barrier 
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causes an additional delay. This delay is related to the dynamical trajectories that are trapped in 
the second well. The probability that the system follows such trajectories is influenced by 
dissipation. The study of reference [EmM96] was based on the analysis of the fission-fragment 
angular distributions, which are a superposition of the distribution related to the inner and to the 
outer barrier. The FPE was used to calculate the time-dependent probability of finding the system 
at the second saddle. This probability was introduced into a statistical code that led to  
β = 0.25⋅1021s-1 for the reaction at 37 MeV and β = 0.35⋅1021s-1 for Eα = 43 MeV. These results 
were interpreted as a signature of the increase of dissipation with temperature. Fission induced by 
α-particles has been extensively investigated by Moretto and co-workers. In reference [MoJ95] 
fission excitation functions for different compound nuclei from A = 186–213 with excitation 
energies of about 25 to 125 MeV were investigated in terms of the transition-state model with the 
fission width suppressed for a fixed transient time τf. The agreement with the model was very 
good and no effects of transient times longer than 3⋅10-20 s were visible. In a more recent work 
[JiP01], the upper limit of the transient time could be further constrained to τf <25⋅10-21s for 
excitation energies up to 150 MeV, and the most probable value was found to be τf =10⋅10-21s. 

 
3.2.2. Antiproton annihilation 
 
Antiproton annihilation is an alternative mechanism to induce fission where the characteristics of 
the fissioning nucleus coincide with the assumptions of the model of Grangé and Weidenmüller 
[GrJ83] described in section 2.3. The absorption of antiprotons by nuclei has several stages. In 
the first stage the antiproton annihilates with a single nucleon of the surface or inside the nucleus. 
The main annihilation channel leads to the production of a pion cloud containing an average of 
about 5 particles. Depending on the energy of the incident antiproton this cloud is more or less 
focused forward into the nucleus. The interaction of the pion cloud with the nucleus can be 
described by intranuclear cascade (INC) calculations. The cascades of sequential two-body 
collisions lead to a certain number of holes and excited nucleons. These calculations predict that 
the angular momentum remains low (l < 25� ) and that shape distortion and density compression 
are negligible in contrast to what occurs for heavy-ion induced fusion-fission and quasifission 
reactions. Additionally, the time for achievement of thermal equilibrium is of the order of 10-22 s, 
much shorter than the corresponding time for fusion-fission and quasifission reactions. In 
[GoB96] a new experimental method to determine the thermal excitation energy produced with 
energetic antiprotons was introduced. It was based on the measurement of the neutrons and 
charged particles (fission fragments, intermediate mass fragments, and light-charged particles) 
emitted in the deexcitation process of several target nuclei. The relation between the light-particle 
multiplicities and the excitation energy was inferred by the statistical code GEMINI [ChM88]. 
For the case of an uranium target, the absolute differential cross section dσ/dE* obtained by this 
method results in more than 12% of the reaction cross section leading to excitation energies 
larger than 600 MeV, with the tail of the distribution (approximately 1% of the reaction cross 
section) reaching up to energies close to 1 GeV (see figure 4.2 of chapter 4). However, it is 
worthwhile to remark that in antiproton annihilation reactions we have to consider the effect of 
fluctuations in the measurement of the excitation energy in combination with a production cross 
section, which is steeply decreasing for the highest excitation energies (figure 4.2 of chapter 4). 
In our opinion, this implies the danger that events of a selected apparent high excitation energy 
are strongly "contaminated" by a part of the more abundant processes of smaller true excitation 
energies.  
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Fission of different nuclei induced by stopped antiprotons was firstly analysed considering 
dissipative effects according to the FPE in references [HoI94, KiI96]. Although the mass, 
velocity and momentum distributions, and the correlations between these magnitudes could be 
quite well reproduced with this model, it is difficult to extract any conclusion on dissipation from 
these investigations. Later in [ScE97], the neutron multiplicities produced in the antiproton-
induced fission reaction of 238U at different excitation energies were analysed according to the 
statistical model including some modifications related to dissipation. The data could be either 
reproduced by including the Kramers factor (equation (2.9) of chapter 2) with γ = 0.7 or 
assuming a saddle-to-scission delay time τssc of 10-20s. In a recent publication [LoG01], the 
fission probabilities for p  (1.22 GeV) + Au and U as a function of the excitation energy were 
determined. They were analysed according to two different model calculations. The calculations 
combining INC and the statistical code GEMINI [ChM88] that assumes a fixed transient time 
independent of the temperature and the fission barrier led to an upper limit of the transient time  
τf of 1⋅10-21s. The calculations performed with INC and ABLA [GaS91, JuJ98] led to a reduced 
dissipation coefficient β ≈ 2⋅1021s-1.  
 
3.2.3. Very peripheral transfer reactions 
 
This section is dedicated to a very interesting experiment based on a transfer-fission reaction 
where the fission events originating from excited systems that fulfilled the conditions of Grangé 
and Weidenmüller’s model [GrJ83] were filtered and analysed. In this experiment [EcK90] the 
fission probabilities of very peripheral 40Ar + 232Th collisions at 30 A MeV were measured. From 
the measured linear-momentum transfer, the average initial excitation energy and the angular 
momentum of the compound nuclei formed were deduced. The linear-momentum transfer was 
determined from the fission-fragment folding angles. An average value for the charge of the 
nucleus right before the start of the evaporation cascade could be deduced from the charge of the 
projectile-like fragments and the emitted light charged particles measured in coincidence with the 
fission fragments. For this it was assumed that the light charged particles either were of 
preequilibrium nature or emitted by the projectile-like fragments.  In this way, the initial average 
values of the charge, excitation energy and angular momentum of the system after the collision 
could be inferred. Within the narrow range of impact parameters they selected, the average 
charge of the excited nucleus varied from 88.5 to 88.7, the average excitation energy from 49 to 
219 MeV and the average angular momentum from 14 to 55 � . Because of the large impact 
parameters selected, the deformation of the excited nuclei after the collision was very close to the 
ground-state deformation. It is worth to notice how, by selecting very large impact parameters, 
the characteristics of the excited nucleus (except for the excitation energies) produced in a 
transfer reaction could be as favourable as in the case of antiproton annihilation. The 
experimental fission probabilities were compared with the statistical code HIVAP [ReH85] with 
1.05 ≤ af /an ≤ 1.09. The transient time τf was deduced in the following way. Firstly, the fission 
probability was set artificially to zero and the different steps of the neutron cascade were 
calculated. Then, for the particular conditions (excitation energy, angular momentum, etc.) of the 
different steps of these sequences, the fission probabilities were calculated. The so determined 
fission probabilities decrease along the evaporation paths until they cross the range of 
experimental values. The excitation energy E*Threshold (or better the range of excitation energies) 
where this occurs was interpreted as the threshold excitation energy where the transient time and 
the statistical decay time become comparable. Thus, τf ≈ τn (E*Threshold), where τn is the mean 
neutron decay time. The authors remarked that the results are very much dependent on the choice 
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of af /an. Nevertheless, the existence of a transient time τf > 1⋅10-21s and E*Threshold ~120 MeV 
followed from their work independently of these considerations. 
 
3.2.4. Spallation reactions 
 
Spallation or proton-induced fission represents an additional mechanism that leads to excited 
nuclei with the characteristics of the model of Grangé and Weidenmüller [GrJ83].  The reaction 
in inverse kinematics of a 197Au beam at 800 A MeV on a proton target was studied at GSI. In 
reference [BeA02] signatures of fission dynamics were extracted from the analysis of the 
properties of the fission fragments resulting from this reaction. The nuclear charge, mass and 
velocity of one of the fission products could be determined by means of the projectile-fragment 
separator FRS [GeA92]. With this information, the characteristics of the fissioning system at 
saddle could be reconstructed. From the velocity and the charge of the fission fragment the 
charge distribution of the fissioning nucleus was inferred. It resulted to be very narrow with a 
most probable value of Zfiss = 76.5 ± 0.5. The mass number of the fissioning nucleus was obtained 
assuming a symmetric mass distribution of the fission fragments and correcting for post-scission 
neutron emission, the value found was Afiss = 180 ± 2. This work introduces a very interesting 
observable, namely, the width of the charge distribution of the fission residues. In the next 
chapter it will be explained how this quantity is directly related to the excitation energy of the 
fissioning nucleus at saddle. Their analysis led to an excitation energy over the saddle of 

*
saddleE ≈ 110 ± 20 MeV. A nuclear-reaction code consisting of an intra-nuclear cascade [CuV97] 

linked to the evaporation code ABLA [GaS91, JuJ98] was used to interpret the measured 
quantities and to infer the initial characteristics of the excited system. The measured excitation 
energy at saddle was considerably lower than the initial calculated one, evidencing a clear 
suppression of the fission channel at high excitation energies. Calculations based on the 
transition-state model could not reproduce the whole set of observables independently of the 
value used for the parameter af/an. Only with the inclusion of dissipation by means of a time-
dependent fission width approximated by a step function and af/an = 1.05, better agreement with 
the data was found. With a value of β between 2 and 3⋅1021s-1 the total fission cross sections, the 
isotopic distributions of the fission residues as well as the characteristics of the fissioning nucleus 
at saddle could be explained very satisfactorily.  
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Chapter 4: New experimental approach  
 
 
In the previous chapters we have seen that, in spite of the experimental and theoretical efforts, the 
value of the reduced dissipation coefficient and, more exactly, its variation with deformation and 
temperature is still subject of debate. From the experimental side, several work [PlB95, DiS01] 
have already remarked the difficulty of finding experimental signatures sensitive to the 
temperature dependence of dissipation. With regard to the deformation dependence, for the large-
deformation regime clear signatures of dissipation have been found, whereas for the deformation 
regime from the ground-state to the saddle the situation is rather uncertain. While some studies 
find clear effects with β = 4⋅1021s-1 [ShD00] and β = 6⋅1021s-1 [DiS01], other work point to weak 
effects τf ≈ 10⋅10-21s [JiP01], τf < 1⋅10-21s [LoG01], β = 2⋅1021s-1 [BeA02] or to no dissipation 
effects at all [HuB00, Dio01]. To improve this situation, new observables sensitive to dissipation 
in this deformation regime should be introduced and alternative mechanisms to induce fission are 
needed. Heavy-ion induced fusion-fission reactions have proven to be very successful in the large 
deformation scale, but they do not offer optimum conditions for extracting the relevant 
information at small deformations. These reactions cannot be analysed with the model of Grangé 
and Weidenmüller [GrJ83] because the initial conditions of the composite system formed after 
the collision do not correspond to those assumed in this model. As mentioned in the previous 
chapter, such reactions require elaborate dynamical models that have to take into account all the 
additional side effects that influence the fission process. Furthermore, since the transient time is 
expected to be a tiny effect, the excitation energy of the nucleus should be high enough for the 
statistical decay time to be shorter than the transient time. Thus, an experimental approach is 
required that produces highly-excited heavy nuclei with high cross sections. Concerning the 
observables, the analysis of particle multiplicities gives information on dissipation on the whole 
path from the ground state to scission but it does not allow to explore the deformation range from 
the ground state to the saddle point independently. Total fission or evaporation-residue cross 
sections are the most used observables to investigate dissipation at low deformation. However, 
we will see in chapter 6 that these observables are not sufficient to face questions like the 
temperature dependence of dissipation or the effects that the theoretical description of the process 
has on the deduced dissipation coefficient. In this chapter we will introduce an experimental 
method based on peripheral heavy-ion collisions at relativistic energies that represents ideal 
conditions for investigating dissipation at small deformations. An experimental set-up optimal for 
fission studies, which is illustrated in section 4.2, allowed to measure the total fission cross 
sections of a 238U beam at 1 A GeV on different targets and to establish two additional 
experimental observables sensitive to dissipation at small deformations, they will be introduced 
in section 4.3.  
 
4.1. Peripheral heavy-ion collisions at relativistic energies 
 
The ideal scenario for the investigation of dissipation at small deformations is one where the 
heavy nucleus produced meets the conditions of the theoretical work of reference [GrJ83]. This 
means that the nucleus should be highly excited with only little shape distortion. In addition, the 
angular momentum induced should be small in order to avoid additional influence on the fission 
process. Such well-defined initial conditions considerably simplify the theoretical treatment of 
the process because, provided the nuclear potential as a function of the deformation is well 
known, the evolution of the system up to the saddle point is quantitatively described by the FPE. 
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These specific initial conditions can be achieved by applying a projectile-fragmentation reaction, 
i.e. a very peripheral nuclear collision with relativistic heavy ions. The evolution of such 
reactions follows three main stages: First the collision takes place leading to a prefragment, then 
thermal equilibrium in the intrinsic degrees of freedom is established and finally, this equilibrated 
system decays by particle emission or fission. A scheme of the different stages is shown in figure 
4.1. 
 
 
 
 
 
 

 
 
 
 
Figure 4.1: Scheme of the different stages of a very peripheral heavy-ion collision at relativistic 
energies that leads to fission. 

 
The characteristics of the prefragment can be well described by the geometrical abrasion model 
[GaS91, ScB93], which is explained in chapter 6. Nuclear collisions at bombarding energies well 
above the Fermi energy can be considered as quasi-free nucleon-nucleon collisions. Hence, a 
peripheral collision of the relativistic heavy projectile with the target essentially removes a 
number of nucleons from the projectile respectively target nucleus. The shape of the prefragment 
is almost not distorted, the root mean squared value of the angular-momentum distribution of the 
prefragment varies from 10 to 20 �  (as shown by numerical calculations [JoI97]) and its 
excitation energy is given by the number of nucleons abraded. It has been found experimentally 
[ScB93] that on the average 27 MeV excitation energy pro nucleon abraded are induced. As 
discussed in section 3.2, similar initial conditions can be reached by relativistic proton-nucleus 
collisions in inverse kinematics [BeA02] and by the annihilation of antiprotons [GoB96, HoI94] 
at the nuclear surface. However, a comparison between model calculations based on the 
intranuclear cascade [BoC02] and the abrasion model [GaS91, ScB93] show that, if the same 
fissioning nucleus is produced by means of both reaction mechanisms, the angular momentum 
induced by proton reactions is approximately three times larger than the angular momentum 
induced by peripheral fragmentation reactions. In addition, our approach populates higher 
excitation energies more strongly than proton or antiproton-induced reactions. This is shown in 
figure 4.2 for the case of antiproton reactions, where the experimental differential total reaction 
cross section dσ/dE* for the reaction p (1.2 GeV) + 238U taken from reference [GoB96] is 
compared with a calculation according to the abrasion model for the fragmentation reaction of 
238U (1 GeV) + Pb. This picture shows that fragmentation reactions can lead to very high 
excitation energies. Recent experimental results [ScR02] indicate that if temperatures above 
approximately 5 MeV are reached, thermal instabilities set in eventually leading to 
multifragmentation. This means that instead of equilibrating directly after the fragmentation 
reaction, the system undergoes a simultaneous break-up. This phenomenon is considered as well 
in the theoretical model used to interpret these reactions and it is discussed in chapter 6. As can 
be seen in figure 4.2, while the reaction cross section induced by antiproton annihilation starts to 

Prefragment Equilibrated 
nucleus Fission 



 31

decay steeply at excitation energies of about 500 MeV, this range of energies remains strongly 
populated by fragmentation reactions. This is of great advantage not only because it enables 
observing the effects of the dynamical delay induced by dissipation and analysing a possible 
temperature dependence, but also because it allows investigating the interplay between 
dissipation and thermal instabilities in the inhibition of fission at high excitation energies.   
 

 
Figure 4.2: Total reaction cross section as a function of the excitation energy induced right after 
the collision. The dashed line corresponds to the reaction p (1.2 GeV) + 238U measured in 
reference [GoB96], and the full line is a calculation performed with the abrasion model [GaS91, 
ScB93] for the reaction 238U (1 A GeV) + Pb.  

 
4.2. Experimental set-up 
 
For investigating the reactions described in the previous section, a beam of relativistic heavy ions 
is needed. This is possible at GSI where the heavy-ion synchrotron SIS delivers an intense 238U 
beam at 1 A GeV. In our measurements the experimental set-up for fragmentation-fission studies 
was located behind the FRS. Although the FRS is a high-precision magnetic spectrometer 
[GeA92], for the present experiment it was solely used as a beam line to guide the 238U primary 
beam to the set-up. The FRS consists of two parts with two dipoles each, see figure 4.3. The ions 
passing through the dipoles of each part are deflected according to their velocity and the ratio of 
their mass A and their ionic charge q: 
 

[ ]Tm
q
A

qe
mcB βγβγρ 107.3==                                                 (4.1) 

 
where Bρ is the magnetic rigidity, β=v/c, γ = (1-β2)-1/2 are the relativistic factors, c is the speed of 
light in vacuum, m = A⋅ u is the mass at rest and e is the electron charge. During our experiment, 
the magnetic fields of the dipoles were chosen to centre the trajectories of the 238U fully stripped 
projectile ions. A Nb-foil at the entrance of the FRS was used to fully strip the 238U projectiles. 
This was necessary to prepare a well-defined beam, since the projectiles leaving the SIS with 
 q = +73 were only partly stripped by the thin vacuum window located at the exit of the SIS.  
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However, the interaction of the primary uranium beam with the different layers of matter 
positioned on the way to the experimental set-up (SIS vacuum window, SEETRAM foils, dummy 
target and niobium-foil in front of the FRS, scintillator plate and Nb-foil at the second focal plane 
S2) led to contaminants with different charge stages and different masses than the required 
primary beam of 238U92+. Since these contaminants have different Bρ than the primary beam, they 
arrived to the focal planes of the spectrometer S2 and S4 with different positions. Two 
scintillation detectors located at these focal planes allowed for measuring the position of the ions 
after traversing the pair of dipoles. Figure 4.4 shows how combining the position of the nuclei at 
the fourth focal plane S4 with their position at the second focal plane S2, it was possible to 
disentangle the primary uranium beam from the rest of contaminants.  
 

 
Figure 4.3: Schematic view of the FRS as used in this experiment.  

 
The window depicted in figure 4.4 selects the primary beam. The three peaks situated to the left 
of the beam peak at the same height are the products of neutron-removal reactions. The peak 
located at a position at S2 of approximattely –25 mm corresponds to 237U92+, the peak found at 
about –60 mm to 236U92+ and the one at around –85 mm to 235U92+. The intense peak below the 
primary beam corresponds to those nuclei that capture one electron when traversing the layers of 
matter positioned at S2. The peaks to the left of this peak found at positions at S2 of 
approximately -25 and –60 mm correspond to the products 237U91+ and 236U91+, respectively. 
  
4.2.1. Set-up for fission studies in inverse kinematics 
 
After passing through the FRS, the primary beam reached the experimental set-up schematically 
illustrated in figure 4.5. This set-up, especially designed for fission studies in inverse kinematics, 
consisted of a scintillation detector, two MUltiple-Sampling Ionisation Chambers (MUSICs), a 
double ionisation chamber and a time-of-flight wall. The first scintillation detector had several 
functions. It supplied the horizontal position at the exit of the FRS, it provided the start signal for 
the time-of-flight measurement and it served as a trigger. The target was located in between the 
two MUSICs. This configuration worked as an active target. The double IC recorded the energy-
loss signals of both fission fragments separately. Finally, the time-of-flight wall provided the stop 
signal for the time-of-flight measurement of the fission fragments. This set-up was a modified 
version of a previous one [ScS00] that was conceived to study electromagnetic-induced fission in 
a lead target. The even-odd structure [ReI00] of the charge yields of the fission fragments 
measured in this experiment was used to study dissipation in cold nuclei, see section 3.1.1. In the 
present case, we wanted to focus our investigations on dissipation at higher excitation energies. 
Therefore, we optimised the set-up for investigating nuclear-induced fission in different targets. 
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In the previous experiment, a subdivided scintillation detector, mounted in front of the double IC, 
served as a fast trigger to reduce the load of the data acquisition. In the present measurement, this 
detector was removed to avoid the effects caused by the secondary reactions of the fission 
fragments when passing through it.  
 

 
Figure 4.4:  Position at the last focal plane of the FRS (S4) versus position at the intermediate 
focal plane (S2). The window selects the primary beam. The other peaks correspond to 
contaminants that result from neutron-removal and electron-capture reactions in the layers of 
matter located between the SIS and the experimental set-up for fission studies. The numbers 
indicate the scale of the cluster plot. 

 
As will be shown in the next chapter, the experimental observables that we analysed were 
determined by means of the MUSICs and the double IC. A schematic upper view of a MUSIC is 
shown in figure 4.6a). The four anodes positioned at the side of the chamber allowed for a 
multiple measurement of the energy deposition and the drift time of the induced signals. The 
active depth of the chamber was 40 cm. The width of 20.4 cm was large enough to cover the 
complete angular distribution of the fission fragments that populated a cone of several tens of 
mrad. The active volume was filled with P10, a mixture of 90% argon and 10% methane. The 
cathode was subject to a potential of –4000V and the anodes to 650 V. To restrict the position 
dependence of the induced signals and the effects of the signals induced by the gas ions, a Frisch-
grid at zero voltage was placed 2.3 cm in front of the anodes. 
 
The double ionisation chamber was conceived according to the kinematics of fission residues in 
inverse kinematics. It consisted of two independent counting-gas volumes separated horizontally. 
In this way, the measurement of energy loss of both fission fragments could be performed 
independently. The active volume of the chamber was 80 cm long, 40 cm high and 60 cm wide, 
and was filled with the counting gas P10. At a height of 20 cm, the active volume was divided in 
two parts by the cathode. Two groups of four anodes were situated on the top and the bottom of 
the chamber at opposite sides of the cathode. The anodes were connected to a voltage of 1000 V 
and the cathode to –4000 V. Two Frisch-grids at zero voltage were placed 2 cm in front of the 
anodes. A schematic side view of the double IC is depicted in figure 4.6b). The common cathode 
was located at the height of the beam axis to ensure that each fission residue was detected in a 
different part of the chamber. Moreover, with such geometry, the slow gas ions generated by the 
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intense non-fissioning projectiles were absorbed very fast by the cathode, and recombination 
losses could be avoided. However, due to the vertical emittance of the primary beam and an 
eventual shift of the cathode with respect to the mean vertical position of the beam, there was a 
certain probability that both fission fragments passed through the same half of the double IC. 
Additionally, fission fragments moving very close to the cathode had less active volume to ionise 
and produced less electron-ion pairs. This caused additional losses. Overall, the detection 
efficiency of the double IC was approximately 90%. In the next chapter it will be described how 
the combined information from the double IC and MUSIC 2 allowed for reducing considerably 
these losses leading to a detection efficiency of approximately 97%. 
 

 
Figure 4.5: Experimental set-up for fission studies in inverse kinematics placed after the FRS. 
 
As discussed in [Bad73, PfG94, Mül96], the resolution of the energy-loss signals in the ionisation 
chambers can be considerably improved by suppressing the contribution of the highly energetic  
δ-electrons. This was performed filtering the lower frequencies of the energy-loss signal with a 
proper shaping time in the main amplifiers, 0.5 µs in the MUSICs and 1 µs in the double IC.  
 
4.3. New observables sensitive to dissipation at small deformation 
 
At relativistic energies, the velocity of the fission fragments is close to the velocity of the 
projectile. In the velocity range of the present experiment, the energy deposition is almost 
independent of the velocity. Therefore, since the fission residues are fully stripped, the energy 
loss is directly related to the square of the atomic number Z. This feature was already used in 
reference [GrC85] to determine charge-changing cross sections and total fission cross sections. 
The experimental set-up described in the previous section allowed for measuring the energy-loss 
signals of the two fission products resulting from the interaction of the 238U relativistic beam with 
different targets. With this information it was possible to extract the total fission cross sections as 
a function of the target mass. The target has an influence on the mass and the excitation energy of 
the residues produced directly after the collision. Consequently, dissipation might affect 
differently the number of systems that fission for each target combination. Furthermore, due to 
the charge identification of both fission fragments, we could determine two additional 
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observables: the partial fission cross sections, that is, the cross section as a function of the 
fissioning element, and the charge distributions of the fission fragments that result from a given 
fissioning nucleus. The next chapter explains in detail how these three observables have been 
determined. In chapter 3 we have already elucidated why total fission cross sections are sensitive 
to dissipation. In this section it will be qualitatively illustrated why the partial fission cross 
sections and the widths of the charge distributions represent two new observables, sensitive to the 
strength of the dissipation coefficient at small deformation.   
 

 
Figure 4.6: a) Schematic upper view of the active volume of the MUSIC. b) Schematic side view 
of the active volume of the double IC. 
 
The double IC allows for determining the sum of the nuclear charges of the fission residues  
Z1+Z2. The fission fragments are neutron rich and their excitation energy is too low for emitting 
protons after scission. Therefore, the sum of the charges of the two fission fragments is a very 
significative magnitude because it gives the charge of the fissioning nucleus. Although there 
might be few charged particles emitted after the abrasion, the charge of the fissioning element 
goes linearly with the charge of the prefragment and hence, it gives an indication of the centrality 
of the collision. Low values of Z1+Z2 imply small impact parameters and large excitation energies 
induced by the abrasion process. If the excitation energy of the nucleus is higher than the 
threshold excitation energy at which the statistical decay time and the transient time τf become 
comparable, fission competition is delayed with respect to particle evaporation by the transient 
time. Therefore, for the lightest fissioning nuclei (lowest values of Z1+Z2) the existence of a 
transient time would imply a considerable reduction of the fission probability (and hence of the 
fission cross section) compared to the predictions of the transition-state model.  
 
We have shown in section 3.2.4 that the width of the charge distribution of the fission fragments 
was used in reference [BeA02] to determine the temperature of the fissioning system at saddle. 
This relation between the width of the charge distribution and the saddle point temperature Tsaddle 
relies on an empirical systematic behaviour between the variance of the mass distribution σA

2 and 
Tsaddle that reads 
 

A

T
A C

saddle=2σ                                                          (4.2) 
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where CA is a constant that depends on the fissility  Z2/A of the fissioning nucleus. Due to the 
strong correlation between the charge distribution of the fission fragments and the mass 
distribution, a linear relation between σA

2 and the temperature at saddle directly implies a linear 
relation between σZ

2 and Tsaddle. Thus, for the lower values of Z1+Z2, i.e., for the lighter fissioning 
nuclei where the initial excitation energy is larger than the threshold excitation energy, the 
nucleus will evaporate particles while it deforms, and the temperature at saddle Tsaddle will be 
smaller than the initial temperature. Consequently, the corresponding charge distributions will be 
narrower than the ones predicted by the transition-state model. The quantity CZ that connects σZ

2 
with Tsaddle is related with CA as follows 
 

A
fiss

fiss
Z C

Z

A
C ⋅= 2

2

                                                          (4.3) 

 
where Afiss and Zfiss represent the mass and the nuclear charge of the fissioning nucleus, 
respectively. 
 
Rusanov et al. [RuI97] analysed the experimental mass-energy distributions of fragments 
produced in the fission of various nuclei with fissilities Z2/A ≥ 32 and excitation energies 
between 40 and 150 MeV. This study revealed a considerable enhancement of the variances σA

2 
with the angular momentum. The relation between CA and the fissility parameter was intensively 
studied. In a later work [MuS98], the experimental mass distributions of the fission products of 
proton- and alpha-induced reactions were investigated. By means of a fitting procedure, the 
values of the parameter CA for nuclei within a range of fissilities Z2/A from about 28 to 44 and 
excitation energies from approximately 5 to 25 MeV were determined. Including the data for 
larger fissilities of reference [RuI97] corrected for angular-momentum effects, a parameterisation 
of the relation between CA and the fissility was presented. 
 
According to the transition-state model the constant CA is proportional to the stiffness of the 
liquid-drop potential at the saddle point respect to mass-asymmetric changes. In the frame of the 
transition-state model the mass yields Y(A) follow the expression  
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where A is the mass of the fragments, af is the level density parameter at saddle and E* is the 
excitation energy of the fissioning nucleus. The conditional fission barrier Bf(A) corresponding to 
the mass A can be described by the liquid-drop model including shell effects 
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where LD

fB is the liquid-drop fission barrier, Wg and Wf(A) are the shell corrections in the  ground 
state and in the transition state, respectively and KA is the stiffness parameter of the liquid drop 
with respect to mass-asymmetric variations at saddle:  
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Inserting equation (4.5) into equation (4.4) and taking into account that at high excitation 
energies shell effects can be neglected, the mass yield Y(A) can be approximated by a Gaussian 
with the standard deviation  
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where *

saddleE is the excitation energy of the fissioning nucleus over the fission barrier. 
Comparing equation (4.7) with equation (4.2) it follows that CA = 2KA. 
 
Although the arguments that lead to equation (4.7) were based on the statistical model, the 
linearity between the variance of the mass distribution and the temperature at saddle has been 
confirmed by dynamical calculations. However, in this more complete picture the quantity CA 
cannot be just interpreted as the stiffness of the liquid drop potential at saddle because it includes 
as well the dynamical effects that influence the charge distribution on the way from saddle to 
scission. In reference [VaK99] two-dimensional Langevin calculations were used to investigate 
the mass distribution of the fragments produced in the fission process of compound nuclei within 
the fissility range 20 < Z2/A < 40. For the compound nucleus 205At the dependence between σA

2 
and Tsaddle was calculated for saddle-point temperatures reaching up to 2.4 MeV. The effective 
stiffness CA that can be extracted from this calculated linear relation is in very good agreement 
with the value (corrected for angular momentum effects) that follows from the parameterisation 
of reference [MuS98]. This demonstrates that the parameterisation presented in [MuS98] is valid 
also at higher excitation energies. As will be illustrated in chapter 6, the quantitative analysis of 
the experimental widths of the charge distributions measured in our experiment is based on the 
comparison with model calculations. To obtain the calculated widths, the values of the constant 
CZ for each fissioning nucleus are extrapolated from the parameterisation introduced in reference 
[MuS98].  
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Chapter 5: Data analysis 
 
 
In this chapter we will outline how the experimental data gained with the set-up described in the 
previous chapter have been analysed to determine the three observables whose sensitivity to 
dissipation will be studied in chapter 6. The first section reports on the ascertainment of the total 
fission cross sections for the reaction of 238U at 1 A GeV on different targets. For the reaction of 
238U at 1 A GeV on a (CH2)n target we also established the partial fission cross sections and the 
widths of the charge distributions of the fission fragments. This is shown in sections 5.2 and 5.3, 
respectively.  

 
5.1. Total fission cross-sections  
 
The experimental set-up for fission studies, positioned behind the last image plane of the FRS, 
allowed for the measurement of the total fission cross-sections of 238U at 1 A GeV induced in 
(CH2)n, C, Cu, and Pb targets. The detectors used for the determination of the total fission cross 
sections were the MUSIC located before the target (MUSIC 1), the MUSIC placed behind the 
target (MUSIC 2) and the double IC situated after MUSIC 2 (see figure 4.5 of chapter 4). As was 
mentioned in section 4.2.1, the efficiency of the double IC is limited to approximately 90%. In 
contrast to the double IC, MUSIC 2 detects all the reaction products without any losses. This is 
the reason why instead of using the double IC we used MUSIC 2 to determine the number of 
fission events. Since the nuclear charge of the fission fragments is more or less half of the 
projectile nuclear charge, the fission fragments can be well identified by a peak positioned 
approximately in the middle of the energy-loss spectrum of MUSIC 2. This fission peak is, 
nevertheless, mixed with fragmentation events. Consequently, the total number of fission events 
can be determined if we remove this fragmentation background. Section 5.1.1.1 shows how, 
combining the information supplied by the double IC and MUSIC 2, the fragmentation 
background was determined. The various corrections applied to establish the cross sections are 
illustrated in section 5.1.2. Finally, the results are presented in section 5.1.3. If it is not mentioned 
explicitly, all the following figures correspond to the reaction of 238U at 1 A GeV on the (CH2)n 
target, but the procedure described is general and applies for all the targets. 
 
5.1.1. Determination of the fission events 
 
Fission fragments are emitted back-to-back isotropically in the projectile frame. The velocity 
distribution of the fission fragments, spherical and homogeneous in the centre-of-mass system, 
converts in the laboratory frame into an ellipsoid whose rotational axis is the projectile direction. 
The resulting velocity vectors lie inside a cone ending in an ellipsoidal shell that has a certain 
diffuseness due to the different mass partitions and to the distribution in total kinetic energy given 
by the fission process. The opening angle of the cone depends on the projectile velocity. For a 
projectile energy of 1 A GeV, the fission fragments are emitted within an angular range of about 
30 mrad around the beam axis. In such conditions, both fission fragments pass through the 
MUSIC 2. In our experiment, the ADCs used were inhibited as soon as the slope of the energy-
loss signal registered started to be negative. Hence, only the first signal arriving to the anode was 
processed. In the case of fission events emitted in the vertical plane YZ (see figure 5.5), the 
energy-loss signals of the fission fragments arrive to the anode of the MUSIC at the same time 
and the output signal corresponds to the sum of the energy-loss signals of the two fragments. For 
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a symmetric fission event, the corresponding energy-loss signal is about ½ of that of the 
projectiles. The energy-loss signals related to those fission residues that move in the other 
possible emission planes arrive to the anode at different times. Therefore, if we consider only 
symmetric fission events, the resulting energy-loss signals would be peaked at about ¼ of that of 
the projectiles. The existence of asymmetric fission events leads to energy-loss signals that 
populate the gap between 4/Pr oj

lossE∆  to 2/Pr oj
lossE∆  and extend these limits to somewhat smaller 

or larger values. This can be seen in figure 5.1a), where the energy-loss spectrum recorded in 
MUSIC 1 is depicted. The central broad peak corresponds to the fission events produced before 
the projectile reaches the target, while the large peak at the highest energies corresponds to the 
projectiles that did not react before reaching the target. The integral of this peak gives the total 
number of 238U projectiles impinging on the target 0

projn� . 
 

Figure 5.1: a) Energy loss in the MUSIC situated before the target, MUSIC 1. The window 
selects the projectiles of 238U at 1 A GeV that did not react before entering the target. b) Energy-
loss signals in MUSIC 2 resulting from the passage of 238U at 1 A GeV through a (CH2)n target. 
The window contains the fission events. 
 
The energy-loss spectrum recorded in MUSIC 2 for the projectiles selected by the window of 
figure 5.1a) shows again the same pattern as the one of MUSIC 1, see figure 5.1b). In this case, 
the middle peak is the interesting part since it contains the fission events emerging from the 
reaction of 238U in the target. However, this peak contains also fragmentation residues arising 
from collisions with impact parameters that decrease as the amplitude of the energy-loss signal 
decreases. Thus, to extract the number of fission events, the fragmentation background has to be 
defined and subtracted from the energy-loss spectrum of figure 5.1b). 
 
5.1.1.1. The fragmentation background 
 
In this section we will consider the various steps followed to determine the fragmentation 
background. 
 
Step 1 
 
The double IC situated after MUSIC 2 allows for measuring the energy-loss signal of both fission 
residues simultaneously and provides a good method to discriminate fission events from 

Fission 
events 

  Projectilesa) b)
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fragmentation events and events emerging from central collisions. In figure 5.2, a cluster plot 
with the energy-loss signal in the upper part of the double IC against the energy-loss signal in the 
lower part is shown. The fission events are included in the window and populate the central peak, 
while the residues produced in fragmentation reactions and central collisions occupy the edges of 
the spectrum. The thin line of figure 5.3 represents the energy-loss signals measured in MUSIC 2 
for the events outside the window of figure 5.2. This spectrum defines the first stage of the 
determination of the fragmentation background and we will call it BG_1. However, this spectrum 
still contains fission events as reflected by the broad central peak. 
 
The thick line of figure 5.3 represents the energy-loss spectrum in MUSIC 2 of all the residues 
produced by the passage of the 238U beam through the target. Besides the fission region, also the 
part of this spectrum corresponding to the heaviest fragmentation residues (∆E > 900 channels) 
has more counts than the same part of the spectrum BG_1 (thin line). Two effects cause this 
difference: The projectiles that fission in MUSIC 2 and the heavy fragmentation products that 
fission between the second half of MUSIC 2 and the entrance of the double IC. The energy loss 
associated to the first group of events varies from the beginning of the fission peak until the 
largest energy-loss signal, depending on whether the fission process takes place at the entrance or 
at the exit of the of MUSIC 2. Concerning the second group of events, the heavy fragmentation 
products can be produced in the target, in the layer of air located after the target or in MUSIC 2. 
Both types of events are registered as fission events by the double IC and consequently do not 
appear in the background BG_1. 
 

 
Figure 5.2: Energy-loss signal in the lower part of the double IC versus energy-loss signal in the 
upper part of the double IC for the reaction of 238U (1 A GeV) on CH2. The window defines the 
fission events. 

 
The events of the first type can be completely removed by subtracting the events produced in the 
dummy target. However, the events of the second type can only be partially removed because the 
heavy fragmentation residues produced in the target do not vanish when the dummy events are 
subtracted.  Nevertheless, the number of events of the first type is 25 to 30 times larger than the 
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events of the second type. Therefore it is to be expected that, except for that tiny amount of heavy 
fragmentation residues produced in the target, the events causing the difference between the 
spectra of figure 5.3 in the heavy fragmentation region (∆E ≥ 900 channels) will be removed after 
subtracting the events of the dummy target. 

 
Figure 5.3: Fission peak in comparison with the spectra representing the different stages 
followed to determine the fragmentation background. The semilogaritmic scale has been chosen 
to better distinguish the different stages. The thick line represents the energy loss in MUSIC 2 of 
all the reaction products emerging from the (CH2)n target. The thin line corresponds to the 
spectrum BG_1. It represents the energy-loss signal in MUSIC 2 of the fragmentation residues 
selected with the double IC. The dashed line represents the fragmentation background BG_2 
obtained removing from BG_1 the events contained in the window of figure 5.6. The dotted line 
illustrates spectrum BG_3 obtained subtracting from BG_2 the fission fragments emitted in 
forward and backward direction. 

 
Step 2 
 
Some fission fragments are still present in the background spectrum BG_1 (thin line of figure 
5.3), because either one or both fragments hit the cathode of the double IC or both fission 
fragments entered into the same part of the double IC. The fraction of fission events not 
recognized by the double IC depends on the emittance and eventually some misalignment of the 
beam. The velocity vectors of these fission fragments populate a ring in the vicinity of the 
horizontal plane at the height of the beam, see figure 5.4. Most of these fission events can be 
identified with the drift-time signal of MUSIC 2, since the velocity distribution of the fission 
residues differs significantly from the one of the fragmentation residues. An upper view of the 
residue trajectories depicted in figure 5.5 shows that the fission fragments are emitted within a 
broader cone than the fragmentation residues. Consequently, the absolute difference between the 
drift-time signals delivered by the first and the last anode of the MUSIC 2 extends to larger 
values in the case of fission events than in the case of fragmentation events. This aspect was 
already used in [HeB96] to determine total fission cross sections. In figure 5.6, the energy-loss 
signals in MUSIC 2 of the events included in BG_1 are plotted as a function of the corresponding 
drift-time difference between the first and the last anode of MUSIC 2. The window of figure 5.6 
marks fission events which are characterized by large angles with respect to the beam direction. 
Notice that the lightest fragments show also the largest angles, as can be deduced from 
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momentum conservation. The dashed line of figure 5.3 depicts the energy loss in MUSIC 2 after 
subtracting from BG_1 the events included in the window of figure 5.6. This line represents the 
second stage of the determination of the background and we will call it BG_2. 
 

Figure 5.4: Schematical drawing of the velocity distribution of the fission fragments with respect 
to the geometry of the double IC. The ellipsoid represents the velocity distribution of the fission 
fragments in the laboratory frame. The velocity vectors of the fission fragments in the centre-of-
mass frame are marked with the index CM and in the laboratory frame with the index LAB. The 
dashed area represents the fission fragments that hit the cathode or are detected in the same part 
of the double ionisation chamber.  
 
 
 
 
 
 
 

 
 
 
 
Figure 5.5:  Schematic upper view of the experimental set-up and the trajectories of the reaction 
residues. The dotted area represents the projection of the angular distribution of the fission 
fragments on the horizontal plane XZ and the dashed area the projection of the angular 
distribution for the fragmentation residues.  

 
Unfortunately, the heaviest fission fragments are only weakly deflected and cannot be separated 
from the fragmentation residues with the same nuclear charge. These events can be recognized in 
BG_2 (dashed line of figure 5.3) by the peak located around channel 800 in vertical direction. 
There is no way to remove these fission events from the background. However, it will be shown 
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later that, if the rest of the fragmentation background is well known, the shape of the background 
for the heaviest fission fragments can be well extrapolated. 
 

 
Figure 5.6: Energy loss in MUSIC 2 as a function of the difference in drift time between the 
fourth and first anode of MUSIC 2 for the events included in BG_1. The window contains part of 
the fission events moving close to the horizontal plane that contains the beam. 

Step 3 
 
The background spectrum BG_2 still contains fission events over the whole region from channel 
300 to channel 900. These correspond to fission fragments emitted close to the beam axis in 
forward and backward direction. Their horizontal angles are too small to be distinguished from 
fragmentation products by the drift-time difference in figure 5.6. We estimated the contribution 
of these fission events to the background spectrum BG_2 from a geometrical consideration. 
Figure 5.7 schematically represents the projection onto the XZ plane of the horizontal ring 
formed by the velocity vectors of fission fragments not recognized by the double IC in the frame 
of the beam. We estimate that the window of figure 5.6 comprises approximately the fission 
events emitted with horizontal deflections larger than half the maximum horizontal deflection. In 
the frame of the beam, this means that the fission events where one of the fission fragments is 
emitted between 0o and 30o with respect to the beam direction are still present in the spectrum 
BG_2, see figure 5.7. Therefore, the drift-time difference of MUSIC 2 was able to identify 2/3 of 
the fission events remaining in the background spectrum BG_1. The outstanding part can be 
removed from BG_2 by performing the following operation with the spectra BG_1 and BG_2: 
 

BG_3 = BG_2 – 1/2⋅(BG_1 - BG_2)              (5.1) 
 
The result is the spectrum BG_3 that is depicted by the dotted line in figure 5.3. Apart from the 
peak around channel 800 due to the heavy fission fragments, the spectrum BG_3 presents as well 
a smaller peak located around channel 280. This peak corresponds to very light fission fragments 
with large deflection angles that are not included in the window of figure 5.6.   
 
The number of fission events still present in the background spectrum BG_2 is subject to an 
uncertainty. The estimation of this number was based on the shape of the drift-time difference 
distribution of the fission events (the left peak in figure 5.6) and on the drift time difference of the 
primary beam (upper right peak in figure 5.6). A closer look to figure 5.6 reveals that the mean 
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drift-time difference of the fragmentation products slightly shifts with decreasing amplitude. This 
is an indication for a walk of the constant-fraction discriminators. We conclude that the drift-time 
difference T4-T1, corresponding to the beam direction (ϕ = 0°) for nuclei as light as the fission 
fragments is only known with some uncertainty:  
 

T4-T1(φ = 0°) ≈ (40 ± 20) channels                                          (5.2)  
 
As a consequence, the lower limit of the window in figure 5.6 transforms into an emission angle 
of  
 

 ϕ ≈ 30o ± 10°                                                              (5.3) 
 
in the frame of the beam. Recalling figure 5.7, it finally results that the background spectrum 
BG_3 is subject to an uncertainty given by: 
 

 BG_3 = BG_2 - (0.5 ± 0.2) (BG_1 – BG_2)                               (5. 4)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7: Projection onto the horizontal plane XZ of the distribution of velocities in the centre 
of mass frame for the fission events not recognized by the double IC. The figure shows the 
relation between the horizontal deflection x (or T4-T1) and the deflection angle ϕ. The integral 
over the distribution from ϕ =90° to ϕ ≈30° gives the fission events contained in the window of 
figure 5.6. The integral from ϕ ≈30° to ϕ =0° gives the fission events still contained in BG_2. 
 
5.1.1.2. Number of fission events 
 
Following the three steps described in the previous section with those events produced in the 
dummy target, we determined the corresponding fragmentation background BG_3DUMMY. The 
final fragmentation background, BG_ FINAL, is obtained by subtracting from BG_3 the spectrum 
BG_3DUMMY and fitting a fourth-degree polynomial to the resulting spectrum excluding the 
peaks around channels 280 and 800, see figure 5.8a). In addition, we also subtract the fission 
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events and the fragmentation residues produced in the dummy target from the spectrum of figure 
5.1b) that contains the signals of all the reaction products. The final fragmentation background 
and the final spectrum of all reaction products from the plastic target are shown in figure 5.8b). 
The difference between these two spectra gives the number of fission events exp

fissn�  resulting from 

the reaction of the 238U projectiles at 1 A GeV with the target. The number of fission events is 
subject to the same uncertainty as the background spectrum BG_3 expressed by equation (5.4), 
that is:  

� −±=∆ BG_2BG_1n fiss 2.0exp
�                                                         (5.5) 

 
where the sum extends over the entire energy-loss range of the spectra BG_1 and BG_2. 
 
Comparing figure 5.8b) and figure 5.3 one notices that, as expected, the subtraction of the 
reaction events occurred in the dummy target causes the two spectra of figure 5.8b) to coincide 
for the heavy fragmentation residues with ∆E ≥ 900 channels. This last feature proves that the 
subtraction of the reaction products from the dummy has been properly done. 
 

Figure 5.8: a) The thick line is the final fragmentation background BG_FINAL. It has been 
obtained by fitting a fourth-degree polynomial to the spectrum represented by the thin line, which 
is the result of subtracting BG_3DUMMY from the spectrum BG_3. W1, W2 and W3 indicate the 
parts of the spectrum represented by the thin line that have been used for the polynomial fit.  
b) The thick line represents the energy-loss signals in MUSIC 2 after subtracting the signals of 
the residues produced in the dummy target. The thin line is the final fragmentation background 
BG_FINAL. 
 
5.1.2. Corrections applied to the total fission cross sections 
 
The total fission cross sections are calculated according to the following expression:  
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where exp
fissn�  is the rate of fission events, 0

projn� is the intensity of the projectile beam and Ntarget is 

the number of target atoms per unit area. We have described in the previous section, how to 
obtain the values for 0

projn� and exp
fissn� . The other terms of equation (5.6) are the correction factors 

for secondary reactions inside the target fsec, for central collisions fcentr and for the beam 
attenuation inside the target fatte. In this section a detailed description is presented on how the 
estimates for these corrections and the related uncertainties have been derived. In order to better 
assess the origin of the different corrections, the thicknesses of the different targets and the layers 
of matter located between the target and the double IC are listed in table 5.1 together with the 
corresponding nuclear reaction rates. In general, the corrections and the corresponding 
uncertainties have been accurately estimated for those effects that influence strongly the results. 
For the rest of the effects, the upper limits of the corrections are used.   
 
  

 Material Thickness [mg/cm2] Relative nuclear 
reaction rate 

(CH2)n 198.3 0.067 
C 376.0 0.066 
Cu 1792.0 0.089 Targets 

Pb 3265.9 0.073 
Air 23.9 0.003 

Ar (MUSIC) 99.7 0.005 Layers between target 
and double IC Air 197.9 0.022 

Table 5.1: Thicknesses and reaction rates of the different targets and the layers of matter located 
between the target and the double IC. The relative nuclear reaction rates in the targets have been 
calculated for 238U at 1 A GeV, while the relative nuclear reaction rates in the rest of the layers 
have been calculated for the nucleus Z = 46 A = 116 at 1 A GeV. All calculations have been done 
using the model of [BeC89]. 

 
5.1.2.1 Losses of projectiles due to the beam attenuation inside the target  
 
The number of 238U projectiles decreases exponentially inside the target. Thus, the effective 
number of impinging projectiles at a certain length l of the target follows the expression: 
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where 0

projn�  is the number of projectiles at the entrance of the target, σtotal is the total reaction 
cross section inside the target and dnT /dV is the number of target atoms per volume. The average 
number of projectiles impinging on a target of thickness Ltarget is given by: 
 

dll
dV
dnn

L
n T

total

L

proj
ett

proj

ett

)1(1 arg

0

0

arg
⋅⋅−⋅≈ � σ��                       (5.8) 

 



 48

In equation (5.8) we have assumed the case of a thin target where equation (5.7) can be 
approximated by a linear expression. The result of (5.8) is 
 

atteprojproj fnn ⋅= 0
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with 

etttotalatte Nf arg2
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and Ntarget given by 
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The error associated to this correction is given by: 
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The total reaction cross section σtotal appearing in equation (5.10) is obtained from the sum of the 
total nuclear-induced reaction cross section calculated according to the soft-sphere model of 
Karol [Kar75] with the modifications introduced in [Bro94] and the total electromagnetic-
induced reaction cross section calculated according to [ScS00]. The uncertainty associated to 
both models is of 5%.  
 
5.1.2.2.  Contribution to fission from secondary reactions inside the target  
 
The considerations on the beam attenuation presented in the previous section only account for 
one-step reactions. Part of the heavy fragmentation residues, however, may undergo a second 
reaction in the target, eventually leading to fission. These events are included in the measured 
fission spectrum (thick line of figure 5.8b), we will call these fission events sec

fissn� . Since this 
contribution is rather small, a rough estimate is sufficient.  
 
The evolution of sec

fissn�  along the target is described by the differential equation: 
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where l is the coordinate in the beam direction, σfiss(Zi, Ai) is the total fission cross section of a 
nucleus with charge Zi and mass Ai different from the projectile, and ( )ii ZAn ,�  is the number of 
nuclei with charge Zi and mass Ai. Formulating this equation for every nucleus Ai, Zi gives a 
complete system of differential equations. To solve this system would require the knowledge of 
all cross sections involved. Therefore, we will introduce several approximations. The primary 
fragmentation products are certainly less fissile than the primary beam on the average, since they 
extend to appreciably lighter nuclei [HeS02]. An upper estimate of the contribution of secondary 
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reactions to the measured fission events is obtained by assuming that the fission cross section of 
the primary fragmentation residues is equal to the fission cross section of the primary projectiles. 
This means that we assume that σfiss(Zi, Ai) ≈ σfiss(Zp, Ap), where σfiss(Zp, Ap) is the total fission 
cross section of the projectile of charge Zp and mass Ap. With this, equation (5.13) turns into: 
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An estimate of the increase of the primary fragmentation-evaporation products along the target 
represented by the term ( )�

ii AZ
ii lAZn

,
,,�  of equation (5.14) is given by: 
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where the total reaction cross section was obtained summing the nuclear component calculated by 
the models [Kar75, Bro94] plus the electromagnetic component calculated according to [ScS00]. 
The number of fission events that originate from secondary reactions is determined inserting 
expression (5.15) into equation (5.14) and integrating equation (5.14) over the whole target 
thickness Ltarget. The result is: 
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where we have used that Ntarget⋅σtot and Ntarget⋅σfiss correspond to the total reaction probability Ptot 
and to the total fission probability Pfiss, respectively. 
 
A lower estimate for the number of secondary fission events is given by setting the fission cross 
section to zero in equation (5.13). Thus, the actual number of fission events fissn�  will be between 

the upper limit given by the measured number of fission events exp
fissn�  and the lower limit exp

fissn� - 
sec
fissn� . Assuming that the correction for secondary reactions is the mean value of these two 

extremes, we arrive to the following estimate: 
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5.1.2.3 Losses of fission fragments due to central collisions  
 
The fission fragments produced in the target have to pass several layers of matter until they arrive 
to the double IC. On this way at least one of the fission fragments may undergo a nuclear 
reaction. If the energy-loss signal of the reaction products in the double IC reduces so much that 
the event moves outside the window of figure 5.2, this event is not recognized as fission any 
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more. Events of this kind are considered as part of the fragmentation background, leading to an 
underestimation of the fission cross section. The number of such events is 
 

fisscentralcentralfisscentral
central
fiss nPPnPn ��� ⋅−⋅+⋅≈ )1(                      (5.18) 

 
The first term on the right side of equation (5.18) accounts for the cases where the fission 
fragment whose energy-loss signal is registered by MUSIC 2 suffers a central collision and the 
second term corresponds to those events where the complementary fission fragment suffers the 
central collision, while the fragment responsible for the energy-loss signal in MUSIC 2 survives. 
The probability Pcentral depends on the size of the fission fragment. As a representative case, we 
estimated this value for symmetric fission by subtracting the probability for peripheral collisions 
from the total nuclear reaction probability calculated with the soft-sphere model of references 
[Kar75, Bro94].  The probability for peripheral collisions has been calculated applying the code 
ABRABLA [GaS91, JuJ98]. We defined as peripheral collisions those that lead to residues with 
charges larger than a limiting value. This limiting value can be deduced from the charge of the 
residues sited on the window that separates the fission peak from the rest of the residues in the 
double IC (figure 5.2), which is of approximately 30 units. The uncertainty of this loss of fission 
fragments due to central collisions between the target and the double ionization chamber is 
mainly determined by the uncertainty of the ABRABLA code. As an upper estimate we assume 
that the relative uncertainty of this correction amounts to 50 %. Thus, 
 

exp1
fiss

central
fiss

centr
n

n
f

�

�

+=                                                (5.19) 

with central
fiss

central
fiss nn ��

2
1±=∆ .  

 
5.1.3. Results   
 
According to equation (5.6), the relative uncertainty of the total fission cross section σfiss is: 
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The procedure described in the previous sections has been applied to obtain the quantities 
involved in equations (5.6) and (5.20) and to determine the total fission cross sections of 238U at  
1 A GeV on (CH2)n, C, Cu and Pb targets. The values of the relative errors appearing in equation 
(5.20) are listed in table 5.2. The largest sources of error are due to the uncertainty in the 
determination of the fragmentation background represented by exp

fissn�∆ and the uncertainty in the 

determination of the losses due to central collisions represented by ∆fcentr. 
 
We studied the reaction on (CH2)n because if we consider a component of the (CH2)n molecule 
we have: 

 
( )HCCH fissfissfiss σσσ 2)()( 2 +=         (5.21) 
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Applying equation (5.21) it is possible to deduce the very interesting total fission cross section of 
238U on H. This cross section is of considerable interest for the development of neutron sources 
[Bau01, RiM98] and Accelerator Driven Systems (ADS) [Bow98, Sci99, NiD01], a new 
generation of nuclear reactors that combines a proton accelerator with a subcritical reactor. In a 
compilation of proton-induced fission cross-section data, Prokofiev [Pro01] developed a general 
systematic that predicts a cross section of 1.29 b for this reaction. This value is considerably 
lower than the results of Bochagov4 et al. [BoB78] and of Vaishnene et al. [VaA81] listed in table 
5.3. Consequently, our independent measurement of this reaction cross section can help to clarify 
this situation.  
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C 1.75 % 0.25 % 0.12 % 0.61 % 1.95 % 
(CH2)n 1.70 % 0.95 % 0.12 % 0.25 % 1.12 % 

Cu 2.30 % 0.15 % 0.19 % 1.40 % 2.07 % 
Pb 2.73 % 0.35 % 0.21 % 1.93 % 1.53 % 

Table 5.2: Single contributions to the total relative error of the total fission cross sections. The 
values correspond to the fission reaction of 238U at 1 A GeV on different targets. 

 
 
 
 
 
 
 
 
 
 
 
Table 5.3: Measured total fission cross sections for the reaction of 238U at 1 A GeV on different 
targets. The second column shows the results of this work and the third column the results of 
other references. 
 
The measured total fission cross sections for all the targets and the corresponding absolute errors 
are listed in table 5.3 in comparison with the values obtained in independent work. In general, our 
results are in very good agreement with the results found in other measurements. Besides, except 
for the H target, the precision of our cross sections is higher than in former experiments. Our 
result for the H target corroborates the results of Bochagov et al. [BoB78] and of Vaishnene et al. 
[VaA81]. Moreover, adding the fragmentation cross section of 238U (1 A GeV) + p measured in 
[Tai00] (including estimated cross sections for a few unobserved channels), which is 
approximately 0.45 b with an uncertainty of about 15%, to the total fission cross section, a total 
reaction cross section of 1.97±0.14 b follows in very good agreement with the prediction of 
Karol’s model [Kar75, Bro94] of 1.96 b. 
 
                                                 
4 Prokofiev estimates that the uncertainty of this measurement is of 10% instead of 5%. 

Target total
fissσ [b] total

fissσ [b] other work 

H 1.52  ± 0.10 1.47 ± 0.07 [BoB78] 
1.48 ± 0.06 [VaA81] 

C 1.30 ± 0.03 1.13 ± 0.08  [RuB96] 
(CH2)n 4.35 ± 0.10  

Cu 1.89 ± 0.06 1.86 ± 0.11 [RuB96] 
Pb 3.84 ± 0.14 3.75 ± 0.38 [PoB94] 
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5.2. Partial fission cross sections  
 
In the previous section we have shown how the total fission cross sections are determined by 
combining the information of the two MUSICs and the double IC. However, the double IC still 
provides very valuable information because it allows reconstructing the charge of the fissioning 
nuclei, which is given by the sum of the charges of the two fission fragments Z1+Z2. In this 
section it will be shown that different fissioning nuclei spanning over a broad charge interval 
contribute to the total fission cross sections. In particular, we will give quantitative values for the 
partial fission cross sections of the reaction of 238U at 1 A GeV on (CH2)n. Before presenting 
these results, we will report on the charge calibration of the energy-loss signals of the double IC 
and on the effect of the secondary reactions of the fission fragments on the partial fission cross 
sections.  

Figure 5.9: a) Square root of the signal amplitudes registered in the lower part of the double IC 

2E∆  as a function of the square root of the signal amplitudes registered in the upper 

part 1E∆ for the fission events defined by the window of figure 5.2. The full line represents 
those combinations of Z1 and Z2 whose sum gives 92. b) Projection of part a) onto the x-axis. 
 
 
5.2.1. Charge calibration  
 
Given the measured ADC channel Ej of the energy-loss signal, the corresponding charge Zj is 
given by the relation: 
 

jjjjjj EabEaZ ∆=−= )(                           (5.22) 
 

where j = 1, 2 refer to the upper part and the lower part of the double IC, respectively, aj and bj 
are the calibration parameters, and ∆Ej is the ADC channel of the energy-loss signal after the 
subtraction of the offset bj. While the offset values, bj, are determined with a pulse generator, the 
values of aj have to be deduced from the measured data. A reference point that allows assigning a 
charge to the energy-loss signals ∆Ej can be found in figure 5.9. Figure 5.9a) represents the 



 53

square root of the energy-loss signals registered in the lower part of the double IC 2E∆ as a 

function of the square root of the energy-loss signals registered in the upper part 1E∆ for the 
fission events defined by the window of figure 5.3. This figure shows a sharp edge indicated by 
the full straight line. This line corresponds to those fission events for which Z1+Z2 is equal to 92, 
the charge of the uranium projectile. The prolongation of this line until it cuts the x and y-axes 
determines the position of charge 92 on each axis and thus defines the values of a1 and a2. Figure 
5.9b) represents the projection of figure 5.9a) onto the x-axis. According to the reference point 
given by the full line of figure 5.9a), it is possible to assess the element numbers to the centers of 
the peaks of figure 5.9b). By performing a parabolic fit to the curve representing the square value 
of the center of these peaks as a function of the assigned charge, we slightly improve the values 
of the calibration parameters a1 and b1 of equation 5.22. The same procedure is used to refine the 
calibration parameters a2 and b2 of the lower part of the double IC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10: Nuclear charge of the fission fragment going through the lower part of the double IC 
as a function of the nuclear charge of the fragment passing through the upper part of the double 
IC for the reaction 238U (1 GeV) + (CH2)n. The dotted line represents the fission events with 
Z1+Z2 = 92. 
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After the charge calibration was done, the fission peak shown in figure 5.2 of section 5.1 
transformed into the spectrum of figure 5.10. We can clearly distinguish the diagonal lines that 
correspond to fission events for which the sum of the charges Z1+Z2 gives a fixed number. Each 
of these lines represents the possible combinations of charge splits associated to a fissioning 
element. From these considerations we conclude that fissioning elements ranging from charge 93 
to approximately charge 70 contribute to the total fission cross section of 238U at 1 A GeV on 
(CH2)n. The yield of each fissioning element can be better observed if we represent the number of 
fission events as a function of Z1+Z2, this is shown in figure 5.11a). We performed a least-
squares Gaussian fit to the individual peaks of this spectrum. Representing the areas of the 
Gaussians as a function of their centers, we obtained the curve of figure 5.11b). 

 
Figure 5.11: Number of fission events as a function of the sum of the nuclear charges of the two 
fission fragments Z1+Z2. a) Raw data after the charge calibration. b) Result of representing the 
areas of the Gaussian fits to the peaks of part a) as a function of the centers of the Gaussians. The 
statistical errors of the data points are smaller than the symbols used. 
 
5.2.2. Secondary reactions 
 
If a fission residue loses several protons due to fragmentation reactions within the path between 
the target and the entrance of the double IC, the corresponding fission event will be correlated to 
a lighter fissioning nucleus Z1+Z2 than it actually corresponds to. Hence, before transforming the 
yields of figure 5.11b) into cross sections, we have to consider that the shape of this spectrum is 
affected by the secondary reactions of the fission residues on their way to the double IC. As a 
result of these secondary reactions the yields related to the heaviest fissioning nuclei are 
underestimated and the yields related to the lightest fissioning nuclei are overestimated. To 
correct for these effects we have to reconstruct the original charge distribution of the fission 
residues right after their production in the target. This is done following an iterative process: 
 

(a) We consider that the experimental spectrum of figure 5.11b), which we will call expY , 
represents the real spectrum before the fission residues suffer any further interaction. 
Then we evaluate how this spectrum changes when considering the secondary reactions of 
the fission fragments until they reach the double IC. The resulting spectrum will be called 

sec
1Y . 
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(b) We assume that the difference expsec
1 YY −  gives a good estimation of the effects caused 

by secondary reactions. If this assumption is correct, the spectrum corrY1 that results from 
the operation  

 
)( expsec

1
exp

1 YYYY corr −−=                  (5.23) 

 
should represent the real spectrum before being modified by secondary reactions. 

 
 

(c) To confirm that the correction has been properly done, an evaluation of the changes of 
corrY1 due to secondary reactions has to lead to a spectrum sec

2Y that coincides with expY .   
If they do not coincide, we do a second iteration 
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       and so on, until  sec
iY  coincides with expY . 

 
 

The determination of the spectrum sec
1Y defined in step (a) is actually a two-dimensional problem 

since for every value of Z1+Z2 there are many different combinations of charge splits, and each 
fission fragment should be treated independently. Thus, we have to calculate how an initial 
distribution of fission events as the one shown in figure 5.10 changes due to secondary 
fragmentation reactions in the different layers of matter. When an initial pair of fragments iZ1 , 

iZ 2  undergoes fragmentation reactions, the residues can populate all combinations of Z1 and Z2 
below the initial values. Hence, the number of fission events ),( 21

ff ZZN  that arrive to the double 
IC with charges fZ1  and fZ 2 is given by: 
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where ),( 21

ii ZZN  is the initial number of fission events with fragments of charges iZ1 , iZ 2  and 
),( 11

if ZZP  ( ),( 22
if ZZP ) is the probability that an initial fission fragment of charge iZ1  ( iZ 2 ) 

arrives to the upper part of the double IC with charge fZ1 ( fZ 2 ).  
 
The survival probability for an initial fission fragment iZ1  is given by:  
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where the total nuclear reaction probability Ptot is determined using the model of Benesh et al. 
[BeC89]. The last term of equation (5.26) gives the probability that only neutrons are removed.  
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The probabilities for charge changing appearing in equation (5.25) and the probability for neutron 
removal of equation (5.26) are obtained by applying the semi-empirical code EPAX [SüB00]. 
EPAX relies on the fact that the production cross sections of the residues resulting from heavy-
ion collisions with a specific projectile follow a fixed pattern that just needs to be scaled 
according to the total reaction cross section for a particular target material. However, such 
consideration is not valid for the H2 of the (CH2)n-target because fragmentation reactions in H2 
cannot be reproduced by EPAX. Therefore, for the case of the H2 layer these probabilities are 
calculated separately according to a fast simplified version of the CASCABLA code [CuV97, 
JuJ98] (see appendix of reference [EnW01]).  
 
To determine the final distribution ff ZZ 21 , after traversing the whole path from the middle of the 
target to the entrance of the double IC we proceeded in two steps. First we determined the 
distribution ( ff ZZ 21 , )H after traversing the H2 layer of the (CH2)n target by means of equations 

(5.25) and (5.26) using CASCABLA. Then the result ( ff ZZ 21 , )H was used as the input 

distribution iZ1 , iZ2  and via EPAX we determined the effects of the secondary reactions from the 
carbon layer of the target to the entrance of the double IC. Instead of treating each layer 
separately, we considered a nitrogen target whose thickness leads to the same total reaction 
probability as the whole group of layers.  
 
In figure 5.12a) a comparison of spectra sec

1Y (dashed-line) and Yexp (full line) is depicted. One 
sees how secondary reactions cause a depopulation of the largest values of Z1+Z2 and an increase 
of the lighter ones. For the present data, the process described in steps (a), (b) and (c) converges 
after one iteration. Consequently, spectrum corrY1 introduced in step (b) defines the corrected 

version of expY .  corrY1 (full dots) and expY  (empty dots) are represented in  figure 5.12b). 
 
According to equation (5.23), the error of corrY1  is given by  
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where ∆Yexp(Z1+Z2) is the error of the Gaussian fits and )( 21

sec ZZN +∆  is the error associated to 

the correction for secondary reactions given by the difference between sec
1Y  and expY . The 

correction Nsec(Z1+Z2) has two components: 
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Npop represents the population of the channel Z1+Z2 due to the secondary reactions of other fission 
products with larger nuclear charges (equation 5.25) and Ndepop represents the depopulation of 
channel Z1+Z2 caused by the secondary reactions of the partners Z1 and Z2 (equation 5.26). 
The uncertainty related to Npop is given by the uncertainty of EPAX or CASCABLA that we 
estimate is of about 20%. The uncertainty related to Ndepop is mainly given by the determination 
of Ptot according to the model of Benesh et al. [BeC89] whose uncertainty is estimated to be of 
5%. In view of these ideas we estimate a relative uncertainty for Nsec of: 
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Figure 5.12: a) Yexp (full-line) in comparison with sec
1Y (dashed-line). b) Experimental data Yexp 

(empty dots) in comparison with the data corrected for secondary reactions corrY1
 (full dots). For 

both curves the error bars are smaller than the symbols. 

 
According to the yields represented by the full dots in figure 5.12b), the average fissioning 
element produced in the reaction of 238U at 1 A GeV on a (CH2)n target is  
<Z1+Z2> ≈ 88.1. In [ScB98], the fragmentation fission reaction of 238U at 750 A MeV on Pb was 
studied leading to mean fissioning nucleus of charge <Z1+Z2> ≈ 86. The difference between both 
results might be explained by the fact that the protons of the (CH2)n target lead to a higher 
production of fragmentation residues in the vicinity of the projectile. This shifts the average 
charge of the fissioning element to higher values.  
 
5.2.3. Results   
 
In the whole procedure until we arrived to the spectrum corrY1 , we considered only the fission 
events included in the fission window defined in figure 5.2. It has been shown in section 5.1 that 
the fission events moving close to the horizontal plane that contains the beam are not included in 
this window. However, these events are distributed homogeneously along the whole Z1+Z2 range. 
Therefore, we can correct for these losses normalizing the spectrum corrY1 to the total fission cross 
section determined in section 5.1. The results σf(Z1+Z2) are depicted in figure 5.13 and listed in 
table 5.4. If we assume that the spectrum of figure 5.13 continues to lower values of Z1+Z2 with 
the same logarithmic slope, then this spectrum shows approximately 99% of the total fission 
cross section. For this reason, in the normalization procedure we included also the missing 1% 
with Z1+Z2 <71 that does not appear in figure 5.12b). 
 
In addition to the uncertainties of the individual partial yields due to the counting statistics and 
the uncertainties of the corrections for secondary reactions, the uncertainty of the total fission 
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cross section has to be added to the final uncertainties of the partial fission cross sections 
∆σf(Z1+Z2).  
 
Figure 5.13 shows how the cross sections decrease with the charge of the fissioning nucleus. 
Several effects define this trend. On the one hand, the fission barriers increase with decreasing 
charge of the fissioning nucleus. On the other hand, the light fissioning nuclei are the result of 
central collisions, which are less probable. Nevertheless, as was explained in section 4.3, the 
partial fission cross sections are expected to depend on dissipation as well. A quantitative 
analysis of this dependence is presented in the next chapter.  

 
Figure 5.13: Partial fission cross sections for the reaction of 238U at 1 A GeV on (CH2)n. The x-
axis represents the sum of the nuclear charges of the fission fragments. 

 
Among the partial fission cross sections listed in table 5.4, the case of Z1+Z2 = 93 is of special 
interest. Fissioning nuclei of charge 93 are formed due to charge-exchange (or charge pick up) 
reactions [BeD00, SüR95].  Rubehn et al. [RBa96] measured the cross sections for charge pick-
up and subsequent fission of 238U projectiles at 1 A GeV on different targets. Using the result for 
the C target from this reference and recalling that: 
 

( ) ( )[ ]CCHH ZZZ 1211 2
1)( +∆+∆+∆ −= σσσ                                   (5.30) 

 
This work adds the value for the hydrogen target with 28 ± 5 mb. As shown in figure 5.14, this 
result is in good agreement with the overall target-mass dependence found in [RBa96]. Due to the 
high fissility of 238Np and the lighter neptunium isotopes, one might assume that nearly the full 
cross section for charge pick up of 238U can be found in the fission channel.  At least our value 
gives a lower estimate of the total charge pick up cross section that can be compared to 
systematics.  
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Z1+Z2 σf [b] ∆σf [b] 
71 0.009 0.001 
72 0.012 0.001 
73 0.016 0.001 
74 0.018 0.001 
75 0.019 0.001 
76 0.024 0.001 
77 0.028 0.001 
78 0.035 0.002 
79 0.041 0.002 
80 0.054 0.002 
81 0.066 0.002 
82 0.086 0.003 
83 0.110 0.003 
84 0.146 0.004 
85 0.184 0.005 
86 0.242 0.005 
87 0.300 0.006 
88 0.382 0.009 
89 0.483 0.010 
90 0.610 0.012 
91 0.714 0.013 
92 0.635 0.012 
93 0.093 0.003 

 

Table 5.4: Values of the partial fission cross sections for the reaction of 238U at 1 A GeV on 
(CH2)n. 

 
Figure 5.14: Cross sections for charge pickup and subsequent fission of 238U projectiles at 1 A 
GeV as a function of the target mass. The squares represent the measured data from reference 
[RBa96] and the dot represents the cross section for H determined in this work.  
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5.3. Widths of the charge distributions of the fission fragments  
 
The charge distributions of the fission fragments for a fixed fissioning element Z1+Z2 produced in 
the reaction of 238U at 1 A GeV on (CH2)n can be obtained by projecting the diagonal lines of 
figure 5.10 to either the x or the y-axis. Figure 5.15 shows two examples, the case of Z1+Z2 = 90, 
in part a) and the case Z1+Z2 = 92, in part b). The asymmetric charge distribution of the fissioning 
nucleus with charge 92 is characteristic of the contribution of low-energy fission. Here, the 
excitation energy is induced by the electromagnetic interaction with the target nuclei and by 
elastic scattering or very peripheral nuclear collisions where only few neutrons are abraded. For 
lighter fissioning nuclei, the impact parameter becomes smaller and the induced excitation energy 
increases. Hence, the influence of the shell effects is increasingly attenuated and the charge 
distributions become symmetric. In fact, as shown in figure 5.15a), shell effects are almost 
vanished already for Z1+Z2 = 90. As explained in section 4.3, when shell effects are washed out, 
the width of the charge distribution scales with the temperature at the saddle point. Therefore in 
our analysis of the widths we will only consider symmetric charge distributions. To determine 
them, we perform Gaussian fits to the charge distributions based on the method of the maximum 
likelihood, assuming the data to be Poisson distributed. The result of the fit for the case of 
Z1+Z2=90 is shown by the full line of figure 5.15a).  
 

 
Figure 5.15: Fission-fragment element distribution. a) For the fissioning nucleus  
Z1+Z2 = 90, the full line is the result of the Gaussian fit. b) For the fissioning nucleus Z1+Z2 = 92. 

 
The influence of the charge resolution ∆Z of the double IC, which has a value of approximately  
± 0.26 units (standard deviation), on the measured widths Wmeasured has been corrected for: 
 

( ) ( )22 ZWW measuredcorr ∆−=                                (5.31) 
 

Although this represents only a tiny effect. The standard deviations of the charge distributions are 
represented in figure 5.16 as a function of Z1+Z2. The error bars represent the uncertainties of the 
fits.  
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Figure 5.16: Standard deviations of the charge distributions as a function of the sum charge of 
the fission fragments Z1+Z2 for the reaction of 238U at 1 A GeV on (CH2)n.  

 



 62



 63

Chapter 6: Interpretation of the experimental data 
 
 
To deduce quantitative results on dissipation at small deformation, the experimental observables 
introduced in chapters 4 and 5 need to be compared with a nuclear-reaction code. In this chapter 
we will firstly describe the model used, paying special attention to the modelling of dissipation 
effects in fission. Secondly, the comparison of the experimental data with the calculations will be 
illustrated and finally, the results will be discussed.  
 
6.1.  The abrasion-ablation model  
 
The nuclear-reaction code used is an extended version of the abrasion-ablation Monte-Carlo code 
ABRABLA [GaS91, JuJ98]. This code consists of three stages. In the first stage the 
characteristics of the projectile residue right after the fragmentation are described according to 
the geometrical abrasion model. The second stage accounts for the simultaneous emission of 
nucleons and clusters (simultaneous break-up) that takes place due to thermal instabilities when 
the temperature of the projectile spectator exceeds 5.5 MeV [Ric02, ScR02]. After the break-up, 
the ablation stage models the sequential deexcitation of the system through an evaporation 
cascade. In the following subsections we briefly describe the main features of each stage.  
 
6.1.1. Abrasion stage  
 
The abrasion model [BoS73] is well suited for describing the properties of the projectile fragment 
after peripheral collisions. The basic idea of this model is that at relativistic energies (> 100 A 
MeV) the relative velocity of the reaction partners is large compared to the Fermi velocity of the 
nucleons in the potential well. In addition, the associated wavelength of the projectile is of the 
order of the size of the nucleons. Thus, in the overlap zone between the projectile and the target 
many nucleon-nucleon collisions take place, while the nucleons in the not-overlaping region are 
only little disturbed by the abrasion. 
 
Depending on the impact parameter, a distribution of projectile fragments with different masses 
and charges are formed due to the abrasion process. The mass loss can be determined 
geometricaly integrating the overlaping volume. For a given mass loss, the N/Z distribution is 
determined assuming that every nucleon removed has a statistical chance to be a neutron or a 
proton as determined by the neutron-to-proton ratio of the precursor nucleus. The result is a 
hypergeometrical distribution centered at the N/Z ratio of the projectile. The angular-momentum 
distribution  [JoI97] of the projectile fragments is given in analogy to Goldhaber’s description for 
the linear-momentum distribution of the projectile residues. According to this idea, the angular-
momentum distribution is defined by the angular momenta of the nucleons removed. In the same 
way, the excitation-energy distribution of the projectile residues is given by the sum of the 
energies of the holes in the single-particle scheme of the initial nucleus which are formed due to 
the removal of nucleons. Including final-state interactions derived from measured isotopic 
production cross sections [ScB93], an average excitation energy of 27 MeV per nucleon abraded 
is induced. This value is in agreement with predictions for peripheral collisions based on BUU 
calculations [Hub91]. 
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6.1.2. Simultaneous break-up   
 
Mid-peripheral heavy-ion collisions allow producing nuclei with excitation energies that are far 
beyond the onset of multifragmentation [PoT00]. Nuclear dynamics in this range of excitation 
energies is the subject of current research. As presented in reference [Ric02, ScR02], the analysis 
of the isotopic distributions of heavy projectile fragments from the reactions of a 238U beam in a 
lead target and a titanium target gave some evidence that the initial temperature of the last stage 
of the reaction, the evaporation cascade, is limited to a universal upper value of approximately 
5.5 MeV. The interpretation of this effect relies on the onset of a simultaneous break-up process 
for systems whose temperature after the abrasion is larger than 5.5 MeV. In ABRABLA, the 
simultaneous break-up stage has been modelled in a quite rough way that, however, shows a very 
good agreement with the experimental data. If the temperature after abrasion exceeds the freeze-
out temperature of 5.5 MeV, the additional energy is used for the formation of clusters and the 
simultaneous emission of these clusters and several nucleons. The number of protons and 
neutrons emitted is assumed to conserve the N-over-Z ratio of the projectile spectator, and an 
amount of about 20 MeV per nuclear mass unit emitted is released. This last quantity is still 
under investigation. Nevertheless, its effect on the results is very small. The break-up stage is 
assumed to be very fast, and thus the fission collective degree of freedom is not excited. After the 
spontaneous emission, the piece left of the projectile spectator undergoes the sequential decay. 
 
6.1.3. Ablation stage 
 
We assume that either after the abrasion or after the simultaneous break-up the intrinsic degrees 
of freedom of the projectile residue are in thermal equilibrium. The ablation stage describes the 
sequential deexcitation of the projectile fragment by particle evaporation and/or fission. The 
decay widths for particle emission are obtained from the statistical model; for instance, the 
neutron width is given by: 
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ρ(E) is the level density of the compound nucleus, Sn is the neutron separation energy, mn is the 
neutron mass, R is the nuclear radius, ρr(E) is the level density of the daughter nucleus after 
neutron emission and Tr is the temperature of the daughter nucleus after neutron emission. The 
proton width Γp follows an analogue formula as the neutron width of equation (6.1) but the level 
density of the daughter nucleus ρr(E-Sp-Bp

eff) is shifted by the effective Coulomb-barrier.  
 
As discussed in chapter 2, dissipation causes an initial suppression of the fission width, 
afterwards the fission width grows and finally reaches the asymptotic value given by the product 
of the Kramers factor (equation (2.9) of section 2.3) and the fission width BW

fΓ , which is 
determined according to the transition-state model [BoW39], see also [Mor74]: 
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The level density of the fissioning nucleus at saddle is ρsad(E), and the level density of the 
compound nucleus is ρ(E). The temperature of the nucleus at saddle is Tsad, and the fission barrier 
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is Bf. Besides the treatment of the dissipation effects that will be described in the next section, the 
most critical ingredients that define the fission width are the ratio of the level-density parameters 
af/an, and the fission barriers Bf. The ratio af/an is calculated considering volume and surface 
dependencies as proposed in reference [IgI75] according to the expression: 
 

kkssv BABAAa 3/13/2 ααα ++=                                         (6.3) 
 
where αv , αs  and αk  are the coefficients of the volume, surface and curvature components of the 
single-particle level densities, respectively, with the values αv = 0.073 MeV-1,  
αs = 0.095 MeV-1 and αk = 0 MeV-1. Bs and Bk are the ratios of the surface of the deformed 
nucleus and the integrated curvature of the nucleus, respectively, related to the corresponding 
values of a spherical nucleus. Their values are taken from reference [MyS74]. The angular-
momentum dependent fission barriers are taken from the finite-range liquid-drop model 
predictions of Sierk [Sie86]. As demonstrated in reference [BeA02], a recent experimental 
determination of these parameters by K. X. Jing and co-workers [JiP01], based on the 
measurement of cumulative fission probabilities of neighbouring isotopes, is in very good 
agreement with these theoretical predictions. 
 
6.2. Modelling of the effects of dissipation in fission  
 
Provided the initial conditions of the excited nucleus fulfil the requirements of the model of 
Grangé and Weidenmüller [GrJ83] illustrated in section 2.3, investigating the effects of 
dissipation in the deexcitation process of such a nucleus implies modelling the time-dependent 
onset of the flux over the fission barrier that is expressed by a time-dependent fission decay width 
Γf(t). This is a rather complicated task, and most of the model calculations contain one of the 
following approximations for Γf(t):  
 

• A step function that sets in at time τf : 
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• An exponential in-growth function: k
ff Γ(t)Γ  = ⋅{1 – exp(-t/τ)}                              (6.5) 

 
where τ = τf /2.3, τf  is the transient time and Γf

K is the Bohr-Wheeler fission width of equation 
(6.2), multiplied by the Kramers factor K of equation (2.9). The ablation stage of ABRABLA has 
been modified to implement the in-growth functions given by equations (6.4) and (6.5), avoiding 
several further approximations applied in previous formulations [BuH91, RaM91, BaB93, 
IgK95]. A detailed description on how these two functions have been incorporated can be found 
in Appendixes A1.1 and A1.2. The questions, how well each approximation does reproduce the 
Γf(t) that results from solving the FPE, how accurate is their implementation in the theoretical 
codes and how the approximations influence the final result will be addressed in this section. 
 
6.2.1. Critical view on the exponential like in-growth function 
 
The exponential-like in-growth function, equation (6.5), is one of the most commonly used 
approximations for the time-dependent fission width Γf(t). However, this representation does not 
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reproduce the behaviour of Γf(t) predicted when solving the FPE. This will become clear after the 
following considerations. In reference [GrJ83] the time-dependent fission width is defined as 
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Here λf is the fission rate, xb is the deformation at the barrier, v is the velocity (
t
xv

∂
∂= ) and W is 

the probability distribution. The denominator measures the part of the probability distribution still 
caught inside the fission barrier. Due to the flux over the fission barrier, the value gradually 
decreases. 

Figure 6.1: a) Nuclear potential as a function of deformation, the minimum at zero deformation 
corresponds to the ground state. The full line represents the nuclear potential chosen in reference 
[BhG86] (U = 8.61⋅10-3(x-3.41)2⋅[(x-23.098)(x+1.59)]+3.7) for a nucleus with mass A = 248. 
Using the reduced mass A/4 [BhG86] leads to the ground-state frequency ω1 =1.83⋅1021s-1 in the 
harmonic approximation, and the maximum reproduces the fission barrier at deformation xb with 
a frequency ωo = 1.65⋅1021s-1 of the inverted parabolic potential. The dashed line is a parabola 
with the same ground-state frequency ω1 = 1.83⋅1021s-1, and the dotted line is a parabola with the 
strongly reduced ground-state frequency ω1 = 0.55⋅1021s-1 for the same nucleus. b) Probability 
W(x = xb, t) defined in equation (6.7) evaluated at the deformation xb as a function of time for the 
two parabolic potentials plotted on the left. The other parameters used in both calculations are 
also chosen as in reference [BhG86], i.e., β = 5⋅1021 s-1, T = 3 MeV, A = 248 and reduced mass 
A/4. The dashed line is the solution of the FPE when the nuclear potential is approximated by the 
dashed line on figure 6.1a). The dotted line is the solution of the FPE when using the potential 
represented by the dotted line on figure 6.1a). 
 
According to the initial conditions assumed, at the beginning of the sequential deexcitation 
process, the probability distribution can be represented by a very narrow Gaussian centred at the 
ground-state deformation (see below). As was already discussed by Grangé and Weidenmüller, 
part of the intrinsic excitation energy is first transferred to the fission collective degree of 



 67

freedom. After a certain time that depends on the value of β, this energy saturates, and the 
probability distribution broadens, populating the deformation space and eventually reaching the 
fission-barrier deformation xb. We explicitly investigate the time evolution of the probability  
W(x = xb, t) at the barrier deformation xb in figure 6.1. Where W(x = xb, t) is defined as 
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=== t)dvv,,xW(xt),xW(x bb                                    (6.7)        

Figure 6.2: a) Fission rate λf(t) = Γf(t)/ �  as a function of time for β = 5⋅1021 s-1, 
T = 3 MeV and A = 248. The full line is the numerical solution of the FPE taken from reference 
[BhG86]. The nuclear potential used in this calculation is represented by the full line on figure 
6.1a). The dashed line is calculated using equation (6.21) with Wpar(x = xb, t) taken from 
equations (6.8) and (6.9). The dotted line corresponds to λf(t) given by the step function according 
to equation (6.4), and the dashed-dotted line corresponds to λf(t) given by the exponential-like 
function described by equation (6.5), both calculated with parameters leading to the same 
transient time as the full calculation. b) Fission width as a function of time for β = 2⋅1021 s-1; the 
rest of the parameters are as in part a). The dashed line is calculated using equation (6.21) with 
Wpar(x = xb, t) taken from equations (6.8) and (6.9). The dotted line corresponds to Γf(t) given by 
equation (6.4). 
 
First, we evaluate the probability distribution W(x = xb, t) at the deformation xb as a function of 
time by solving the FPE [Cha43] when the nuclear potential is approximated by the parabola 
represented by the dashed line of figure 6.1a). The deformation xb is defined as well in figure 
6.1a). The solution of W(x = xb, t) is shown by the dashed line in figure 6.1b). Although this 
solution of the FPE is obtained for the parabolic potential, the total suppression of the probability 
distribution at the fission barrier for the initial part of the deexcitation process also results for a 
more realistic potential. In fact, this feature is independent of the shape of the nuclear potential. 
This is confirmed by the dotted line of figure 6.1b) that depicts the solution of the FPE for  
W(x = xb, t) with the very shallow parabolic potential represented by the dotted curve on figure 
6.1a). One might have expected that a flat potential would lead to an instantaneous spread of the 
probability distribution up to the saddle deformation. However, the dotted line of figure 6.1b) 
shows that the probability distribution at xb starts differing from zero only after some time. 
Indeed, the probability W(x = xb ,t) remains essentially zero up to t ≈ 0.6⋅10-21 s in both cases, for 
the shallow and for the deep parabola. According to equation (6.6), the fission width will vanish 
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when the probability W(x = xb, t) vanishes. Hence, independently of the nuclear potential, Γf(t) 
should be zero and have a zero slope at the initial time. This can be observed as well in figure 
6.2a), where the numerical solution of the FPE obtained in reference [BhG86] for the fission rate 
λf(t) = Γf(t)/ �  is compared with the exponential in-growth function and the step function. This 
picture shows that the exponential function starts with a very steep slope contradicting the 
previous requirement of complete suppression at the initial time. On the other hand, the step 
function reproduces the hindrance of fission at the beginning of the process but it overestimates 
its duration. In our opinion, this fact could be improved by opening the fission channel by the 
step function at the time in which the fission probability of the exact solution has reached around 
50% of its stationary value or even lower, instead of the standard value of 90%, introduced in 
reference [BhG86] (section 2.3). Indeed, we will see later that the onset of the fission width is of 
particular importance.  
 
It is worthwhile to have a closer look on the case of a parabolic potential, where an analytic 
solution of the Fokker-Planck equation is available. The solution of the Fokker-Planck equation 
for W(x = xb, t) with a nuclear potential approximated by a parabola [Cha43], assuming zero 
mean deformation and zero mean velocity as initial conditions, is given by the function 
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where σ2 is a time-dependent function of the form: 
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where k is Boltzmann´s constant, T is the nuclear temperature, µ is the reduced mass associated to 
the deformation degree of freedom, ω1 describes the curvature of the potential at the ground state 
and β1 = (β2-4ω12)1/2. One should notice that, due to the classical nature of the FPE equation, the 
initial behaviour predicted by this solution should not be considered since for t = 0 equation (6.9) 
leads to σ = 0. We know from quantum mechanics that for a harmonic oscillator in the ground 
state, the initial probability distribution as a function of the position and the momentum 
coordinate has a finite width. In addition, statistical fluctuations yield as well a non-zero initial 
width contradicting equation (6.9). The treatment of the initial width of the probability 
distribution is described in detail in the next section. Nevertheless, this fact does not modify our 
critics to equation (6.5) because, as will be shown later, its only effect is to reduce slightly the 
time the probability distribution W needs to reach the barrier deformation xb (for example, for the 
case illustrated in figure 6.2 this time is ≈ 0.15⋅10-21 s). The former effect is already included in 
the calculations shown in figures 6.1b) and 6.2.  
 
The physical meaning of function (6.9) can be better understood when we consider large times 
and β in the overdamped regime (β >> 2ω1). Under these conditions, we can neglect the terms 
exp(-β1t), and β1 can be approximated by  β1 ≈ β - 2ω12/β. With this, expression (6.9) turns to: 
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whereby the negative values at small times should be replaced by zero. Using the further 
approximation β1 ≈ β in the preexponential factor, we obtain  
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Actually, equation (6.12) is already quantitatively very similar to (6.9) for β ≥ 5⋅1021 s-1. Equation 
(6.12) shows that the process of the population of the deformation space can be described by a 
probability distribution with the shape of a Gaussian whose second moment exponentially 
approaches the asymptotic value. This fact might have misled some authors to introduce an 
exponential like in-growth function to picture the variation of the fission width with time. We 
would like to stress here that it is the second moment of the probability distribution that 
approximately grows like 1-exp(-t/τ) and not the fission width itself. 
 
6.2.2. New analytical description for ΓΓΓΓf(t) 
 
In view of the conclusions drawn in the previous section, to obtain reliable information on the 
value of the dissipation coefficient β it appears necessary to develop a more realistic description 
of the in-growth function governing the onset of the fission process. We present here an 
analytical approximation for Γf(t). It is based on the fact that the time evolution of the fission 
decay width is mainly determined by the time evolution of the amplitude of the probability 
distribution at the barrier deformation W(x = xb, t) defined by equation (6.7).  
 
In the overdamped regime, an analytical approximation has been proposed previously [BhG86]. 
In this regime W(x,v,t) equilibrates in velocity very fast. Under these conditions, the FPE 
transforms into the Smoluchowski equation [Ris89].  
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where µ is the reduced mass, U(x) is the nuclear potential and ε = βkT/µ is the diffusion constant. 
The analytical approximate solution to this equation for a realistic potential presented in reference 
[BhG86] is valid for t > β/2 2

1ω . However, for short times, where the dissipation has a decisive 
effect on the deexcitation process, this solution does not fulfil the requirement to vanish for a 
certain time. For this reason, we propose the following more appropriate alternative to this 
formulation.  
 
In the following we will describe various steps to derive a very convenient expression for the 
fission decay width, whose definition is given by equation (6.6). We start by defining the 
normalised probability distribution ( )tvxxW bn ,,=  for any fixed value of xb as: 
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Considering equation (6.13), the fission width of equation (6.6), can be reformulated as follows: 
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In the stationary case we get: 
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Finally, combining equations (6.14) and (6.15) we can reformulate the time-dependent fission 
width defined by equation (6.6) as: 
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At this point we introduce the two approximations that lead to a new description for the time-
dependent fission width. The first approximation is to consider that:  
 

),,()(),,( ∞→=⋅≈= tvxxWtCtvxxW bnbn                            (6.17) 
 
where C(t) is a value that only depends on time. This assumption implies that the shape of the 
probability distribution at the barrier deformation as a function of the velocity v is constant and 
only its height varies with time. This statement is valid in the overdamped motion were the 
equilibrium in velocity is established very rapidly. We think however, that expression (6.17) is 
still applicable outside the overdamped regime because, since xb is far away from the initial 
deformation, the time needed for the probability distribution W to reach the fission barrier is large 
enough for the velocity to equilibrate. Thus, by the time when Wn(x = xb, v, t) starts to differ from 
zero, the probability distribution as a function of the velocity coordinate has already attained the 
asymptotic shape Wn (x = xb, v, t→ ∞ ).  Integrating equation (6.17) over the whole velocity 
interval we have: 
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Introducing equation (6.17) in equation (6.16) and using equation (6.18) leads to: 
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The second approximation consists on expressing the shape of the in-growth function at the 
fission barrier Wn(x = xb, t) by equations (6.8) and (6.9), derived for the parabolic potential: 
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Note, that one may replace the normalised probability Wn by the unnormalised quantity W in 
equation (6.20), because in the case of the parabolic potential the probability distribution is 
confined.  
 
Implementing equations (6.8) and (6.9) in equation (6.20) results in an analytical expression for 
Γf(t). As initial condition of the problem we have chosen the zero-point motion at the ground-
state deformation, which is adequate to the reactions we consider. The zero-point motion is taken 
into account by shifting the time scale by a certain amount t0: For the under-damped case (ß < 
2ω1), the deformation and the momentum coordinate saturate at about the same time. Therefore, 
the time shift needed for the probability distribution to reach the width of the zero-point motion 
in deformation space is equal to the time that the average energy of the collective degree of 

freedom needs to reach the value 12
1 ω�  associated to the zero-point motion: 
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In the over-damped regime (ß ≥ 2ω1), the momentum coordinate saturates very fast, while the 
population of the deformation space is a diffusion process. Neglecting the influence of the 
potential on the diffusion process, which is anyhow small in the range of the zero-point motion, 
the solution of the Fokker-Planck equation gives the following time evolution for the variance of 
the probability distribution in the deformation coordinate [Cha43]: 
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Replacing in equation (6.22) σx
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The analytical expression that results from combining equation (6.20) with equations (6.8) and 
(6.9) represents a very adequate description of Γf(t) as can be seen in figure 6.2a), where this 
function (dashed line) is compared to the numerical calculation (full line). Moreover, reference 
[JuS02] demonstrates that this approximation quite well reproduces the exact solution of the FPE 
for the critical damping and the underdamped regime, as well. For a given value of β and T, the 
time behaviour of the exact solution of the FPE is mainly governed by two parameters: the 
frequency ω1 at the ground state and the barrier deformation xb. The formulation we present here 
uses realistic values of ω1 and xb in the harmonic approximation, whereas the absolute height is 
taken from Kramers stationary solution for the realistic potential shape (full line in figure 6.1a). 
This explains the good agreement of this formulation with the numerical calculation. An 
additional justification for the use of the probability distribution that results from approximating 
the nuclear potential by a parabola is that, as will be demonstrated later, the most important effect 
of dissipation is given by the initial suppression of the fission width. Figure 6.2 shows that this 
suppression is very well reproduced by the new analytical description. The approximation for 
Γf(t) represented by equation (6.20) is suited to be used in complex nuclear-reaction codes, where 
solving the Fokker-Planck equation numerically would introduce a not affordable additional 
computing time. Appendix A.3 illustrates how this new approximation for Γf(t) has been 
incorporated in ABRABLA.  
 
6.3. Comparison of the experimental data with model calculations 
 
To illustrate how the deduced value of the reduced dissipation coefficient β depends on the 
description used for the time-dependent fission width, we will consider the total nuclear fission 
cross section of the reaction of 238U at 1⋅A GeV on lead. The nuclear fission cross section has 
been obtained subtracting from the experimental total fission cross section determined in section 
5.1 the electromagnetic contribution given by Rubehn et al. [RuB96]. In table 6.1 the 
experimental value of this cross section is compared with the values obtained from several 
ABRABLA calculations performed with various options. Different shapes of the time-dependent 
fission width and different values of β were used. In addition, for part of the calculations the 
break-up stage of the model calculation was not included. Though this is unphysical, it serves to 
distinguish between the effects of dissipation and the effects of the break-up process on fission at 
high excitation energies. In this section we will only consider the calculations performed 
including break-up to describe the intermediate stage between the abrasion and the statistical 
evaporation at initial temperatures larger than 5.5 MeV. As the values of the third row of table 
6.1 show, the transition-state model [BoW39] clearly overestimates the experimental data. In 
fact, the experimental cross sections are only reproduced when dissipative effects are included in 
the calculation. However, the choice of the in-growth function for Γf(t) according to equations 
(6.4) or (6.5) has a strong influence on the dissipation coefficient deduced. While the calculation 
with the description given by equation (6.4) (step function) reproduces the data with a value of 
 β = 2⋅1021 s-1, the same value of β with equation (6.5) (exponential like in-growth) overestimates 
the cross sections. The reason is that, in the case of the exponential like function, fission is 
already possible with a considerable probability at the very beginning of the deexcitation process. 
To reproduce the data when the exponential-like in-growth function is used, a larger value of the 
reduced dissipation coefficient β = 4⋅1021 s-1 is required that diminishes the asymptotic value of 
the fission width and enlarges the transient time. As expected, when this value of β is used with 
the step function, the cross sections are underestimated. The last row of table 6.1 illustrates that, 
to explain the experimental cross section with the highly realistic description of the fission width 
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based on the analytical solution of the FPE introduced in section 6.2.2, a value of β = 2⋅1021 s-1 is 
required in agreement with the step function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.1: Experimental total nuclear fission cross-sections of 238U(1 A GeV) on lead compared 
with different calculations performed with the code ABRABLA. Each calculation has been 
performed twice. In one case, the simultaneous break-up stage is not included in the calculation, 
so that no limit for the initial temperature of the evaporation cascade is imposed. In the other 
case, the break-up model imposes an upper limit of 5.5 MeV to the initial temperature of the 
evaporation cascade. A first set of calculations was performed with the transition-state model 
[BoW39]. The other calculations were performed with different descriptions of Γf(t) and different 
values of β. The last calculation was performed with Γf(t) as the analytical solution of the FPE 
given by equation (6.20) with Wpar(x = xb, t) taken from equations (6.8) and (6.9). 

 
As discussed in section 6.2.1, there exist solid theoretical arguments why the exponential like in-
growth function of equation (6.5) does not reproduce correctly the increase of the fission width as 
a function of time. It is to expect that this function is not able to describe properly the 
experimental data. However, table 6.1 shows that the total nuclear fission cross sections of 238U 
(1 GeV) + Pb can be reproduced well by all the descriptions for Γf(t) provided that the 
appropriate value of β is used. This means that we need additional observables that allow tagging 
the fission events according to the excitation energy. For the largest excitation energies, the 
exponential in-growth function should differ from the measured data. This selection according to 
the excitation energy can be achieved by considering the charge sum of the fission fragments  
Z1+Z2. We already discussed in section 4.3 that the excitation energy of the systems before 
entering the sequential decay is likely to increase with decreasing Z1+Z2. However, one has to 
consider as well that very excited prefragments undergo a simultaneous break-up that sets a limit 
of 5.5 MeV to the temperature of the fissioning nucleus. Thus, one could suspect that for the 
lightest fissioning nuclei the excitation energy remains constant or even decreases. To clarify the 
situation we performed a calculation with ABRABLA that gives the excitation energy of the 

Experimental Data 2.16 ± 0.14 b 

Calculation No Break-
up 

Break-up 

Transition-State Model 5.61 b 3.33 b 

Γf(t) step 
β = 2⋅1021 s-1 

2.17 b 2.00 b 

Γf(t) step 
β = 4⋅1021 s-1 1.58 b 1.54 b 

Γf(t) ~1- exp(-t/τ) 
β = 2⋅1021 s-1 

4.98 b 2.52 b 

Γf(t) ~1- exp(-t/τ) 
β = 4⋅1021 s-1 4.40 b 2.04 b 

Γf(t) FPE 
β = 2⋅1021 s-1 2.55 b 2.09 b 



 74

system right before entering the ablation stage as a function of Z1+Z2. The result for the carbon5 
target is displayed in figure 6.3. It can be seen that, initially, the excitation energy increases with 
decreasing Z1+Z2, from Z1+Z2 ≈ 78 to Z1+Z2 ≈ 73 it remains more or less constant with a mean 
value of approximately 550 MeV and finally it slowly decreases. Thus, in spite of the 
simultaneous break-up, the lowest values of Z1+Z2 are related to excitation energies that are high 
enough for the statistical decay time to be considerably shorter than the transient time τf. 

 
Figure 6.3: Calculation performed with ABRABLA representing the excitation energy of the 
prefragment right before entering the ablation stage as a function of the sum charge of the fission 
fragments. The reaction considered is 238U (1 AGeV) + C. 

 
Figure 6.4 shows the experimental partial fission cross sections and the widths of the charge 
distributions for the reaction 238U (1 A GeV) + (CH2)n. The experimental data (full dots) are 
compared with three ABRABLA calculations. In these calculations, the contribution given by the 
hydrogen part of the (CH2)n target has been determined according to a fast simplified version of 
CASCABLA [CuV97, JuJ98, EnW01]. The dashed line is the result of using the exponential-like 
function and β = 4⋅1021 s-1, the dotted line is performed with the step function (equation (6.4)) 
and β = 2⋅1021 s-1, and the full line corresponds to a calculation with the analytical expression for 
Γf(t) introduced in section 6.2.2 and β = 2⋅1021 s-1. For both observables, the calculation 
performed with the fission width derived from the analytical solution of the FPE and the 
calculation that employs the step function almost coincide over the whole Z1+Z2 interval. 
Moreover, in the case of figure 6.4a), the three calculations agree quite well with each other and 
with the experimental data for the highest values of Z1+Z2 and start to differ for the lowest values 
of Z1+Z2. In this part of the spectrum, the exponential-like in-growth function overestimates the 
experimental partial fission cross sections, while the two other functions underestimate them. A 
slight reduction of the fission barriers [CaS83] at high excitation energies could eventually 
account for this deviation. It is not possible to decide from figure 6.4a) which function Γf(t) gives 
the best description of the measured data. However, in contrast to the partial fission cross 
sections, the comparison of the different calculations with the experimental widths of the charge 
distributions of the fission fragments depicted in figure 6.4b) indicates a significant disagreement 
                                                 
5 For the case of the (CH2)n target, we have to add the effect of the hydrogen part that leads mostly to heavy residues 
and for which the excitation energy induced per removed nucleon is not 27 MeV as in carbon but approximately 50 
MeV. Consequently, the spectrum of the correlation between Z1+Z2 and excitation energy for the (CH2)n target 
should be somewhat broader (in the E* axis) for the largest values of Z1+Z2 than the one displayed in figure 6.3. 
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between the calculation done with the exponential-like description and the measured data. The 
overprediction of the widths when applying the exponential-like function suggests that this 
description yields too large excitation energies at saddle. Finally, figure 6.4a) shows that the 
model calculations clearly overestimate the partial fission cross sections for Z1+Z2 = 91 and 92. 
This disagreement can be due to the combination of several effects. One is the fact that the 
ABRABLA code overestimates the electromagnetic-induced component of the total fission cross 
section. Nevertheless, the discrepancy between the calculations and the experimental data in 
figure 6.4a) cannot be all due to this effect. An additional explanation could be the failure of the 
Abrasion model in reproducing very peripheral collisions. This strongly depends on the 
description of the nuclear density distribution used. It has been found that the present description 
of the abrasion model works well for heavier targets like Cu and Pb but no study has been 
performed yet on lighter nuclei like Carbon. Finally, another possible reason could be a wrong 
treatment of the fission probability of nuclei with small fission barriers and a second minimum. 
For such cases the Bohr-Wheeler model used in ABRABLA is too simple. In any case, all these 
effects are not critical for our purposes because our conclusions are derived from the fission of 
light nuclei where they have no influence.   
 

Figure 6.4: Experimental partial fission cross sections (full dots part a) and widths of the charge 
distributions of the fission fragments (full dots part b) obtained for the reaction 238U (1 A GeV) + 
(CH2)n in comparison with various ABRABLA calculations. The dashed lines are calculations 
performed with the exponential in-growth function (equation (6.5)) and β = 4⋅1021s-1, the dotted 
lines are calculations carried out with the step function (equation (6.4)) and β = 2⋅1021s-1, and the 
full lines are the result of using equation (6.20) with Wpar(x = xb, t) taken from equations (6.8) 
and (6.9) and β = 2⋅1021s-1.  
 
Let us examine now the sensitivity of the experimental observables to the value of the reduced 
dissipation coefficient β.  Due to the above discussed outcomes, the subsequent calculations are 
performed with the fission width Γf(t) that follows from the analytical solution of the FPE 
introduced in section 6.2.2. In figure 6.5 the same two observables of figure 6.4 are compared 
with the transition-state model (dashed line) and with several calculations obtained for various 
values of β representing the three different dissipation regimes. As expected, both observables are 
visibly overrated by the transition-state model confirming their sensitivity to dissipation. For the 
partial fission cross sections (figure 6.5a) as well as for the widths of the charge distributions 
(figure 6.5b), the best description is given by the full line that corresponds to β = 2⋅1021s-1.  Such 



value of β is equivalent to the shortest transient time τf, the critical damping. This means that, for 
the systems studied, the coupling between the collective and the intrinsic degrees of freedom 
leads to the fastest possible spread of the probability distribution in the deformation space. Any 
other value of β above or below the critical damping will result in lower cross sections and 
narrower distributions because the dynamical delay increases, see figure 2.3 of chapter 2. This is 
indeed what the dotted lines (β = 0.5⋅1021s-1) and the dashed-dotted lines (β = 5⋅1021s-1) of figure 
6.5 tell us.  
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Figure 6.5: Experimental partial fission cross sections (full dots part a) and widths of the charge 
distributions of the fission fragments (full dots part b) obtained for the reaction 238U (1 A GeV) + 
(CH2)n in comparison with various ABRABLA calculations. The dashed lines are calculations 
according to the transition-state model. The rest of the calculations are performed using equation 
(6.20) with Wpar(x = xb, t) taken from equations (6.8) and (6.9). The full lines are performed with 
β = 2⋅1021s-1, the dotted lines with β = 0.5⋅1021s-1 and the dashed-dotted lines with β = 5⋅1021s-1. 
 
The dependence of the total nuclear fission cross sections on the charge of the target is portrayed 
by the full dots in figure 6.6 together with several ABRABLA calculations. The nuclear fission 
cross sections are obtained subtracting the electromagnetic component as calculated in reference 
[RuB96] from the total fission cross sections determined in the previous chapter. Since the total 
reaction probability increases with the mass of the target, one would expect that the fission cross 
sections grow with the charge of the target. However, figure 6.6 shows that the nuclear fission 
cross section for carbon is smaller than the one for hydrogen. As before, the calculation based on 
the transition-state model (dashed line) overestimates the cross sections and does not reproduce 
the minimum of the cross section for Ztarget = 6. Although none of the calculations that include 
dissipation provide a good quantitative description of all the cross sections, the existence of this 
minimum is only reproduced when dissipation is considered. We think that the failure to 
reproduce the target dependence of the cross sections is due to a malfunction of the abrasion 
model that was commented before and that was already observed by Rubehn et al. [RuB96]. 
Nevertheless, the fact that the minimum of the cross section is found for the carbon target and not 
for the hydrogen has its explanation in dissipation. The fragmentation of 238U at 1 A GeV on 
hydrogen leads principally to the production of heavy projectile-like residues with low excitation 
energies and low fission barriers. These nuclei are not sensitive to the dynamical delay induced 
by dissipation and most of them fission. On the other hand, when the 238U projectiles at 1 A GeV 
react with a carbon target, the number of heavy projectile-like products decreases and the residue 
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distribution extends to lighter nuclei with higher excitation energies and higher fission barriers. If 
there would be no dynamical delay, a great part of these nuclei would fission, and the total fission 
cross section would increase with respect to the hydrogen case. However, if dissipation is 
considered, the statistical decay time of these lighter nuclei is shorter than the dynamical delay 
and fission is suppressed leading to lower cross sections. 

 
Figure 6.6: Total nuclear fission cross sections of 238U (1 A GeV) as a function of the target 
charge. The experimental data are represented by the full dots. The dashed line is a calculation 
according to the transition-state model. The rest of the calculations are performed using equation 
(6.20) with W(x = xb, t) taken from equations (6.8) and (6.9). The full line corresponds to  
β = 2⋅1021s-1, the dotted line corresponds to β = 0.5⋅1021s-1 and the dashed-dotted line to  
β = 5⋅1021s-1.  
 
6.4. Discussion 
 
It is very illustrative to compare how the excitation energy with which the nucleus crosses the 
saddle point changes in the model calculation when using the different approximations for  
describing Γf(t). Figure 6.7 depicts the excitation energy of the nucleus at the saddle point against 
the initial excitation energy of the prefragment right after the abrasion process for the fission 
events produced in the reaction of 238U at 1 A GeV in a lead target. The pictures in the left-hand 
side column of figure 6.7 correspond to the unrealistic case, where there is no upper limit for the 
initial temperature of the sequential decay. Calculation 6.7a) corresponds to the step-function 
description with β = 2⋅1021 s-1, calculation 6.7b) to the exponential-like description with  
β = 4⋅1021 s-1, and 6.7c) to the analytical solution of the FPE with a parabolic nuclear potential 

and β = 2⋅1021 s-1. The same set of calculations but including the break-up stage is shown in the 
right-hand side column of figure 6.7. By comparing both sides of figure 6.7, one immediately 
recognizes that the effect of the break-up process on the calculation performed with the 
exponential-like description for Γf(t) is much more drastic than for the two other calculations. 
The too early onset of fission introduced by the exponential-like in-growth function implies that 
fission at high excitation energies is not suppressed by dissipation. Fission reaches to such high 
excitation energies, that it is rather constricted by the break-up mechanism. On the contrary, the 
calculations performed with the step function and with the analytical solution of the FPE 
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illustrate that dissipation considerably inhibits the fission decay channel for excitation energies at 
fission above 350 MeV and, therefore, the effect of the break-up process is significantly smaller. 
Figure 6.2b) shows that for the analytical solution of the FPE the fission probability sets in earlier 
than for the step function, leading to a larger amount of fissioning systems with initial excitation 
energies *

0E  beyond 800 MeV, as can be seen comparing figures 6.7a) and 6.7c). As a result, the 
break-up stage has a stronger effect in this case than in the case of the step function.  
 
The influence of the simultaneous break-up on the deexciation process can also be observed from 
the cross sections of table 6.1. When the exponential-like description of Γf(t) is used, the 
calculated cross sections differ considerably, depending on whether the break-up stage is 
included or not in the calculation. In contrast, the calculated cross sections obtained by applying 
the analytical solution of the FPE do not present such a remarkable difference, and the ones 
calculated using the step function are hardly affected by this feature.  
 
The 45-degree straight lines depicted on the six spectra of figure 6.7 correspond to the upper limit 
for the excitation energy at fission. Both, the calculation performed with the step function on 
figure 6.7a) and the calculation with the analytical solution of the FPE on figure 6.7c) show that 
this line starts to be depopulated at initial excitation energies of approximately 150 MeV, 
indicating that from these excitation energies on the transient time is longer than the decay time 
for particle emission. That means that prefragments with initial excitation energies higher than 
approximately 150 MeV can only fission after cooling down by particle evaporation.  
 
The previous discussion has shown that, although the step function described by equation (6.4) 
appears to be a rather crude approximation, it better describes the effects of dissipation on the 
fission decay width than the exponential-like function of equation (6.5). It also leads to a strong 
suppression of fission at high excitation energies in quite good agreement with the more realistic 
description of the fission width given by the analytical solution of the FPE for a parabolic nuclear 
potential. However, due to the possible existence of fission events at very high excitation 
energies (especially in the case of the exponential-like description of Γf(t)) any conclusion on 
dissipation would strongly depend on the thermal stability of nuclei against break-up. When the 
step function is used, the experimental data selected are reproduced with a reduced dissipation 
coefficient of β = 2⋅1021 s-1. The same value of β = 2⋅1021 s-1 is obtained when the more realistic 
description of Γf(t) based on the analytic solution of the FPE is applied. From figure 6.2b) one 
would expect that the analytical solution of the FPE requires a larger value of β to describe the 
experimental data than the step function, but as was explained before, the break-up mechanism 
suppresses the additional fission events at high excitation energies and leads to very similar 
fission cross-sections. 
 
Our investigation does not allow a direct conclusion on the temperature dependence of the 
dissipation coefficient β, but it reveals the difficulty in deducing such an effect. The different 
distributions of excitation energies at fission found in the calculations shown in figure 6.7 prove 
that this analysis strongly depends on the in-growth function assumed for Γf(t). For instance, the 
inhibition of fission at high excitation energies obtained with the analytical solution and the step 
function could be achieved with the exponential-like in-growth function as well by setting very 
high values of β at high temperatures. Therefore, it cannot be excluded that the indications for 
strong increase of nuclear viscosity with increasing temperature drawn in several publications 
[HoB95, RuK98] might be attributed to the unrealistic exponential-like in-growth function used 
in the analysis. 
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Figure 6.7: Calculations performed with ABRABLA representing the excitation energy at fission 
versus the excitation energy of the prefragment right after the abrasion for the fission events 
obtained in the reaction of 1 A GeV 238U on a lead target. The calculations a), b) and c) on the 
left-hand side are performed without including the break-up stage. The calculations d), e) and f) 
on the right-hand side are performed including the break-up stage. Calculations a) and d) are 
performed with Γf (t) as a step function and β = 2⋅1021 s-1. Calculations b) and e) are done with  
Γf (t) ∝ (1-e-t/τ) and β = 4⋅1021 s-1. Calculations c) and f) are carried out with equation (6.20) 
taking Wpar(x = xb, t) from equations (6.8) and (6.9) and β = 2⋅1021 s-1. In all cases we have used 

1ω� = 1 MeV. The straight lines represent the upper limit for the excitation energy at fission. 
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Figure 6.8: a) Excitation energy at fission as a function of the transient time τf calculated 
according to equation (2.11) of chapter 2 for the reaction 238U (1 A GeV) + Pb. b) Distribution of 
transient times corresponding to the fission events with excitation energies at saddle larger than 
150 MeV. The calculation has been performed including the break-up stage and using equation 
(6.20) for Γf(t) with Wpar(x = xb, t) as given by equations (6.8) and (6.9). 
 
The nuclei that contribute to the fission cross section extend over a broad range of masses, 
charges and excitation energies at the saddle point. Hence, according to equation (2.11) of 
chapter 2 the deduced value of β = 2⋅1021 s-1 corresponds to a distribution of transient times τf. In 
figure 6.8a) the excitation energy of the fissioning nuclei is represented as a function of the 
transient time τf determined according to equation (2.11) assuming �ω1 = 1 MeV [RaM91]. As 
discussed below, the description that reproduces our experimental data implies that transient 
effects are observed only in those nuclei with excitation energies larger than approximately 150 
MeV. Therefore, we can only consider the transient time of nuclei with excitation energies at 
fission above this threshold. Selecting the nuclei with *

saddleE > 150 MeV, we obtain the 
distribution of transient times shown in figure 6.8b). A mean value of the transient time of τf ≈ 
(1.7±0.4)⋅10-21 s can be extracted from this curve. 
 
In figure 6.9 the dependence of the mean value of the transient time <τf> (dashed line) with the 
excitation energy at fission is compared with the same dependence of the average statistical time 
that the system needs to reach the fission barrier <τsta> (full line). The latter results from the sum 
of the mean decay time associated to the "n" evaporation steps that occur before fission takes 
place: 
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with Γn, Γp, Γα the decay widths for neutron, proton, and alpha emission, respectively. Γf(t) is the 
value of the fission width at the corresponding step. Figure 6.9 shows that, while the transient 
time depends very weakly on the excitation energy, the statistical time <τsta> decreases strongly 
with the excitation energy. For low excitation energies the statistical time is several orders of 
magnitude larger than the transient time. At excitation energies above 225 MeV the transient time 
starts to be larger than the statistical time <τsta>. 
 

 
Figure 6.9: Calculation representing the average statistical time <τsta> for the system to cross the 
saddle point (full line) as a function of the excitation energy at saddle in comparison with the 
average transient time <τf> (dashed line) as a function of the excitation energy at saddle. The 
calculation corresponds to the reaction 238U (1 A GeV) + Pb with β = 2⋅1021 s-1. It includes the 
break-up stage and Γf(t) follows equation (6.20) with Wpar(x = xb, t) as given by equations (6.8) 
and (6.9). 

 
According to figure 6.3, the break-up process [Ric02, ScR02] limits the maximum value of the 
excitation energy at the beginning of the evaporation cascade to about 550 MeV. However, the 
description of Γf(t) that reproduces the data is influenced by transient effects only for excitation 
energies at the fission barrier within the interval 150 MeV < *

saddleE < 350 MeV. Out of this 
excitation energy range, our experimental data are not sensitive to the strength of β since at 
excitation energies above 350 MeV, fission is almost completely inhibited. Therefore, an 
eventual increase of the dissipation coefficient for excitation energies larger than 350 MeV would 
not be observable. At excitation energies below 150 MeV, the statistical decay times are 
appreciably longer than the dynamical time scale, represented by the transient time, as long as the 
value of β remains in a certain range defined by ττττf <<ττττsta, making the experimental observables 
rather insensitive to the transient time. The Kramers factor implies a reduction of the fission 
width that should have some effect on the measured data at these low excitation energies. 
Nevertheless, the observation of such effect is much more difficult than the observation of the 
total suppression of fission by the transient time because it requires a very accurate knowledge of 
the level density.  
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As explained already in chapter 3, both the fission cross sections and the widths of the charge 
distributions of the fission residues are only sensitive to dissipation in the small deformation 
range from the ground state to the saddle point. The value of β = 2⋅1021 s-1 obtained from our 
analysis coincides with the value found in reference [BeA02], where total fission cross sections 
as well as the widths of the charge distributions and velocities of the fission residues from the 
reaction Au (800⋅A MeV) + p are analysed with the step-function description of Γf(t). Other work 
[HuB00, MoJ95, JiP01], sensitive to the same deformation range, is consistent as well with our 
values of β and τf, although often only upper limits for the transient time or the dissipation 
coefficient could be deduced. Our result for τf entails that for nuclei with excitation energies 
lower than 100 MeV the transient time is still a too tiny effect to have observable influence on the 
fission decay width. Experiments need to populate higher excitation energies in order to be 
sensitive to dissipation effects on the way to the saddle point. 
 
The quantitative value deduced for the dissipation coefficient remains model dependent to a 
certain degree. Nevertheless, variations of the most critical model parameters by reasonable 
amount: excitation energy of the prefragments by 30%, freeze-out temperature by 20 % and 
excitation-energy reduction per mass loss in the break-up stage by a factor of two led to 
variations of the deduced transient time well inside the uncertainty range given. The influence of 
the ratio of the level density parameters af/an has been studied in detail in reference [JuH01] 
showing that the value of af/an that better fits our data is the one predicted by Ignatyuk et al 
[IgI75]. Although the calculations presented in reference [JuH01] do not include the break-up 
stage, recent calculations show that the conclusions on af/an derived in reference [JuH01] are still 
valid when the break-up process is considered. 
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Chapter 7: Conclusion  
 
 

In the present work, an experimental method suited for the study of dissipation at small 
deformation has been introduced. According to this approach, fission is induced by peripheral 
heavy-ion collisions at relativistic energies. The fissioning nuclei produced have small shape 
distortions and low angular momenta [JoI97]. These initial conditions allow for applying the 
theoretical model of Grangé and Weidenmüller [GrJ83]. Moreover, the excitation energy induced 
by the fragmentation of the projectile is very high. This enables to be sensitive to the transient 
time, which represents a small effect within the small deformation regime. The experimental set-
up for fission studies used allowed for determining different observables sensitive to the strength 
of dissipation from the ground state to the saddle point: The target-charge dependence of the total 
fission cross sections of 238U at 1 A GeV, and the partial fission cross sections and the width of 
the partial charge distributions of the fission fragments for the reaction 238U at 1 A GeV on 
(CH2)n.  The sensitivity to dissipation of the two latter observables was investigated for the first 
time. 
 
Since all our conclusions on dissipation are based on the comparison with a theoretical model, an 
intense study of the modelling of dissipation effects in nuclear-reaction codes was performed. In 
particular, we analysed the two most widely used approximations for the time dependence of the 
fission decay width, a step function and an exponential-like in-growth function. Solid theoretical 
arguments have been presented that shed severe doubts on the validity of the exponential in-
growth function. The steep onset of the fission decay width immanent to this description 
contradicts the initial suppression of fission that is expected theoretically due to dissipation 
effects. Since these two approximations seemed to be very crude, we developed a highly realistic 
description based on the analytical solution of the FPE when the nuclear potential is 
approximated by a parabola [Cha43]. This new approximation not only reproduces very well the 
exact solution of the FPE in the overdamped regime but in also gives a rather good description of 
the time-dependent fission width in the underdamped regime [JuS02]. 
 
The experimental observables were compared with an updated version of the Monte-Carlo code 
ABRABLA [GaS91, JuJ98] where the three different descriptions for the time-dependent fission 
width mentioned above are included. A comparison of the model calculations with the nuclear 
fission cross sections of 238U at 1 A GeV on Pb showed that the deduced dissipation coefficient β 
depends strongly on whether the step function, the exponential-like in-growth function or the 
analytical approximation is used. Consequently, in order to interpret any result on the magnitude 
of β, the description used for the time dependence of the fission width must be specified. 
Moreover, when comparing with the new observables, it was found that the exponential-like 
approximation clearly overestimates the width of the charge distributions of the fission 
fragments. The reason for this discrepancy is the no-suppression of fission at very high excitation 
energies associated to the exponential-like description. On the contrary, the step-function 
approximation and the highly realistic description showed a quite similar behaviour in very good 
agreement with the new experimental observables. This indicates that the inhibition of the fission 
decay width during the initial time span is needed to account for dissipation effects in a proper 
way. 
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Assuming the validity of the analytical solution of the FPE, the transition-state model [BoW39] 
and several calculations for various values of β performed with ABRABLA were contrasted with 
the experimental observables. This analysis clearly demonstrated the influence of dissipation on 
the way to the fission barrier. Neither the charge-target dependence of the total nuclear fission 
cross sections, nor the partial cross sections and the widths of the charge distributions could be 
described by the transition-state model. Although the shape of the target dependence could not be 
quantitatively reproduced with the present version of the abrasion model, the minimum of the 
cross section at Zarget = 6 could only be explained including dissipation. The best description of 
the partial fission cross sections and the widths of the charge distributions of the fission 
fragments was found for β = 2⋅1021 s-1. This value of β corresponds to the critical damping and 
leads to the lowest possible transient time with a value of τf  ≈ (1.7±0.4)⋅10-21. This result is in 
agreement with other work [HuB00, MoJ95, JiP01] sensitive to the same deformation range. 
 
The experimental observables are well reproduced assuming that β remains constant with the 
temperature. It is difficult to draw any conclusion on the temperature dependence of the 
dissipation coefficient from our measurements because the interval of excitation energies where 
this dependence can be tested is limited. First, recent experimental results [ScR02] indicate that 
the maximum excitation energy with which the systems enter the sequential decay where particle 
evaporation and fission compete is limited to a value of approximately 550 MeV. Additionally, 
our observables are insensitive to transient effects at excitation energies below 150 MeV and 
above 350 MeV. For excitation energies lower than 150 MeV the statistical decay time is anyhow 
significantly larger than the transient time, and for excitation energies larger than 350 MeV the 
critical damping already suppresses fission completely.  
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Appendix: Treatment of fission as a dissipative process in 
ABRABLA 

 
 
In this appendix we document in detail how dissipation is described in the evaporation part of the 
Monte-Carlo code ABRABLA [GaS91, JuJ98]. The main evaporation channels we consider are 
neutron, proton and alpha-particle emission. Each of these decay modes is represented by a 
partial decay width Γν, which is related to the partial lifetime τν = νΓ/� . In the following, we 
distinguish only between two decay channels, particle evaporation, which groups neutron, proton 
and alpha-particle emission, and fission. The particle-decay mode is represented by the decay 
width  
 

�=
ν

νΓΓ p                                                               (A1) 

 
and the corresponding partial particle decay time τ p is defined by  
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                                                              (A2) 

 
While the particle-decay widths do not explicitly depend on time, dissipation effects lead to a 
time-dependent fission width Γf(t). Therefore, at the beginning of each step of the deexcitation 
cascade one has to consider the time elapsed during the previous stages. Physically this means 
that, while particles are emitted, the probability distribution in deformation space becomes 
broader, and at each step of the deexcitation cascade the distribution “remembers” its current 
width. Accordingly, in every step n we have to evaluate the fission width Γf(t) with a time 
variable whose initial value increases with each step as 
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Here τi represents the average decay time at the corresponding step and includes the mean 
particle decay time τp and the mean decay time for fission τfission. If this feature is not taken into 
account, fission would set in at a time that is larger than the transient time τf.  
 
For describing the shape of Γf(t) we incorporated in the code the two approximations represented 
by equations (6.4) and (6.5) described in section 6.2 and the more sophisticated case given by 
equations (6.20), (6.8) and (6.9) of section 6.2.2. In all cases the stationary value of the fission 
width is 
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where Γf
BW,n is the fission width given by the transition-state model [BoW39] at the step n and K 

is the Kramers factor already introduced in equation (2.9) of section 2.3. Detailed formulations of 
the three cases are given below. 
 
A.1. Description of ΓΓΓΓf (t) by a step function 
  
As shown in section 6.2, the fission width can be described by a step function that sets in to the 
stationary value given by equation (A4) at the transient time τf. Let I0 be the number of nuclei 
available at the beginning of a certain step n. For the time interval n

sumt < t < τf, particle emission is 
the only deexcitation channel available and the number of nuclei that decay in that step n is  
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The upper index n indicates that these quantities differ from step to step. For t ≥τf, fission is also 
possible, and the additional number of nuclei that decay by particle emission at the same step is 
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where the quantity I0⋅exp(-(τf - n

sumt )/ n
pτ ) represents the nuclei that survived particle emission 

before τf. Similarly, the number of nuclei that fission after τf is 
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The total probability for particle evaporation at a step n can be obtained by normalizing the total 
number of decays to the initial number of nuclei 0I  leading to the expression 
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and the total probability for fission is 
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This formulation is similar but more consistent than the approach proposed previously in 
[RaM91] and [IgK95].  
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A.2. Description of ΓΓΓΓf (t) by an exponential in-growth function 
 
Another possibility to describe the time dependence of the fission width Γf(t) is an exponential in-
growth function, equation (6.5) of section 6.2. In this case, the procedure is different than in the 
previous one because Γf (t) increases continuously with time.  
The decay rate at a step n can be written as: 
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By integrating equation (A10) we obtain an analytical expression for In(t) 
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Substituting equation (A11) in (A10) we obtain an analytical expression for the decay rate 
(dI(t)/dt)n of the nucleus that includes all possible particle decay channels and the already 
mentioned time dependence of Γf. After evaluating (dI(t)/dt)n for the corresponding step, we 
sample from (dI(t)/dt)n the decay time and finally calculate the value of Γf (t) at that decay time. 
The decay channel is then determined by a Monte-Carlo selection with the weights Γf(t)/Γtotal for 
fission and Γν/Γtotal for the emission of the particle ν.  
 
A.3. Description of ΓΓΓΓf(t) by the analytical solution of the FPE for a 
parabolic nuclear potential 
 
As shown by the dashed line in figure 6.2a) of section 6.2.1, the analytical solution of the FPE 
when the nuclear potential is approximated by a parabola gives a much more realistic description 
of the time dependence of the fission rate λf(t) than the step function and the exponential-like in-
growth function. This analytical expression for the fission rate can be obtained by using equation 
(6.20) and taking W(x = xb, t) from equations (6.8) and (6.9). Actually, the method [Tai00] we 
use to include this description of Γf(t) in the evaporation code is applicable for any function 
representing Γf(t).  
 
We first divide the time interval 0< t <1.5⋅τf  (for t = 1.5⋅τf the fission width has already reached 
its stationary value) in small subintervals of length L = 1.5⋅τf / 50. If we are inside a certain step n 
of the deexcitation cascade, we define the value of the fission decay width as the quantity  
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with i = 0 at the beginning of each step. This value of the fission decay width is used to evaluate 
the decay probability inside this small subinterval i 
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By means of a Monte-Carlo selection we establish whether the nucleus decays inside this time 
subinterval i or not. If no decay takes place, we evaluate again expression (A12) for the next 
subinterval i+1 and so on, until the nucleus decays. The decay channel is then determined by a 
further Monte-Carlo selection with the weights n

pΓ and n
ifΓ , . 

 
As shown by equations (6.8) and (6.9) of section 6.2.1, in this case we have an additional 
dependence of Γf(t) on the deformation at the fission barrier xb, on the reduced mass µ and on the 
frequency of the system at the ground state ω1. Considering that  
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where K1 is the stiffness of the parabolic nuclear potential, the implementation of this description 
in the evaporation code requires determining the saddle point deformation xb and the stiffness K1 
of the different nuclei that are produced during the deexcitation cascade. For the saddle point 
deformation xb we use the expression taken from [HaM88] 
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where y = 1-α and α is the fissility parameter. For the stiffness K1, we use the liquid-drop-model 
predictions of reference [MyS66] 
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Finally, we should remark that for the three descriptions considered, when calculating n

sumt , we 
express the particle decay time and the fission decay time by the average decay times τp and τfission 
instead of sampling these quantities from a statistical decay-time distribution. In spite of this 
approximation, our treatment of the decay cascade is more realistic than previous formulations. 
For example, in reference [BaB93] several analytical expressions for the probabilities of the 
diverse decay channels are given considering the step function and the exponential in-growth 
function to describe the form of Γf(t). However, this is done under the simplifying assumption 
that the total decay widths are unchanged from one step to the next in the decay cascade. In 
[BuH91] the exponential-like in-growth function is used, but the total decay time at each step of 
the cascade is considered to be ruled uniquely by the neutron-decay life time at that step, while 
the influence on the life time introduced by the other possible decay channels is not considered. 
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Resumen 
 
 

1. Motivación y objetivos 
 
De acuerdo con el modelo de Bohr y Weehler [BoW39], el proceso de desexcitación de un núcleo 
pesado puede describirse desde un punto de vista puramente estadístico, donde la probabilidad de 
los diversos canales de desexcitación viene dada fundamentalmente por la densidad de niveles de 
energía existentes en el espacio de fases. Sin embargo el progreso de las técnicas experimentales ha 
permitido comprobar que este modelo es insuficiente. Esta discrepancia entre el modelo estadístico 
y los datos experimentales [GaB81, HiH81] viene dada porque la ocupación de los estados 
accesibles del espacio de fases y el consiguiente establecimiento del equilibrio termodinámico no 
ocurre espontáneamente como se asume en el modelo estadístico sino que conlleva un tiempo, es 
decir, el proceso de desexcitación de un núcleo pesado requiere una descripción dinámica. Debido a 
la gran cantidad de grados de libertad no existe por el momento ninguna teoría a nivel puramente 
microscópico que explique este proceso de desexcitación. Por esta razón, la mayoría de los modelos 
existentes son teorías de transporte [Wei80], es decir, teorías que tratan de describir el proceso de 
desexcitación usando un número reducido de variables. En estas teorías se hace una distinción entre 
grados de libertad colectivos o macroscópicos y grados de libertad intrínsecos o microscópicos, los 
últimos son tratados como un baño térmico. Esta idea nos recuerda a las teorías que describen el 
movimiento browniano de una partícula de polen en un fluido donde el grado de libertad colectivo 
es la posición o la velocidad de la partícula de polen y los movimientos de las moléculas del fluido 
constituyen los grados de libertad intrínsecos. En el núcleo, los grados de libertad intrínsecos son 
los estados individuales de los nucleones y los grados de libertad colectivos corresponden al 
movimiento coordinado del conjunto o de parte de los nucleones, a saber, vibraciones, rotaciones y 
todo tipo de deformaciones. La aplicación de las teorías de transporte al núcleo refleja una cuestión 
de auto consistencia ya que en este caso los grados de libertad colectivos están formados por los 
grados de libertad intrínsecos. Estos dos tipos de grados de libertad pueden interaccionar entre si 
intercambiando energía. El proceso por el cual se transfiere energía entre los grados de libertad 
intrínsecos y los grados de libertad colectivos se denomina disipación. La disipación esta 
cuantificada por el coeficiente reducido de disipación β definido como 
 

[ ]coll
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dt

dE
−= β                                                   (1.1) 

 
donde Ecoll es la energía media del grado de libertad colectivo a un tiempo t y eq

collE es la energía 
media del grado de libertad colectivo en el equilibrio térmico. Por tanto, la ecuación (1.1) implica 
que el coeficiente reducido de disipación mide la tasa relativa con la que varía la energía de un 
grado de libertad colectivo. En otras palabras, la disipación determina cuanto tiempo necesita un 
grado de libertad colectivo para alcanzar el equilibrio.   
 
El proceso de fisión es el ejemplo más claro de movimiento colectivo a gran escala. Por esta razón, 
el proceso de fisión se presenta como un candidato ideal para estudiar la evolución dinámica de un 
grado de libertad colectivo y su interacción con el baño térmico que constituyen el conjunto de los 
nucleones. Durante las últimas tres décadas se han realizado numerosos estudios tanto 
experimentales como teóricos sobre el proceso de fisión para determinar el valor del coeficiente 
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reducido de disipación β y su dependencia con la temperatura y la deformación.  Sin embargo este 
tema sigue siendo objeto de intensos debates. Existen un gran número de teorías de transporte que 
intentan determinar el coeficiente reducido de disipación. Algunas de las más relevantes son la 
teoría de transporte cuántica de Hofmann et al. [Hof97], la Dissipative Diabatic Dynamics 
(Dinámica Diabática Disipativa, DDD) de Nörenberg [Nör83] y la Wall and window formula 
(formula de la pared y la ventana) de Swiatecki et al. [BlB78]. La teoría de Hofmann establece que 
β aumenta con la temperatura siguiendo la expresión 
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donde T se mide en MeV  y β en MeV/h. Esta misma teoría predice para 234Th una leve 
dependencia de β con la deformación. Por otro lado, la teoría DDD de Nörenberg aplicada a un gas 
de fermiones que interactuan [Nör81] predice que β es proporcional a 1/T2 adoptando un valor de 
40⋅1021s-1 [HiR92] para  T = 2.5 MeV. Finalmente, según el más fenomenológico de los tres 
formalismos, la wall and window formula, β es independiente de la temperatura y aumenta con la 
deformación alcanzando valores máximos de β = 22⋅1021s-1. Desde el punto de vista experimental la 
situación es igualmente complicada. En nuestra opinión, la divergencia entre las diversas técnicas 
experimentales tiene orígenes diversos. Por un lado, las técnicas experimentales usadas hasta ahora 
son limitadas y resulta difícil determinar observables sensibles a la magnitud de la disipación. Por 
otro lado, muchos observables han sido interpretados con modelos que no se ajustan a las 
condiciones experimentales y que contienen aproximaciones inapropiadas con el fin de acortar el 
tiempo de cálculo. Además, en ocasiones los resultados obtenidos por técnicas experimentales 
diferentes no son comparables.  
 
Existe una relación entre los observables que se miden experimentalmente y la zona de deformación 
a la que son sensibles. Así por ejemplo, la energía cinética de los fragmentos de fisión nos informa 
de la disipación en la región en la que el núcleo está muy deformado, entre la barrera de fisión y el 
punto de escisión. La multiplicidad de las partículas emitidas es sensible a la disipación en todo el 
rango de deformaciones, desde el estado fundamental hasta el punto de escisión. Por el contrario, 
las secciones eficaces de fisión y de los residuos de evaporación están influenciadas por la 
disipación en la zona de pequeñas deformaciones entre el estado fundamental y la barrera de fisión. 
Recientes resultados experimentales parecen mostrar un cierto consenso en lo que respecta a la 
dependencia de β con la deformación. Estos resultados indican claros efectos del retraso dinámico 
inducido por la disipación en la zona de amplia deformación. Sin embargo en la zona donde el 
núcleo no está aun muy deformado no se han encontrado señales claras de disipación. Hay grupos 
que obtienen claros efectos con valores de β = 4⋅1021s-1 [ShD00] y β = 6⋅1021s-1 [DiS01], mientras 
otros grupos observan efectos muy débiles con [JiP01, LoG01] y finalmente otros trabajos [HuB00, 
Dio01] sostienen que sus medidas pueden ser interpretadas aplicando el modelo estadístico, 
contradiciendo así la existencia de disipación.  
 
El objetivo de este trabajo es precisamente estudiar la disipación en el rango de pequeñas 
deformaciones. Nuestra contribución tiene varios aspectos. Por la parte experimental hemos 
aplicado un método muy apropiado para la investigación de la disipación. En este método la fisión 
es inducida a partir de colisiones periféricas con iones pesados a energías relativistas. La 
deformación del núcleo resultante tras la colisión es prácticamente la del estado fundamental y su 
momento angular es muy bajo (∆I<20� ) [JoI97]. Estas condiciones son muy difíciles de conseguir 
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por los métodos experimentales más convencionales y representan importantes ventajas pues 
simplifican considerablemente la descripción teórica del proceso. Además, con este método se 
accede a energías de excitación muy altas lo cual permite observar los efectos de disipación en 
núcleos poco deformados, ya que a estas energías el tiempo de decaimiento por emisión de 
partículas predicho por el modelo estadístico es menor que el retraso dinámico inducido por la 
disipación. No obstante, es preciso tener en cuenta recientes resultados experimentales [Ric02, 
ScR02] los cuales indican que a temperaturas mayores que aproximadamente 5 MeV surgen 
inestabilidades térmicas que finalmente derivan en multifragmentación. Las consecuencias de este 
tipo de procesos se discutirán mas adelante. El montaje experimental usado, especialmente 
concebido para el estudio de reacciones de fisión en cinemática inversa, nos ha permitido introducir 
dos nuevos observables sensibles a la disipación en la región de deformaciones pequeñas. La 
interpretación de los observables en términos del coeficiente de disipación requiere el uso de 
modelos teóricos. Por esta razón, hemos hecho un intenso análisis de las aproximaciones más 
comúnmente usadas para reproducir los efectos de la disipación en el proceso de fisión. Dada la 
insuficiencia de estas aproximaciones, hemos desarrollado una descripción de estos efectos 
considerablemente más realista. 
 

2. Experimento y resultados 
 
Para poder estudiar reacciones de fragmentación se necesita un haz intenso de iones pesados a 
energías relativistas. Este tipo de haces existe en el GSI donde se aceleran iones de 238U hasta 
energías de 1 GeV por nucleón, permitiendo realizar estudios de reacciones nucleares en cinemática 
inversa. Después de ser acelerado, el haz de uranio fue conducido al montaje experimental donde se 
detectaron los fragmentos de fisión emitidos tras la interacción del haz con un blanco. Comparado 
con los experimentos en cinemática normal, la técnica de la cinemática inversa facilita 
considerablemente la detección y la identificación de los fragmentos de fisión, ya que los 
fragmentos de fisión están focalizados hacia delante y debido a su alta velocidad, su carga nuclear 
puede ser medida con gran precisión. Los instrumentos claves de nuestro montaje experimental eran 
dos cámaras de ionización situadas delante y detrás del blanco, y una cámara de ionización doble. 
Las dos cámaras permitieron seleccionar únicamente aquellos sucesos de fisión interesantes, que 
son los que tienen lugar en el blanco. A partir de la cámara de ionización doble se pudo determinar 
la carga nuclear de los dos fragmentos de fisión. Combinando la información dada por la cámara de 
ionización situada detrás del blanco y la información dada por la cámara de ionización doble, se 
obtuvo una eficiencia de aproximadamente un 97% para la detección de los sucesos de fisión. Con 
este montaje se determinaron las secciones eficaces totales de fisión σf de 238U a 1 GeV por nucleón 
en blancos de C, (CH2)n, Cu y Pb. Puesto que se cumple que   
 

σf(CH2)= σf(C) +2σf(H)                                                  (2.1) 
 

nos fue posible deducir la sección eficaz total de fisión en hidrógeno. Esta sección eficaz es de gran 
importancia para el diseño de reactores híbridos [NiD01] y fuentes de neutrones [Bau01]. Como se 
observa en la tabla 2.1, los resultados concuerdan bien con los datos ya existentes para las mismas 
reacciones. Es más, en la mayor parte de los casos, la precisión de las secciones eficaces 
determinadas en este trabajo es mayor que la de los datos ya publicados.  
 
En el caso de la reacción  238U (1 A GeV) + (CH2)n se determinaron dos nuevos observables: las 
secciones eficaces de fisión en función de la suma de las cargas de los fragmentos de fisión 
σf(Z1+Z2) y la anchura de las distribuciones de carga de los fragmentos de fisión. A las primeras las 
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denominaremos de ahora en adelante secciones eficaces parciales de fisión. Ambos observables son 
también sensibles a la disipación entre el estado fundamental y la barrera de fisión. Puesto que los 
fragmentos de fisión son ricos en neutrones y su energía de excitación no es muy alta, la 
probabilidad de que éstos emitan protones es muy baja. Por lo tanto, la suma de las cargas nucleares 
de los fragmentos de fisión Z1+Z2 es prácticamente igual a la carga del núcleo que fisiona. A su vez, 
la carga del núcleo que fisiona representa una medida del parámetro de impacto de la colisión y por 
tanto de la energía de excitación inducida. Cuanto menor es la carga del núcleo que fisiona mayor 
es la energía de excitación inducida. A altas energías de excitación, es decir, para los valores de 
Z1+Z2 más bajos, el retraso inducido por la disipación se hace perceptible y como consiguiente, es 
de esperar que las secciones eficaces parciales σf(Z1+Z2) sean menores que los valores que predice 
el modelo estadístico. Por otro lado, empíricamente [RuI97, MuS98] se ha establecido que existe 
una relación lineal entre la varianza de la distribución de carga σZ

2 de los fragmentos de fisión y la 
temperatura del núcleo en la barrera de fisión. Por tanto si se estudia la varianza σZ

2 en función de 
Z1+Z2, la existencia de una supresión de la fisión causada por la disipación implicaría que el núcleo 
evapora partículas antes de fisionar y, consiguientemente, para los valores más bajos de Z1+Z2 la 
temperatura de fisión sería más baja que la temperatura de acuerdo con el modelo estadístico. En 
otras palabras, si existe la disipación, la varianzas de las distribuciones de carga asociadas con los 
valores más bajos de Z1+Z2 serán menores que las varianzas que resultan del modelo estadístico.   
 

Blanco total
fisσ [b] 

total
fisσ [b]  

otros resultados 

H 1.52  ± 0.10 1.47 ± 0.07 [BoB78] 
1.48 ± 0.06 [VaA81] 

C 1.30 ± 0.03 1.13 ± 0.08  [RuB96] 
(CH2)n 4.35 ± 0.10  

Cu 1.89 ± 0.06 1.86 ± 0.11 [RuB96] 
Pb 3.84 ± 0.14 3.75 ± 0.38 [PoB94] 

Tabla 2.1: Secciones eficaces totales de fisión correspondientes a la reacción de 238U a 1 GeV por 
nucleón en distintos blancos. La primera columna refleja los resultados de este trabajo y la segunda 
los resultados de otras publicaciones.  
 
Este nuevo método experimental permite producir núcleos pesados con deformaciones, momentos 
angulares y energías de excitación tales que permiten aplicar el modelo de Grangé y Weidenmüller 
[GrJ83] para describir el proceso de fisión. El modelo de Grangé y Weidenmüller está basado en la 
idea inicial de Kramers  [Kra40] de considerar el proceso de fisión de forma análoga al movimiento 
browniano. Así, la fisión puede entenderse como la evolución de uno o varios grados de libertad 
colectivos de fisión en el baño térmico formado por el conjunto de los nucleones. Tal proceso está 
descrito por la ecuación de Fokker-Planck [Ris89] donde el coeficiente reducido de disipación β 
aparece como un parámetro. 
 
Grangé y Weidenmüller [GrJ83] resolvieron numéricamente la ecuación de Fokker-Planck bajo 
unas condiciones iniciales que coinciden con las condiciones iniciales inducidas por nuestro método 
experimental. De sus cálculos resultó que el proceso de fisión está descrito por una anchura de 
fisión dependiente del tiempo Γf(t). Es decir, que mientras que desde el punto de vista puramente 
estadístico de Bohr y Wheeler [BoW39] la anchura de fisión es constante en el tiempo, si se 
consideran los efectos introducidos por la disipación, la anchura de fisión está suprimida al inicio 
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del proceso, después de un tiempo aumenta y finalmente alcanza un valor estacionario que es menor 
que el valor constante que se obtiene de aplicar el modelo estadístico. La dependencia temporal de 
la anchura de fisión se describe normalmente a partir del tiempo de tránsito τf que fue definido en 
[BhG86] como el tiempo necesario para que la anchura de fisión alcance 90% del valor asintótico.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 2.1: Tasa de fisión λf(t) = Γf(t)/ �  en función del tiempo con β = 5⋅1021 s-1, 
T = 3 MeV y A = 248. La línea continua representa el resultado de la solución numérica de la 
ecuación de Fokker-Planck tomada de la referencia [BhG86]. La línea a trazos es la aproximación 
introducida en este trabajo, obtenida a partir de la solución analítica de la ecuación de Fokker-
Planck para un potencial nuclear parabólico [Cha43]. La línea a puntos corresponde a la función 
escalón y la línea a trazos y puntos a la función de crecimiento exponencial.  
 
Tanto el valor estacionario como el tiempo de tránsito dependen de β. Por consiguiente, un modelo 
teórico fiable debe contener una descripción realista de la dependencia de la evolución temporal de 
la anchura de fisión. Sin embargo, no es fácil introducir estos efectos en los códigos teóricos 
usuales por lo cual en la mayoría de los casos se emplean aproximaciones para describir Γf(t). Las 
dos más usadas son una función escalón que pasa a ser distinta de cero cuando se ha alcanzado el 
tiempo de tránsito τf y una función basada en un crecimiento exponencial. Dada la crudeza de estas 
aproximaciones, hemos desarrollado una aproximación mucho más realista de Γf(t) basada en la 
solución analítica de la ecuación de Fokker-Planck para un potencial nuclear que se aproxima con 
una parábola [Cha43]. La figura 2.1 muestra las diversas aproximaciones de la tasa de fisión λf(t) = 
Γf(t)/�  en comparación con la función que resulta de la solución numérica de la ecuación de 
Fokker-Planck [BhG86] representada por la línea continua. La línea a trazos es la aproximación 
introducida en este trabajo, la línea a puntos corresponde a la función escalón y la línea a trazos y 
puntos a la función de crecimiento exponencial. A parte de la reducción del valor asintótico de la 
anchura de fisión, el efecto más importante introducido por la disipación es la supresión inicial de la 
tasa de fisión λf(t) = Γf(t)/� . Nuestra expresión analítica reproduce muy bien este efecto mientras 
que la función exponencial no reproduce dicha supresión y, es más, presenta una pendiente máxima 
para los tiempos pequeños. Por esta razón, creemos que esta aproximación no reproduce los efectos 
de la disipación adecuadamente.  
 
La interpretación de los observables ha sido llevada a cabo mediante una versión actualizada del 
código ABRABLA [GaS91, JuJ98], un código Monte-Carlo basado en los modelos de abrasión y 
estadístico. Las tres aproximaciones de la evolución temporal de la anchura de fisión Γf(t) 
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representadas en la figura 2.1 han sido implementadas en este código. Comparando los datos 
experimentales con las diversas descripciones hemos podido investigar hasta qué punto los 
resultados sobre disipación se ven afectados por las aproximaciones usadas para describir Γf(t). El 
valor de β necesario para reproducir la sección eficaz total de fisión de la reacción 238U(1 A GeV) + 
Pb depende fuertemente de la descripción que se use para Γf(t). Mientras que la función escalón y la 
función basada en la solución analítica de la ecuación de Fokker-Planck requieren un valor de β = 
2·1021s-1, la función de tipo exponencial requiere un valor β = 4·1021s-1.  
 

Figura 2.2: Secciones eficaces parciales de fisión (puntos negros parte a) y anchuras de las 
distribuciones de carga de los fragmentos de fisión (puntos negros parte b) correspondientes a la 
reacción 238U (1 A GeV) + (CH2)n en función de la suma de las cargas nucleares de los dos 
fragmentos de fisión. Los datos experimentales se muestran en comparación con varios cálculos 
realizados con ABRABLA. Las líneas a trazos corresponden a cálculos realizados usando la 
aproximación de tipo exponencial y β = 4⋅1021s-1. Las líneas a puntos corresponden a cálculos 
basados en la función escalón y β = 2⋅1021s-1 y las líneas continuas resultan de aplicar la 
aproximación dada por la solución analítica de la ecuación de Fokker-Planck y β = 2⋅1021s-1. 
 
Las secciones eficaces parciales de fisión y las anchuras de las distribuciones de carga se 
encuentran representadas en las figuras 2.2a) y 2.2b), respectivamente. Las líneas representan los 
resultados de diversos cálculos realizados aplicando las distintas aproximaciones para la función 
Γf(t). La línea a trazos corresponde a la aproximación de tipo exponencial con β = 4·1021s-1, la línea 
a puntos a la aproximación dada por la función escalón con β = 2·1021s-1 y la línea continua a la 
solución analítica de la ecuación de Fokker-Planck con β = 2·1021s-1. La figura 2.2a) muestra que 
todas las descripciones reproducen igualmente bien las secciones eficaces parciales de fisión. En 
cambio, la figura 2.2b) muestra que la aproximación exponencial sobreestima las anchuras de las 
distribuciones de carga. La razón se debe a que esta aproximación implica que la fisión no se 
encuentra inhibida al inicio del proceso de desexcitación. Por tanto esta descripción sobreestima la 
temperatura con la que el núcleo fisiona y consecuentemente sobreestima también la anchura las 
distribuciones de carga. Este resultado confirma nuestra crítica inicial hacia esta aproximación. 
 
Finalmente, para determinar la magnitud del coeficiente reducido de disipación β hemos comparado 
los dos nuevos observables con diversos cálculos realizados con ABRABLA para diferentes valores 
de β. Para ello hemos empleado la aproximación dada por la solución analítica de la ecuación de 
Fokker-Planck que hemos desarrollado en este trabajo. Los resultados están representados en la 
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figura 2.3. El modelo estadístico representado por la línea a trazos sobreestima claramente tanto las 
secciones eficaces parciales como las anchuras de las distribuciones de carga. Para describir estos 
nuevos observables es preciso incluir los efectos de la disipación. La mejor descripción de los datos 
experimentales se obtiene con β = 2⋅10-21s-1. Este valor de β corresponde a una anchura de fisión 
para la cual el tiempo necesario para adquirir el valor asintótico es mínimo. Es decir, que, en efecto, 
el grado de libertad colectivo experimenta una cierta disipación en su evolución hacia el equilibrio y 
por tanto necesita un cierto tiempo para poblar el espacio de fases. No obstante, el tiempo de 
tránsito correspondiente es el mínimo tiempo posible. En otras palabras, el grado de libertad 
colectivo experimenta un amortiguamiento crítico y no sobre amortiguado.  
 

Figura 2.3: Secciones eficaces parciales de fisión (puntos negros parte a) y anchuras de las 
distribuciones de carga de los fragmentos de fisión (puntos negros parte b) correspondientes a la 
reacción 238U (1 A GeV) + (CH2)n en función de la suma de las cargas nucleares de los dos 
fragmentos de fisión. Los datos experimentales se muestran en comparación con varios cálculos 
realizados con ABRABLA. La línea a trazos ha sido obtenida aplicando el modelo estadístico sin 
incluir la disipación. El resto de los cálculos ha sido realizado aplicando la aproximación derivada 
de la solución analítica de la ecuación de Fokker-Planck. La línea continua ha sido calculada con β 
= 2⋅1021s-1, la línea a puntos con β = 0.5⋅1021s-1 y la línea a trazos y puntos con β = 5⋅10-21s-1. 
 
La relación entre el tiempo de tránsito τf y β viene dada por la ecuación de Fokker-Planck [BhG86]. 
Al valor de β = 2⋅1021s-1 le corresponde una distribución de tiempos de tránsito cuyo valor medio es 
τf ≈ (1.7±0.4)⋅10-21s. Este resultado es compatible con otros trabajos [HuB00, MoJ95, JiP01, 
LoG01] sensibles al mismo rango de deformaciones. En nuestro análisis hemos asumido que β 
permanece constante con la temperatura. Es difícil establecer un juicio sobre la dependencia de β 
con la temperatura a partir de nuestros datos ya que el intervalo de temperaturas donde se puede 
investigar esta dependencia esta limitado. Por un lado, de acuerdo con resultados experimentales 
recientes [Ric02, ScR02], existen indicaciones de que la energía máxima con la que un núcleo 
puede fisionar esta limitada a un valor de unos 550 MeV. Pero además, nuestros observables son 
insensibles a los efectos del tiempo de tránsito para energías de excitación por debajo de 150 MeV y 
por encima de 350 MeV. Para energías de excitación por debajo de 150 MeV y siempre que β este 
dentro de un rango determinado de valores, el tiempo de decaimiento estadístico es 
considerablemente mayor que el tiempo de tránsito inducido por la disipación. Para energías 
mayores que 350 MeV el amortiguamiento crítico es suficiente para inhibir completamente la 
fisión. Esto quiere decir que tanto si β aumenta como si decrece con la temperatura, el tiempo de 
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tránsito será mayor que en el caso del amortiguamiento crítico y lo único que se seguirá observando 
experimentalmente es la completa inhibición de la fisión para energías de excitación mayores que 
350 MeV.  
 
    3. Conclusión  

 
Hemos aplicado un método experimental muy adecuado para el estudio de la disipación en el rango 
de deformaciones pequeñas donde la fisión es inducida por colisiones periféricas con iones pesados 
a energías relativistas. A parte de medir la sección eficaz total de fisión del 238U a 1 GeV por 
nucleón en diversos blancos, hemos introducido dos nuevos observables sensibles a la magnitud de 
la disipación en este intervalo de deformación: las secciones eficaces parciales de fisión y las 
anchuras de las distribuciones de carga de los fragmentos de fisión.  
 
Los datos experimentales han sido comparados con un código Monte-Carlo en el que hemos 
incluido diversas aproximaciones para la evolución temporal de la anchura de fisión. De la 
comparación con las secciones eficaces totales de fisión se deduce que los resultados dependen 
considerablemente de la aproximación que se use. El análisis de los dos nuevos observables muestra 
que una de las aproximaciones mas comúnmente usadas, expresada por un crecimiento de tipo 
exponencial, no reproduce bien los efectos de la disipación y por tanto no permite describir el 
conjunto de los observables de forma consistente. La aproximación que hemos introducido en este 
trabajo es mucho más realista que las aproximaciones que se han usado hasta ahora y permite una 
descripción muy satisfactoria de todos los observables. Asumiendo la validez de esta aproximación 
[JuS02], la comparación de los cálculos con los datos experimentales confirma la existencia de la 
disipación en núcleos poco deformados. No obstante, la disipación que se observa corresponde a un 
amortiguamiento crítico con β = 2⋅1021s-1.  
 
Los observables estudiados han sido descritos asumiendo que el coeficiente de disipación β no 
depende de la temperatura. No obstante, el estudio de la dependencia de β con la temperatura a 
partir de los observables que hemos presentado es posible sólo en el intervalo de energías de 
excitación por debajo de 350 MeV.  
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