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Resumen

7 El Agnosticismo no es un credo, sino un método basado en la
aplicacion de un solo principio: sigue tu razon donde quiera que te
lleve, sin tener en cuenta cualquier otra consideracion, sin admitir
como cierta cualquier conclusion que no haya sido o no pueda ser
demostrada.”

Thomas H. Huzley, 1860.

La produccion y el estudio de nicleos exdticos ha sido reconocido mundialmente
como una novedosa y potente técnica experimental para investigar la naturaleza
de la interaccién nuclear. Estos son nicleos no estables que nos permiten cubrir
un gran rango de is6topos con diferente nimero de protones y neutrones. Estos
nucleos brindan una oportunidad excepcional para estudiar la estructura nuclear
lejos de la estabilidad, producir materia nuclear rica en neutrones con una densidad
y temperatura altas, asi como reproducir en el laboratorio las reacciones nucleares
responsables de los procesos de nucleosintesis estelar. Ademds, con esta técnica
se pueden producir ntucleos que presentan modos exoticos de desintegracion que
pueden ser empleados en la investigacion de propiedades fundamentales del modelo
standard, o is6topos cuya importancia radica en aplicaciones médicas o industriales.

Recientemente ha sido aprobado un nuevo proyecto europeo denominado R3B
(estudios de reaccién con haces radiactivos reslativistas) relacionado con la investi-
gacion con nucleos exoéticos. Los objetivos de este proyecto son disenar e implemen-
tar parcialmente un dispositivo experimental avanzado para el estudio de niicleos
exéticos en el Gesellschaft fiir Schwerionenforschung (GSI) Darmstadt, Alemania.
R3B proporcionara unas condiciones experimentales tinicas para realizar investiga-
ciones con haces secundarios para el beneficio de investigadores en los campos de la
estructura nuclear, la fisica de reacciones nucleares, la astrofisica nuclear y la fisica
nuclear aplicada.

El logro técnico de estos experimentos es detectar e identificar completamente en
nimero masico y atomico, asi como determinar la energia de todos los productos que



provienen de las reacciones inducidas por ntcleos ex6ticos. Para lograr este objetivo
se ha propuesto un complejo sistema de varios detectores. La medida de la pérdida de
energia de los productos de reacciéon por camaras de ionizacion permite determinar
su nimero atémico. Ademads, el empleo de campos magnéticos de gran intensidad
permite la determiacién de la rigidez magnética de los productos de reaccion la cual,
conjuntamente con la medida de sus velocidades, permite conocer su niimero masico.

Uno de los detectores clave de este dispositivo experimental es un detector
Cerenkov que sera empleado para la medida de las velocidades de los fragmentos
provenientes de las reacciones en el blanco. El objetivo de este trabajo es simular
un detector Cerenkov de imagen de anillos (RICH) que serd implementado en el
dispositivo R®*B. Esta simulacién sera utilizada con el propésito de optimizar el
diseno de dicho detector. Para llevar a cabo este proyecto hemos dividido el trabajo
en cuatro partes diferenciadas:

e En el primer capitulo se hace un primer acercamiento al projecto R*B. Se
describen el dispositivo experimental y los detectores empleados en él, asi
como la técnica experimental utilizada para identificacién de particulas. Se
discute la resolucién requerida para los distintos detectores y se justifica la
utilizacién de un RICH para medir las velocidades de los iones bajo estudio.

e En el segundo capitulo se discuten las interacciones primarias de los iones pe-
sados con la materia: pérdidas de energia, dispersién en energia, dispersion
angular e interacciones nucleares. Varios c6digos standard en el cdlculo de estas
interacciones serdn comparados con el propdsito de elegir aquél que propor-
cione un descripcién mas cercana a los datos experimentales para ser posterior-
mente implementado en la simulacién. Estos cédigos son ATIMA, AMADEUS,
GEANT 3.21 y SRIM 2000. De estas comparaciones se concluye que los codigos
SRIM 2000 y GEANT 3.21 no estan optimizados para calcular la pérdida y
dispersion en energia para iones pesados en el rango de energias en el que tra-
bajamos. Sin embargo, GEANT 3.21 es un potente cédigo Monte-Carlo que
permite la simulacién completa de un determinado dispositivo experimental,
efectuando el “tracking” de cualquier particula a través de él. El interés en el
uso de este cédigo estd entonces justificado, consecuentemente tendrd que ser
modificado con funciones externas para adecuar la precision en el calculo de
los anteriores pardmetros a nuestros requerimientos.

e En el tercer capitulo se discuten las principales caracteristicas de la radiacion
de Vavilov-Cerenkov, asi como la descripcién de la simulacién del detector
Cerenkov. Se efectuaran sistematicamente varias simulaciones con el propdsito
de investigar la resolucién en velocidad obtenida para diferentes disenios técnicos
del detector teniendo en cuenta diferentes radiadores, espesores del mismo,
la granularidad del detector de fotones...buscando siempre una resolucién en
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velocidad adecuada y tratando de minimizar las interacciones atémicas y nu-
cleares de los iones en el Cerenkov, las cuales influirdn negativamente en la
posterior identifiacion de éstos. Estos estudios sistematicos fueron realizados
para los siguientes radiadores: radiador liquido de CgFi4, radiador sélido de
MgF, y radiador sélido de Si0,. Se observara que la resolucién en velocidad
mejora a medida que aumenta la carga del nicleo que atraviesa el radiador
debido al mayor nimero de fotones generados, sin embargo, a partir de la
carga 25-30 el papel de la pérdida de energia en el radiador toma importancia
y compensa la generacion de fotones, manteniéndose la resolucién en un valor
casi constante. La resolucién en velocidad también mejorard al aumentar la
energia cinética del niucleo incidente debido a dos factores, en primer lugar al
aumento en el nimero de fotones generados y, segundo, a la menor pérdida de
energia. También fue estudiada la variacion de la resolucién en velocidad con
los cambios en el espesor del radiador, se vera que, al aumentar el radiador,
la resolucién disminuye, demostrando que el efecto de la pérdida de energia
domina a la generacion de fotones. Por tltimo la variacién de la resolucién en
velocidad como funcién de la granularidad del detector serd también estudi-
ada, demostrando que dicha granularidad no es un factor determinante en la
resolucién en velocidad.

El cuarto capitulo se concentra en la simulaciéon de varios experimentos con
el propésito de elegir el mejor diseno del detector para el estudio de cada uno
de ellos. Se estudiardn varios casos representativos como son: la fision del
28] 4+ Pb a 600 MeV /u, las espalaciones del *Fe + p a 600 MeV/u y del
208Ph+p a1 GeV/u, asi como la fragmentacién del *2Sn + Pb a 600 MeV /u.

En el caso de la fisién se obtendran senales con dos anillos en el detector de
fotones debido a la emisién simulatanea de ambos fragmentos de fisién. Se dis-
cutira el proceso mediante el cual se obtiene el radio de ambos anillos a partir
de esas senales. Del estudio de las interacciones primarias de varios residuos
tipicos de la fisién con los materiales que componen el detector Cerenkov, junto
con el estudio de los diferentes rangos en energia cubiertos por cada uno de
los radiadores se propondra el radiador para el estudio de estos experimentos.
Finalmente se propuso un radiador sélido de Si0y de 2 mm de espesor para
el estudio de reacciones de fisién. Posteriormente a la eleccién del radiador
se estudiara como influye la materia que constituye el detector Cerenkov en
la resolucién de la medida de la energia cinética para los distintos residuos de
fision. Se verda que el papel mas importante en dicha resolucién lo juega la
dispersién angular en el blanco de plomo, con lo cual la eleccién del radiador
no es determinante para esas medidas.

En los sucesos de espalacion se han simulado los mismos aspectos que en el
caso de la fisiéon. La eleccién del radiador se ha hecho teniendo en cuenta los
mismos argumentos que en aquél. En estos casos las propuestas han sido un
radiador sélido de Si0y de 5 mm de espesor para el caso de la fragmentacién

5



del ®Fe y de 2 mm de espesor en el caso de la espalacién del 2% Pb a bajas
energfas (inferiores a 750 MeV /u). En el caso de energias superiores se verd
que el Si0, no puede ser empleado debido a efectos de reflexion total interna,
si bien se discutird un nuevo modo de operacion de los radiadores basado en
ese efecto. En el caso de la espalacién a alta energfa del 2 Pb se propondra
utilizar un radiador sélido de 2 mm de espesor de M gF, o bien 2 mm de SiO,
pero trabajando en el modo de reflexion total interna. Posteriormente a la
eleccion del radiador se estudiara, como en el caso de la fision, la influencia de
la materia que compone el detector Cerenkov en la resolucion de la medida de
la energia cinética. En este caso se demostrard que las resolusiones en dichas
medidas vienen principalmente determinadas por la dispersiéon en velocidad
que los residuos de espalacién sufren en el radiador del detector.

En el caso de la fragmentacién del 32Sn el radiador propuesto fueron 3 mm
de espesor de Si0,. Este espesor fue elegido con el propésito de obtener una
buena resolucién en velocidad incluso para los fragmentos més ligeros. Como
en los casos anteriores, la incertidumbre en la medida de la energia cinética
debida a la materia que forma parte del detector Cerenkov fue estudiada. En
este caso la mayor influencia en esta incertidumbre viene dada por la dispersion
en velocidad sufrida por los fragmentos en el blanco de plomo, con lo cual, la
eleccién del radiador no es determinante para la medida de la energia cinética.

Finalizaremos este trabajo con una discusién sobre la implementacion de de-
tectores de fotones de reciente desarrollo con el fin de aumentar la eficiencia
cuantica de dicho detector y mejorar asi la resolucion en velocidad obtenida
con el RICH.



Introduction

7 It is better for a man to be lacking in wisdom and to have no
understanding of science but to be fearful of God, than to have much
understanding but transgress the Law of the Almighty.”

Eclesidstico, XIX-21.

The production and study of exotic nuclei has been recognized worldwide as a
novel and powerful experimental technique to investigate the nature of the nuclear
interaction. This technique allows to produce nuclei with widely varying proton-
to-neutron ratios, which cannot be found in nature. These nuclei give us a unique
oportunity to investigate nuclear structure far from stability, to produce hot and
dense neutron rich nuclear matter or to reproduce in the laboratory the nuclear re-
actions responsible of the stelar nuclesynthesis processes. In addition we can produce
nuclei which present exotic desintegration modes that can be used to investigate fun-
damental properties of the standard model, or nuclei which have importance because
of their applications in medicine or industry.

Recently was aproved a new project called R*B (Reaction studies with Rela-
tivistic Radioactive ion Beams) related to the investigations with exotic nuclei. The
aim of this project is to design and partly implement an advanced experimental
facility for studies with exotic nuclei at the Gesellschaft fur Schwerionenforschung
laboratory (GSI) in Darmstadt, Germany. R3B will provide unique experimental
conditions worldwide for experiments with relativistic secondary beams to the bene-
fit of researchers in the fields of nuclear structure, nuclear reactions physics, nuclear
astrophysics and applied nuclear physics.

The technical challenge of this facility is to detect and fully identify in atomic
and mass number and to determine the energies of all the products outcoming from
reactions induced by exotic nuclei. To achieve this goal a complex system of dif-
ferent detectors has been proposed. The measurement of the energy loss of the
reaction products by ionization chambers allows to determine their atomic number.
In addition, the use of strong magnetic fields allows the determination of the mag-



netic rigidities of the reaction products that, together with a measurement of their
velocity, will provide their mass number.

One of the key detectors of this setup is a Cerenkov detector which will be used
to measure the velocity of the fragments outcoming the target. The goal of this
work is to simulate a Ring Imaging Cerenkov Detector to be implement into the
R3B experimental setup. This simulation will be used to optimize the design of
such a detector. In order to simulate and optimize this detector we will divide the
work into four different chapters:

e In the first chapter, an overview to the R®*B project is presented, the exper-
imental setup and the detectors are described, as well as the experimental
technique used for particle identification.

e In the second chapter, we discuss the primary interactions of heavy ions with
matter: energy-loss, energy straggling, angular straggling and nuclear interac-
tions. Some standard computational codes in this field will be compared and,
in addition to the theoretical descriptions, several simulations will be made
with these codes in order to chose the “closest to the reality” description to
be incorporated in our simulation.

e In the third chapter, we present the basic priciples of Vavilov-Cerenkov radi-
ation, as well as the description of the simulated Cerenkov detector. Several
simulations will be systematically made in order to investigate the velocity
resolution obtained for different designs of the detector considering different
radiators, thicknesses, photon detector resolution, etc.

e In the fourth chapter, some key experiments are simulated in order to define
the optimum design of the detector for any of them. The effect of total in-
ternal reflexion is applied to the radiators and, then, a new photon detection
operation mode will be described. In addition, further improvements on the
photon detector are discussed whithin the frame of the implementation of new
photon detectors recently developed.
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Chapter 1

Reaction studies with Relativistic
Radioactive Beams

7 Agnosticism is not a creed but rather a method based on applying
on sole principle: follow your reason wherever it takes you, giving
in to no other consideration, admiting no conclusion as correct that
has not or cannot be demonstrated.”

Thomas H. Huxley, 1860.

The importance of the Physics made with energetic beams of exotic nuclei has
been recognized worldwide and presents an important challenge for nuclear physics.
New nuclear phenomena have been observed and then, the nuclear models have to
be radically improved in order to explain these new phenomena. For this goal nuclei
far from beta stability are thought to play a decisive role. The secondary beam
technique (consisting on accelerate radioactive nuclei previously created in another
reaction) allows to produce nuclei with widely varying proton-to-neutron ratios,
which cannot be found in nature. The isotopes created with this method can be
studied in several ways: they could be stopped and studied with spectroscopy meth-
ods, alternatively, they can undergo high-energy nuclear reactions in a secondary
target. The nuclear structure and reaction dynamics can thus be explored and the
results of these studies could be be used in other fields than nuclear physics. The
main guidelines behind studies of exotic nuclei with high-energy reactions are:

e Halos: This effect appears when approaching to the neutron drip line. It has
been observed for ' Li, "' Be, Be, '"B and '°C.

e Skins: For a large neutron excess, the bulk of the neutron density is predicted
to extend beyond the proton density creating a sort of “neutron skin”. This
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4 Reaction studies with Relativistic Radioactive Beams

could be helpful for understanding the properties of neutron stars.

e Vanishing of shell closures: Theory end experiment are now indicating that
shell closures may change far from stability. A well-known example is the
disappearance of N=20 as a neutron magic number in Neon, Magnesium and
Sodium isotopes.

e To provide solid nuclear structure input for astrophysical purposes or other ap-
plications, either directly by measurements or, indirectly, by the improvement
of theoretical concepts on the basis of accumulated experimental information.

e To measure production cross sections in fission or fragmentation reactions
relevant in technical applications like the constructions of accelerator-driven
fission reactors or the incineration of nuclear waste.

Major breakthroughs on these topics require detailed nuclear reaction studies and
optimized experimental conditions. This requires high-quality secondary radioactive
beams together with the most advanced experimental equipment.

1.1 The R’B project.

The objectives of the R®B project are to design and partly implement an advanced
experimental setup for Reaction studies with Relativistic Radioactive ion Beams
(R3B). The experiments will take place in the cave B at the Gesellschaft fiir Schw-
erionenforschung laboratory (GSI) in Darmstadt, Germany (see fig.1.1). R3B will
provide unique experimental conditions worldwide for experiments with relativistic
secondary beams to the benefit of researchers in the fields of applied nuclear physics,
nuclear reaction physics and nuclear astrophysics.

The R3B experimental setup is described in the following with the help of figure
1.2. For a complete kinematic measurement, every particle out-coming from the
reaction has to be identified in mass, charge and, in addition, its momentum has to
be measured. The R3B proposal includes the measurement of the emitted ~ rays
with a Nal detector covering a 47 geometry around the secondary target. Neutrons
will be detected with the Large Area Neutron Detector (LAND). For the charged
particles, the measurement of the magnetic rigidity, Bp, together with the velocity,
B, allow the identification of the particle, according to:

Bp[Tm] = 3.107 - évﬂ (1.1)
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Figure 1.1: Gesellschaft fir Schwerionenforschung (GSI) facilities at Darmstadt
(Germany). The R®B project experiments will take place in the Cave B (down-right
in the picture).

where Bp is the magnetic rigidity, A is the nuclei mass number, ¢ is the atomic
charge, v is the Lorentz factor and £ is the nuclei velocity. For the measurement of
the Bp a large acceptance dipole and three position detectors are needed. For the
measurement of the particle velocities several methods as a Time-of-Flight (ToF) or
a Ring Imaging Cerenkov (RICH) detector could be used. From equation 1.1 once
measured Bp and 3, the ratio A/q can be determined. With a later measurement of
the nuclei charge z effectuated with the Multi-Sample Tonization Chamber (MUSIC),
and assuming that the ions are bare, the mass can be unambiguously determined.

One of the important topics to be studied is the reaction mechanism. For this
achievement the excitation energy, E*, of the nuclei before undergoing any reaction
has to be known precisely. This information can be obtained from the measurement
of all the masses and energies of the particles produced in the reaction according to
expression 1.2:

where E* is the projectile-like residue excitation energy, m 4 is the projectile-like
resiude mass, 7; and m; are the kinetic energy and mass, respectively, of all the
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Figure 1.2: Schematic picture of the R experimental setup at cave B (see figure 1.1).
From left to right we can observe the secondary target, the photon detector, the Ring
Imaging Cerenkov Detector (RICH), a position detector, the large acceptance supra-
conductor dipole, another position detector, the last position detector, the Large Area
Neutron Detector (LAND) and a ToF for light particle identification.

particles after the reaction (fragments, evaporated protons, neutrons, etc) and ; is
the energy of the photons emitted by the excited projectile. We will describe in the
following the detectors used in this setup:

e ~v-rays Detector: This detector could be either a ball with 160 Nal detectors
arranged in a 47 geometry or a compact Csl detector with 144 segments in
the forward direction.

e Dipole Magnet: Two important characteristics are required for the magnet:
high bending power and large acceptance. The first one is required in order to
separate two heavy neighboring nuclei according to the expression 1.1 and the
second one is needed in order to identify any particle produced in the reaction.
To fulfill this goal a supra-conductor dipole is under design. The field integral
of this dipole will be 4.8 Tm with a bending angle of 18 degrees for a rigidity
of 15 Tm and a geometrical acceptance of £ 80 mrad in vertical and horizontal
directions. The dipole magnet will be filled with He to minimize the angular
straggling of the ions.

e Position Detectors: Three position detectors are needed in order to recon-
struct the track of the particle to determine the bending angle in the dipole.
One of these detectors will be situated in front of the dipole, and the two
others behind the dipole. These detectors will provide a position resolution of
200 pm.
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e MUSIC Detector: The Multi Sample Ionization Chamber is used to identify
the charge of the particles passing through it according to the Z? dependence
on their energy loss. The charge is measured with an accuracy of 0.30 charge
units for charges below Z=80. This chamber could also be used as a horizontal
position detector based on a drift time measurement with an accuracy of 2 mm

[1].

e LAND Detector: The large area neutron detector was designed for the
detection of high energy neutrons. This detector must allow to resolve multiple
hits. The energy resolution of the neutron kinetic energy is about 5% and the
detection efficiency at 1 GeV is close to 100% [2].

e RICH Detector: This detector is used to measure the ion velocities rather
than a ToF, the justification will be given in the next section.

1.2 Detectors requirements for the R*B.

As we mentioned, to perform studies based on complete kinematic measurements,
all the particles generated in the reaction have to be identified in charge, mass
and momentum. In this section we will describe the requirements of the different
detectors used in this experimental setup to achieve this aim.

In order to identify the charge of the particles, a resolution % ~ 0.5 is needed.
This accuracy is fairly given by the Multi Sample Ionization Chamber (MUSIC),
which provides an accuracy in the charge determination of 0.3 charge units for
nuclei below Z=80..

In order to identify the mass of the particles and to separate two neighboring

nuclei, a resolution A(S% ‘)1) = % is needed. From equation 1.1 we obtain:

(A(z(‘ljé}{;)l)>2 N <Ag,3op))2 T _1,32)2 ' (%)2 (1.3)

The factor A(Bp)/Bpis given by the accuracy in the measurement of the bending
angle (given by the accuracy of the position detectors) and the dipole bending
power. In order to achieve the required accuracy in the mass identification, a velocity
resolution A3/ ~ 1072 and a position resolution of 200 um are required.

The dipole was chosen to provide a bending angle of 18 degrees for a magnetic
rigidity of 15 T-m. Taking the resolution of the position detectors as 200 ym we can
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estimate the uncertainty in the measurement of the bending angle, and from these
the accuracy of the measurement of the Bp introduced by the angular straggling in
the detectors, in the gas of the MUSIC and by the distance between the detectors
as follows:

b \/Aac% + Az + Azf

A
l

(1.4)

where [ is the distance between the position detectors, Az, takes into account the
position resolution of the second detector, the angular straggling in the first position
detector and the angular straggling in the helium atmosphere inside the dipole, Az}
takes into account the position resolution in the third detector, the angular straggling
suffered by the particle in the second detector and in the gas inside the MUSIC. The
angular straggling in the position detectors is taken to be 0.19 mrad and the angular
straggling in the MUSIC 0.38 mrad. The angular straggling inside the dipole can
be neglected. A position resolution of 200 ym and a distance between the detectors
[=1.2 m is taken. We conclude that the uncertainty in the measurement of the Bp
of the particle is given by:

Af = 0.67 mrad (1.5)

With these results we can estimate the required velocity resolution in order to
separate the nuclei 28Uy, at 600 MeV/u (Bp=10.5 T-m) from its neighbor 2**Uj,.
The bending angle within the dipole will be § & 450 mrad. This gives a A(Bp)/Bp
of 1.5x 1073, From expression 1.3 we need a velocity accuracy of A3/ = 1.3x 1073,
Consequently, in order to provide a good mass separation for reaction research with
relativistic heavy ions, the R*B setup should provide a velocity resolution around

AB/B ~ 1073

This resolution cannot be achieved with a ToF system due to the limited space
in the cave B. The uncertainty of a ToF measurement is given by:

R B

Where a typical value for A(T'oF) can be taken as 150 ps, L is the ToF distance
and [ is the nuclei velocity. According to this expression, a simple estimation of
the dimensions for a ToF system can be made. If we take a fissioning nuclei flying
at 1 GeV/u the flight path needed to obtain a velocity resolution of 1073 for heavy
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fragments is about 40 m. Additionally, the maximum emerging angle for a fission
fragment is about 30-40 mrads, this means that we would need a stop detector with
a surface of 3.5x3.5 m2. A promising alternative is the use of a RICH detector. The
advantages of using a Cerenkov detector are that it provides the required velocity
precision and a large acceptance as compared with the required dimensions for a stop
detector of ToF system. The disadvantage is that a considerable amount of matter is
placed in the beam line, this would make that the atomic interactions of the particles
with matter would influence their later identifications. The Cerenkov detector will
be used for the identification of heavy ions created in fission and fragmentation
reactions, for light ions techniques as ToF could be used for their identification

The optimization of the design of the Cerenkov detector justifies the present
work where we performed a detailed simulation of such detector.






Chapter 2

Primary Interactions of Heavy
Ions with Matter

The velocity measurements made with a RICH detector are affected by the pri-
mary interactions of heavy ions in matter, i.e. energy-loss, energy loss straggling
and angular straggling. Simultaneously, these interactions will affect the later ion
identification due to changes that the detector induces in the particle velocity and
trajectory. For these reasons, accurated descriptions of these interactions have to
be implemented in the simulation codes. This chapter will be dedicated to the com-
parison of different codes commonly used to describe these interactions in order to
choose the best option for our simulation work. These codes are:

e GEANT 3.21 [3] code is able to simulate the dominant processes governing the
interaction of particle and ions with matter in the energy range from 10 keV
to 10 TeV. It is a Monte-Carlo code able to simulate a complete experimental
setup with all the detectors and follow the particle tracking within it.

e ATIMA [4] code, developed at GSI, Darmstadt, calculates heavy-ion interac-
tions with matter for kinetic energies ranging from 1 keV/u to 500 GeV /u.
This code follows closely the Lindhard and Sgrensen (LS) theory that take into
account the deviation from the first order quantum perturbation theory of the
different expressions used to analize the primary interaction within matter.

e SRIM 2000 [5] code is described in "The Stopping and Range of Ions in Solids’
[6]. Tt is a package of programs which calculates the stopping power and range
of ions (10 eV - 2 GeV) into matter using a quantum-mechanical treatment of
ion-atom collision.

11
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e AMADEUS [7] code also allows to simulate the interaction of heavy-ions with
matter for kinetic energies in the range between 100 MeV/u and 2 GeV/u.
This code has an analytical formulation.

In this chapter we will introduce the main interactions of heavy-ions with matter:
energy loss, energy straggling and angular straggling and nuclear and electromag-
netic interactions. The comparison of the different existing codes to estimate these
interactions with experimental data will allow to choose the optimum models to be
used in our simulations of the Cerenkoc detector.

2.1 Energy Losses

Many of the finest physicists of this century have occupied their thoughts in various
aspects of the penetration of charged particles in matter, like Thomson, Rutherford,
Bohr, Bethe, Mott, Bloch, Fermi, Landau, etc. Many review articles have been
written on this subject being based on either semi-classical or first-order quantum-
mechanical approaches, see for example [8].

Bloch bridged the gap between the quantum approach and the classical one
developed by Bethe and Bohr, respectively, few years before. This lead to the well
known Bethe-Bloch expression for the stopping power of heavy particles:

A7 N Z%et 2m/3%c?

= —In(1 = g% - B2 2.1
5= (m 7C (- ) ﬂ) 1)
where N is the number of electrons per volume unit, Z and m are the charge

and mass of the projectile, respectively, and I is the mean ionization potencial of
the target.

Recently, danish physicists Linhard and Sgrensen developed a new theory [9]
of the sttoping power for relativistic heavy ions. The achievement of this theory
is the calculation of the deviation of the precise theory from first-order quantum
perturbation. The size of the nuclei is also taken into account.

In order to know precisely the stopping power for heavy ions, the familiar Bethe
expression 2.1 [10] [11] becomes invalid when dealing with particles of high atomic
charge because of the failure on the first Born approximation. Ahlen [8] [12] pre-
sented a formalism that takes into account additional terms in the energy loss ex-
pression that become important when the charge of the projectile increases. In
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particular he introduced terms to account for the exact Mott cross section for scat-
tering, and for the electron binding energy during close collisions, Bloch scattering
and relativistic Bloch scattering. He shosed that these terms he showed could be de-
scribed as a series of terms of higher power of the charge of the projectile. Following
Ahlen we can rewrite the energy loss as:

dE  4nNe' Z] ome? 2 )
— = © —~ __|-p*-S-D-M-B 2.2
dx me? 5?2 [ln ( I (1-75?%) =5 (2:2)

where N is the number of atoms per unit volume in the medium with mean
atomic number Z,, and mean ionization potential I, 5 is the projectile velocity
and 7, differs from the true atomic number of the projectile Z, due to the effects
of electron pickup and stripping. There are few expressions to estimate Z,.', for
example the semiempirical one derived by Pierce and Blann [13] :

Zpe = Z, ll — exp (%%)fﬂ (2.3)
P

This expression has been found to be a reasonable fit to a wide range of experi-
mental results. The corrections that appear in the equation 2.2 are:

e S is the correction for shell effects introduced by Barkas and Berger [14]. It
takes into account that at projectile velocities comparable or even smaller than
the orbital velocities of the bound target electrons the energy transfer is less
effective. This contribution decreases with 1/3% and thus, for relativistic ions
even the contribution to the stopping power from the interaction with the
target K-shell electrons is affected very little and shell corrections can safely
be ignored.

e D is the relativistic density correction introduced by Fermi [15]. If the target
medium is not a dilute gas but the density of atoms is high, the projectile
charge is screened by dielectric polarization of the medium and the energy
transfer in large impact parameter collisions is less effective. This contribution
is not significant to the stopping power calculation if g < 0.88.

!The problem of charge-states of a heavy ione passing through matter is a difficult one without
solution yet. Several expressions of different sofistication levels exist. This one derived by Pierce
and Blann is used by the codes we are going to analize.
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e M is the correction for Mott scattering. For the expression 2.1 first-order
Born approximation was used. However, for large nuclear charges the scat-
tering cross section in Born approximation differs significantly from the exact
cross section. An exact solution of the Dirac equation for the scattering of a
relativistic electron in the central field of a point nucleus was first given by
Mott [16][17].

e B is a correction derived by Bloch[18] for the electron binding during close col-
lisions. He showed that independent of the magnitude of the projectil charge, a
first-order perturbation treatment is sufficient for the distant collisions. How-
ever, he noticed that for small impact parameter collisions the exact scattering
amplitudes for a Coulomb field must be used rather than those of the Born
approximation

In 1994 C.Scheidenberger et al.[19] measured for the first time direct stopping
powers with high precission, demonstrating the importance of the Bloch and Mott
higher-order-correction terms to the relativistic Bethe formula for heavy ions.

2.1.1 Simulation Codes

Motivated by the need of precise energy-loss predictions several computer codes to
calculate de energy loss of high-energetic heavy ions are tested.

e GEANT 3.21 This code evaluates the stopping power by cuadratic interpo-
lation of tabulated stopping powers of protons in different materials. In the
case of heavy-ions a scaling law is applied. Then the mean energy lost of a
charged particle in a given material is calculated as follows:

dE
AE=—Xxs 2.4
T (2.4)
where s is the step size within the layer of matter and it is calculated auto-
matically by the code taking into account different properties of the material
as density, atomic number, mass, etc.

The used ionization potential values (I in expression 2.1) are given in ref. [20].
Then, the calculation of the energy loss is done in the following steps:

1. - Evaluate the stopping range for the threshold energy, only once at the
beginning of each new particle tracking. The stopping range is calculated
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with the following expression

Eo dx
R=— —dFE 2.5
o dFE (2:5)

2. - From the energy of the particle derive the stopping range by a quadratic
interpolation of the range table as follows

Ry = — |AI‘\/B2 c,——> (2.6)

where A7, By and C; are constants for the quadratic interpolation.

3. - Evaluate the stopping range for the particle after a given step: R} =
Ry — s. If this is smaller than the stopping range of the particle of
threshold energy, the tracking is stopped because it is below the energy
cut. Otherwise, the final energy is computed as

Ey = Ar(Cr + Ry(2B; + Ryp)) (2.7)
4. - The energy loss is computed as
AFE = Ey — E| (2.8)

GEANT takes into account also the charge-states of the projectile passing
through matter. The code has implemented the Pierce and Blann equation
2.3 and the probability of pickup and loss of electrons is computed on each
step.

e ATIMA is a code based on theoretical evaluations. It computes energy losses
following closely the Linhard and Sgrensen theory which takes into account
higher orders in quantum perturbation theory. The Dirac, Mott, Bloch and
Relativistic Bloch correctios given in expresion 2.2 are also taken. The only
experimental data used in the code are the mean ionitation potentials ( I in
expression 2.1).

For each calculation the code fills some tables with the energy-loss values for all
the possible projectile-target combinations. When the user wants to compute
a particular value for the energy loss, ATIMA makes an interpolation within
the tabulated data. The the charge-states in ATIMA are treated using the
Pierce and Blann expression (eq. 2.3).

e SRIM 2000 consistis of a package of programs to calculate the stopping pow-
ers and ranges of ions in matter in an energy range between 10 ¢V and 2 GeV
using a quantum-mechanical treatment of the ion-atom collision. The code
uses statistical algorithms which allow the ion to jump between calculated
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collisions and then to average the collision results over the considered inter-
val. During the collisions, the ion and the target atoms interact by screened
Coulomb collision, including exchange and correlations interactions between
the overlaping electron shells. It computes the energy losses using tables which
were originally derived in 1984 using this methods described in [6]. These val-
ues were completely revised and improved in 1988, and again in 1995. Due to
the comercial character of this code is difficult to find more information about
the way to compute the physical quantities.

The code AMADEUS is based on a semiempirical algorithm to evaluate
energy losses in thick layers following a fast and efficient procedure described
in Appendix A. The basic idea is to parameterised the range of ions in any
material by using an analytical function that can be inverted. Then, the energy
loss in a layer of matter with thickness z can be obtained as

AE(z) = E; — By (2.9)

where Ej is the initial energy of the ion and E is the remaining energy of the
ion after traversing the layer of matter that can easily be calculated from the
residual ranges before and behind the layer, r(E;) and 7(E}), since

r(Ef) =r(E;) —z (2.10)

and the function r(E) can be inverted.

To determine the function r(E) the range of a number of different projectile-
stopper combinations by numerical integration of the stopping-power expres-
sions presented in the appendix of [21] was calculated. Then the values were
fit with the least-squares method, in an energy range between 100 A MeV and
2 A GeV, to the function

A
r(Zp, Ap, EJAp) = kZ—§1o*’~ mg/em? (2.11)
p

with A, and Z, the mass and atomic number of the ion, respectively and E/A,
its energy in A MeV. The parameter & is polinomial and logarithm combination
of different powers in Z, and E/A, (see Appendix A).

The expression 2.11 can be inverted to get the energy as a function of the
residual range of the ion, that is E(Z,, A,,r). Using this method, AMADEUS
code computes energy losses in one step and it does not need to integrate any
stopping power expression. The computing time is then shorter than in other
codes.



2.1 Energy Losses 17

2.1.2 Results

In this section we compare the results obtained using these codes with a set of avail-
able experimental measurements on energy losses [22], which are shown in Appendix
B. The same projectile-target combinations were simulated with all the codes under
study in order to compare the results. The whole data collection is also printed in
Appendix B

From this comparison we can deduce that ATIMA seems to provide a better
description of the experimental data. AMADEUS provides also a description of the
experimental data within a few percent accuracy. However, this good agreement
does not exist in the cases of GEANT 3.21 and SRIM 2000, at least, for heavy
projectiles. For light projectiles the predictions of both codes are in quite good
agreement with the measured data. In contrast, for mass numbers beyond A=86
the relative differences are systematically larger than the experimental errors. This
behaviour is specially notable in the uranium region, where the relative differences
are close to 10% and even larger when we consider heavy target materials.
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Figure 2.1: Relative deviations (see text below) of the different model descriptions
from the measured energy-loss values as a function of energy E, target element Z,
and projectile element Z,.

To quantify the predictive power of the different codes we have used the sum
of quadratic deviations, normalised by the number of data points as given by the
following expresion:

o[+ X

SRIM
GEANT
ATIMA
AMADEUS
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Eziiata_'E;'im 2
> () (2.12)

where Ey,, and Ey;, represent the measured and simulated energy losses, re-
spectively, and E7T7 44, is the uncertainty of the measured energy losses, n represents
the number of experimental measurements considered to evaluate M.

The results were M=3.5 for ATIMA, M=4.2 for AMADEUS, M=57.6 for GEANT
3.21 and M=48.7 for SRIM 2000. As already mentioned, the best agreement to the
data is obtained with the code ATIMA. AMADEUS provides very similar results.
However, the predictions of GEANT 3.21 and SRIM 2000 are quite far from an over-
all good description of the measured energy losses. Consequently, we can conclude
that these two codes are not suitable to compute energy losses of high-energetic
heavy ions with the accuracy needed to our intentions.

The deviations of the model descriptions from the experimental data can be
analysed in more detail on the basis of the graphical presentation as a function of
the energy, target and projectile shown in figure 2.1. The deviation of the values
given by the codes from the experimental values are shown in the figure. This
deviation is given in relative values, corresponding to the difference between the two
values and divided by the experimental one. Looking at this figure, a clear tendency
of GEANT 3.21(vertical crosses) to overpredict the energy loss of heavy ions at
energies below 200 A MeV is observed. Moreover, the values for energies above 400
A MeV are underpredicted by both, GEANT 3.21 and SRIM 2000(diagonal crosses).
These deviations seem predominantly to occur for the most heavy projectiles. It is
also important to note that the deviations of ATIMA (squares) and AMADEUS(solid
circles) do not exceed the values expected from the uncertainties of the experimental
data, as can be seen in tables of Appendix B.

We deduce from the last discussion that GEANT 3.21 and SRIM 2000 are not
suitable to compute energy losses with high accuracy within the scope of our sim-
ulations. However, GEANT 3.21 is a powerful tool for Monte-Carlo methods to
track the particles through an experimental setup and a good tool to additionally
describe the production of Cerenkov radiation. The proposed solution is to intro-
duce ATIMA or AMADEUS into GEANT 3.21 to compute energy losses. While
ATIMA is standing alone code is not suitable to be implemented in a Monte-Carlo
structure, AMADEUS is rather simple and suitable for our proposes. We decide,
then, to implement AMADEUS into GEANT 3.21 Monte-Carlo code.
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2.2 Energy Straggling

When ions penetrate matter, the statistical fluctuations of the impact parameters
as well as the variation of the transferred momenta in the scattering events cause a
fluctuation in the energy-loss distribution. An initially monoenergetic beam, after
passing through a thickness of material, will show a distribution in energy rather
than a delta-function peak shifted down by the mean energy-loss.

From a theoretical point of view, the calculation of the distribution of energy
losses for a given thickness of absorber is a difficult mathematical problem and, for
simplicity, is generally divided into two cases: thick absorbers and thin absorbers.

Thick Absorbers: The Gaussian Limit

For relatively thick absorbers, such that the number of collisions is large, it can be
easily shown that the energy-loss distribution has a Gaussian shape. This follows
directly from the Central Limit Theorem in statistics which states that the sum of
N random variables approaches that of a Gaussian-distributed variable in the limit
N — oo . If we take our random variable to be dE, the energy lost in a single atomic
collision and assuming there are a sufficient number of collisions N, then the total
energy lost will approach the Gaussian form

(2.13)

with 2 being the thickness of the absorber, A the energy loss in the absorber, A
the mean energy loss and (2 the standard deviation of the distribution.

For non relativistic heavy particles the spread €2 of this Gaussian was calculated
by Bohr to be [26]:

QO%opy = 422N ZAz [MeV?] (2.14)

where N, - Z - Ax is the target number of electrons per unit area. This formula
can be extended to relativistic particles using the expression [27]:

1
1-1p2
1- 32

QQ = ( )Q%ohr (215)
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where ( is the velocity of the particle and €2g. is the Bohr deviation given by
expression 2.14.

We have to mention that this would be our case, since we are going to work with
thick materials and with relativistic heavy ion projectiles.

Thin Absorbers: The Landau and Vavilov Theories

This case is important when the absorber is, for example, a gas. In contrast to the
thick absorber case the number of collisions N is too small to apply the Central
Limit Theorem and then is extremely complicated to calculate. This is due to
the possibility of large energy transfers in a single collision. The maximun energy
transfer is induced in a knock-on collision case, kinematically is fixed to [28]:

2m602ﬁ2,72

Wmaw =
L+ 2(F)VT+ 22 + (5s)?

(2.16)

If the incident particle is much more massive than the electron this expression
could be simplified to Wiee ~ 2m.c?3?y%. These events have small probability but
add a long tail to the high energy side of the energy-loss probability distribution
producing an assymetric shape, a Landau distribution. Assuming this distribution,
the position of the peak now defines the most probable energy-loss but not the mean
energy-loss.

Theoretically, basic calculations of this distribution have been carried out by
Landau[29], Symon and Vavilov[30]. The principal difference between these theories
is the cocient between the mean energy-loss and the maximun transfer energy W4,

2.2.1 Simulation Codes
ATIMA

At relativistic energies the energy straggling is mainly determined by close collisions
of the heavy ions with the target electrons. It was shown by C.Scheidenberger et
al.[23, 48, 25] that the energy straggling deviates from the well-known theoretical
descriptions based on first order perturbation [26, 27|, which predict a gaussian
width given by expression 2.15. Those experimental results, however, were in good
agreement with the predictions from Linhard and S@rensen theory, which takes into
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account the deviations from the first order quantum perturbation theory. To get the

gaussian distribution predicted in the L-S theory the following expression derived
in Ref. [9] has to be used:

02 :%X (2.17)
1 )

where x is a function calculated with a program developed by Allan Sgrensen[9].

ATIMA code computes energy straggling for all kind of projectiles with 1 < Z <
92 from 10 MeV/u up to 450 GeV /u. It uses the Lindhard-Sgrensen theory (expres-
sion 2.17) to compute energy stragglings for energies larger than 30 MeV/u. For
energies below this quantity uses the Bohr expression 2.14 and a linear interpolation
in between.

AMADEUS

Amadeus assumes a thick absorber approximation to calculate energy-loss strag-
gling. The number of collisions is considered large enough, the Central Limit The-
orem can be then applied and the width of the obtained gaussian is given by [31]:

Q = 8.79 x 10—3(%)%@\/ 2t hmgem?)(02 +1)  [MeV/iu]  (218)
Eout Ap At

where Z,,Z;, Ay, Ay are the charges and masses of the projectile and target,
respectively, d is the target thickness and where

Ein + Eout
=1+ ———"7- 2.19
T 1863Mev/u (2.19)

where E;, and E,,; are the kinetic energies per nucleon of the projectile before
and after traversing the absorber material.
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GEANT 3.21

This code uses both the Landau theory, Vavilov theory, and the Gaussian theory,
according to the thickness of the matreial. In addition includes specific models
needed for very thin layers which can not be treated by the Landau model. These
models take into account the atomic structure of the target. For thick absorbers,
the energy straggling can be approximated by a gaussian:

I SR (.

where £ comes from the Rutherford scattering cross section and is defined as

2,4 . .
£ = %& = 153.4;—2%@’5 [keV] and kK = &/Wiaz. Winer 1S the maximum
energy transfer in a knock-on collision event as printed in expression 2.16. The

gaussian dispersion is given then by:

z 7

2 _
0 = 1534550

cx- (1= 5%/2) - Whae (2.21)

where z is the charge of the projectile, Z and A are the target charge and mass,
respectively, p is the target density, x is the target thickness, § is the projectile
velocity and W,,,., was defined above.

2.2.2 Results

In figure 2.2 we show the comparison between the different codes under study. We
can observe that the results obtained with ATIMA and AMADEUS are different,
but the behaviour of the energy straggling as a funtcion of the projectile velocity
is similar. However, we oberve also that GEANT 3.21 code deviates strongly from
AMADEUS at low energies (up to 75 %), while at higher energies these differences
become shorter.

Only a few experimental measurements on energy straggling are available [23,
25, 48]. From the comparison of this measurements with the figure 2.2 it follows
that, in some cases, the measured values deviate from the Bohr prediction (used
by AMADEUS) by a factor up to more than 2. These deviations are predicted
by the Linhard and Sgrensen theory, which is implemented in ATIMA code. We
can conclude from the figure 2.2 that GEANT 3.21 code predictions are not useful
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Figure 2.2: Energy straggling values obtained with the different codes under study as
a function of the projectile energy: ATIMA (solid line), AMADEUS (Dashed line)
and GEANT 3.21 (dot line). The simulations were made for a % Pbg, projectile,
choosing the same nuclide as target. The thickness of the target was chosen to be
10% of the range.

because these predictions do not follow a regular behaviour, that is, it is well known
that the energy straggling grows as projectile energy does and this behaviour is
not reproduced with GEANT 3.21 code The solution is to implement inside the
GEANT 3.21 code external subroutines to compute the energy straggling. Once
again, for simplicty, we decided to insert the AMADEUS formula into the GEANT
code despite of the fact that ATIMA code is closer to the Lindhard and Sgrensen
theory.

2.3 Angular Straggling

In addition to inelastic collisions with the atomic electrons of the target, charged
particles passing through matter also suffer elastic Coulomb scatterings from nu-
clei, although with smaller probability. Ignoring spin effects and screaning, these
collisions can be described by the well known Rutherford formula:

dU_ 2,99 ™c/Bp

do _ 2.22
dQ ~ ° 7 T dsind(9)2) (222)

where z is the charge of the projectile, Z is the charge of the target, r is the
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Bohr radius, m, p and (8 are the mass, momentum and velocity of the projectile,
respectively and @ is the deflection angle from the initial trajectory.

Because of its angular dependence, the majority of these collisions result in a
small angular deflection of the particle. The particle follows a random path inside
the matter and the cumulative effect of these small angle scattering results in a
net deflection from the original particle direction. We can say that the particle
has suffered multiple scattering if the average number of independent scattering
events is large and the energy-loss on each collision is small or negligible. The
problem, then, can be treated statistically to obtain a probability distribution for the
net angle of deflection as a function of the thickness and properties of the traversed
material. Rigurous calculations of multiple scattering are extremely complicated
and there exist several formulations with different sofistication levels. The most
commonly used is the small-angle approximation of Moliere [32]. This has been
demonstrated to be generally valid for all particles up to angles of 30° with exception
of slow electrons (8 < 0.05) and electrons traversing heavy elements.

We will see tha we have to deal with small net angle deflections. In this case we
can use the multiple scattering gaussian approximation, ignoring the small probabil-
ity of large-angle single scattering. According to this, a very good estimation of the
gaussian width is obtained using an empirical formula proposed by Highland [33]:

Jio2) = %z Xio (1 + %logm (Xi())) (2.23)

where z is the charge of the projectile, p and [ its momentum and velocity
respectively, z(cm) is the thickness of traversed material and X is the radiation
length, a variable characteristic for each material.

2.3.1 Simulation Codes
ATIMA

The code ATIMA computes the angular straggling using a modified version of the
Highland expression [33]:

(62) = %z Xio (1 +0.038In (Xi())) (2.24)
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where the radiation length X, is computed as follows:

1 N,
. = 407t (7 lLraa = F(D) + ZL100) (2.25)

where « is the fine structure constant, r, is the electron radius, NN, is the
Avogadrus number, Z is the medium charge, L,.,q = In (184.15Z*1/3), L

In (1194Z‘2/3) and f(Z) is a function of the medium charge given by:

rad —

f(Z)=a’[(1+a®) " +0.20206 — 0.0369a” + 0.0083a* — 0.002°| ;0 = aZ (2.26)

AMADEUS

The code AMADEUS computes the angular straggling also with the Highland ex-
pression [33], but modified as follows:

i = 1%] \/7 ( glogw (;O)) (2.27)

where [, po, 51, p1 are the velocity and momentum before and after traversing
the material, respectively. The radiation lenght is computed as follows:

1.008afZ°

2r72 4 .

16.405A 184.1
X0:76 05 ll (8 5

72 7Z1/3

We can observe that not only the expression to compute the angular straggling
is different in both codes, ATIMA and AMADEUS, but also the expressions to
calculate the radiation length X|.

GEANT 3.21

The Highland expressions (2.23, 2.24 and 2.27) can introduce errors if they are
used in each integration step because the angle (x + Ax) \/ 0%(z) + 6%(z + Ax)
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, limiting their use in a Monte-Carlo method like GEANT 3.21. To avoid this
limitation GEANT 3.21 uses the following expression proposed by Lynch [36]:

2 1+v

p2) = 2 Xe ( In(1 — 1) 2.2

0 =2 (i +v) (2.29)
where
Lt _ X
2(1—F) O 7 11672
Z(Z+1)\ =z _ Zza\?

2 __ 2 __ 5r72/3 2
Xc = 0.157% ( 1 ) 2 X2 =2.007 x 10 °2% (1 +3.34 <7> ) /p

The variable p is the incident particle momentum, x is the target thickness in
mg/cm?, z is the charge of the particle, Z and A are the charge and mass of the
target, respectively and « is the fine structure constant. Tha parameter {2y may be
interpreted as the mean number of scatters. The factor F' represents the fraction
of the Moliere distribution to be taken into consideration, a value lower than 1 is
necessary since, taking the entire distribution into account results in an infinite value
for (6?). The parameter . takes into account the characteristics of the material and
the energy of the projectile, while y, takes into account the electron screening for
the nuclei electromagnetic field. The code GEANT adopts the values F=0.98 and
Qp=40000 scatters and then, the expression 2.29 yields results better than 2 %.

2.3.2 Results

Despite of the different ways to compute the angular straggling, in figure 2.3 we can
observe that the results are quite approximated for all the codes under study. In
that figure we show the results obtained from the three codes for a combination of a
heavy projectile (2°® Pbg,) on a light target (" Al;3). We can observe that the results
obtained for all of the codes are very similar. This fact can be also observed in figure
2.4, where the calculation is done for a heavy projectile (?38Uy) passing trough
a heavy target (?*®Pbgy). All the simulations made for different projectile-target
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Angular Strag. (mrad)

T (MeV/u)

Figure 2.3: Angular straggling values obtained with ATIMA (solid line), AMADEUS
(dashed line) and GEANT 8.21 (dot line) for a 2% Pbgy projectile passing trough a
2T Aly5 target as a function of the projectile energy. The target thickness was chosen
to be 10% of the projectile range.

combinatios gave the same good agreement. We can conclude from this statement
that the formulation in GEANT 3.21 code is valid to evaluate the angular straggling.

For a complete analysis of the code, we compare in figure 2.5 the results given by
the code GEANT 3.21 code with experimental data of angular straggling measured
by Iwasa et al.[34]. In this plot we can observe the results obtained for a heavy
projectile, 228Uy, passing through two target combinations, 28Ty and 238 Augy. As
can be seen, the agreement between the experimental data and the simulations is
quite good. We do not need then to include in the GEANT 3.21 code any external
subroutine to compute the angular straggling.

2.4 Reactions rates

As we mentioned in Chapter 1, a Cerenkov detector is needed to measure ion ve-
locities whithin the frame of the R?B experimental setup. This Cerenkov detector
is composed by several layers of matter: radiator, quartz mirror and a purified Ni-
trogen atmosphere. Taking into account all these matter foils more than 2¢g/cm? of
matter is situated in the beam line. This can be considered as an additional target
for the relativistic beam. Then it is necessary to analyse and estimate the reaction
rates for the nuclides whithin the Cerenkov setup and compare them with those
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Angular Strag. (mrad)

T (MeV/u)

Figure 2.4: Angular straggling values obtained with ATIMA (solid line), AMADEUS
(dashed line) and GEANT 8.21 (dot line) for a **3Usy projectile passing trough a
208 Phg, target as a function of the projectile energy. The target thickness was chosen
to be 10% of the projectile range.

given by the target. We will calculate the cross sections for both electromagnetic
disotiation (E.M.D.) and nuclear interaction processes with the nuclei which form
the Cerenkov materials (Carbon, Fluor, Silicon, Oxigen and Magnesium). From
these cross sections the reaction probabilities can be calculated as:

P=1-¢ orem (2.30)

where N, is the Avogadrus number, A and p are the mass number and density of
the target nuclei, z is the target thickness and or is the total cross section (nuclear
+ EMD).

In this expression we have to separate the ifluence of the different nuclei which
compound a material. We have to calculate it weight porcentage and take into
account the different mass number for the nuclei. We will compute this, as an
example, for the CsF1, radiator we get:

C F
~Napz | 75 We(CoFia)+ 55 Wr(CoFia)

P=1—¢ (2.31)

where W and Wy are the weight porcentages of Carbon and Fluor, respectively,
in CgF14. On the other hand ¢$ and o are the cross sections for any given projectile
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Figure 2.5: Comparison between GEANT 8.21 simulated values (open symbols) and
experimental data (solid symbols) measured by Iwasa et al.[84]. Two target-projectile
combinations are plotted. A 943 MeV/u *3¥Uyy projectile passing trough a *®*Tiyy
target (circles) and through a '°" Auqg target (stars).

on Carbon and Fluor, respectively.

To evaluate the total nuclear cross section, we have used the microscopic descrip-
tion of Karol [37], and modified by Brhom [38]. Karol showed using a Glauber type
calculation, that the main contribution to the total reaction cross section is given
by the tail of the nuclear matter distribution. Additionally, he proposed to use a
simplified description of these distributions by using Gaussian instead of Fermi-like
functions. Brhom used an alternative statistical description of the nucleon-nucleon
interaction, demostrated equivalent to that from Karol. In his model, realistic nu-
clear distributions were introduced, as well as the neutron and proton diffuseness.
This model gives rather realistic results, with an accuracy within 10%. We can
compare similar reactions as those studied in this work, in table 2.1.

Additional components to the total reaction cross sections as could be electro-
magnetic dissociation processes E.M.D., are only relevant for collisions between
heavy ions. The procedures described in [39] and [40] allows to evaluate accu-
rately this cross section. In table 2.1 we can see some measured values of the total
cross section (nuclear + E.M.D.) compared with the code. As can be observed, the
simulated values are in a quite good agreement with the measured data.

The interaction probability of any nucleus passing trough the whole cerenkov
setup can be evaluated with the total cross section (Nuclear + E.M.D.) and the
characteristic thicknesses. This reaction probability for the whole Cerenkov system
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| Projectile | Target | Energy (MeV/u) | o7P(mb) | of™ |
187 Au p 800 1780 + 400 | 1727 + 173
28 Pb p 1000 1837 + 220 | 1799 + 180
ggspb d 1000 2079 4+ 240 | 2321 + 232

Table 2.1: Comparison between the experimental measured total cross sections (o7.7)
and the simulated ones (035%™ ) for several target-projectile combinations.

will be evaluated as follows:

P = P.igiator - PN2 : PSiOéV”” (232)



Chapter 3

Simulation of the Cerenkov
detector

Once of the key detectors in the setup proposed for the R3B project is the Cerenkov
detector. This detector will provide an accurate measurement of the velocity of the
reaction products. The intention of this work is to simulate, study and optimize a
Heavy Ion Ring Imaging Cerenkov detector (HIRICH). The chapter starts with a
brief introduction to the Vavilov-Cerenkov radiation, then we will make a description
of the different radiator materials that can be used is such a detector, finally we will
make a complete description of the simulation of the detector. In order to evaluate
the validity of the simulations, two features will be taken into account, from one
hand, theoretical estimations of the velocity resolution will be made in order to
compare the results with the simulated ones. From another hand, data obtained
with the HIRICH built at the Munich Technical University [41] will be taken as a
comparison reference for our simulations.

3.1 Description of the Vavilov-Cerenkov radiation.

Vavilov-Cerenkov radiation is an electromagnetic shock-wave phenomenon appear-
ing whenever a charged particle travels with a velocity v=cf in an dielectric optical
medium of refractive index n faster than the velocity of light in the medium c¢/n (i.e.
v >c¢/n or $>1/n). The Cerenkov polar emission angle ©¢ relative to the particle
direction is given by the relation

31
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1
cosO¢ = e (3.1)
n

however, the azimuthal emission angle ¢ has a flat distribution between 0 and 27.
The intensity and spectrum of the radiation is given by the Frank-Tamm relation

deh . (g

— \he

2 -2 D)
T )Z dsin“O¢ (3.2)

where N, is the number of photons with energy between £ and E + dE, «
is the electromagnetic fine structure constant, d is the particle path length in the
medium and Z is the charge of the particle. Combining, we obtain the (5,n) spectral
dependence

dc]z\gh - (%) Z*L[L = (1/nB)’] (3.3)

The dispersion of an optical medium is expressed by a function n=n(A). This
functional dependence must be included when integrating equation 3.3 to obtain
the number of produced Cerenkov photons, N,,. Note from equation 3.3 that the
Cerenkov photon spectrum is flat for a constant value of n, but for real media n(\)
increases with £ causing an enhancement of the Ultra-Violet spectrum.

3.1.1 Characteristics of the radiation

From the previous relations we can deduce some characteristics of the Vavilov-
Cerenkov radiation:

e Threshold value for the radiation. For a given refractive index n there
is a velocity f;, , below which no Vavilov-Cerenkov radiation is observed:

th — 1/n

e Saturation angle. There exists a maximum radiation angle, corresponding
to a ultra-relativistic particle with § ~1:

0> = cos™'(1/n) (3.4)
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¢ Radiation spectrum. To derive the Frank-Tamm relations (expressions 3.2
and 3.3) we have assumed that the refractive index of the radiator medium is
constant. To be rigorous, every medium is dispersive, therefore, the refractive
index depends on the wavelength. The condition n(\) > 1/f is only valid if
the wavelength is larger than the ultraviolet. Apart from this, the number
of photons emitted scales with A2, consequently, the photon emission with
wavelengths larger than the visible (infrared, radio) is strongly inhibited, and
consequently mainly radiation in the visible and ultra-violet is observed.

e Intensity of the radiation increases with the charge and velocity of the
particle: From equation 3.3, the number of photons scale with Z? and (1 —

(Bn)~2).

3.2 RICH and HIRICH concepts

The development of Ring Imaging Cerenkov counters started about 20 years ago with
the publication by Seguinot and Ypsilantis [42]. Recently, a novel device for velocity
measurement of relativistic ions was developed based on Vavilov-Cerenkov radia-
tion, the Heavy-Ion Ring Imaging Cerenkov detector (HIRICH) [41]. The HIRICH
is characterized by a thin liquid or solid state radiator and a proximity focusing
geometry (see figure 3.1). The photons emitted by the radiator are reflected by the
mirror onto the photon detector, where a ring pattern appears.

R AR

- g —  HEO

radiator

Figure 3.1: Ezample of a Cerenkov detector with a prozimity focusing geometry [41].



34 Simulation of the Cerenkov detector

3.2.1 Radiator materials

The refractive index of the radiator will determine the minimum velocity to generate
Vavilov-Cerenkov radiation. Given a certain radiator medium, the measurement of
the velocity 8 can be made above the Cerenkov threshold Sy, = 1/n. At threshold
the amount of light is zero, but grows quickly with 3 just above the threshold (see
expression 3.3).

We can choose between different kinds of radiators: solids, liquids, gaseous and
aerogel materials. Liquids and solids are much denser than gases. Therefore, the
charged particle track length required to generate a sufficient number of photons in
such media is comparatively shorter.

Traditional gas, solid and liquid radiators have refractive indexes smaller than
1.0018 (gaseous CgFy) or larger than 1.27 (liquid CgF14). The only possible way to
partially close the gap in refractive indexes is represented by silica aerogel that can
be produced in a fairly wide range from n=1.004 to n=1.1. Aerogel is a laboratory
sintetized material that could have a density as low as three times that of the air.
It essentially consists on grains of amorphous Si0; with sizes ranging from 1 to 10
nm linked together in a three-dimensional structure filled by trapped air. It exists
a simple relationship between the resultant refractive index and the aerogel density
p in g/em?3 given by n =1+ 0.21p [43].

In the table 3.1 we show the different refractive index ranges covered by different
radiators. In this work we will deal with heavy ions with energies of about several
hundred MeV/u. From the values given in table 3.1 we conclude that we must rule
out the possibility of working with gaseous or aerogel radiators due to the energy
thresholds of these materials. We can only use liquid or solid radiators.

3.2.2 Theoretical estimations of the (-resolution

The aim of a RICH or a HIRICH detector is to determine the velocity of a particle,
B, from the measurement of the ring radii of the induced Vavilov-Cerenkov radiation.
The velocity resolution can be obtained from equation 3.1 as:

% = \/Lﬁtcm@cA@C (35)

where N is the number of detected photons and ©¢ is the Cerenkov angle. This
expression can be manipulated to give the velocity resolution as a function of the
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‘ Radiator Nature ‘ Material ‘ n ‘ Threshold Energy ‘
Gaseous He 1.000035 | > 110 (GeV/u)
Cs5Fyo 1.0018 > 14 (GeV/u)
Aerogel 1.004 > 9 (GeV/u)
1.1 1.3 (GeV/u)
| Liquid | CeFy | 128 | 550 (MeV/u) |
Solid MgF, 1.426 375 (MeV /u)
S04 1.557 | 280-750* (MeV /u)

Table 3.1: Refractive index ranges covered by the different radiators. The projectile
energy thresholds (calculated according to expression for the different materials are
also shown.*The solid SiOs radiator, beyond 750 MeV/u can only work in total
internal reflection (see chapter 4).

directly measured quantity, the ring radius, as follows (see appendix C):

= =T (3.6)

where R is the ring radius. The factor I' in the previous expression, is named
geometrical factor. It comes from the fact that photons are refracted at the
boundary of two media with different refractive indexes (Snellius law).

The intention of this section is to discuss and estimate numerically the different
contributions to the radius dispersion, and thus to the velocity resolution, for a
further comparison with the simulated values. The uncertainty AR in the measured
ring radii and thus the uncertainty A©¢ in the Cerenkov angle is affected by several
optical and geometrical factors: the energy loss of heavy ions on their path through
the radiator, the chromatic aberration of the radiator material and the geometrical
broadening by the finite thickness of the radiator, in addition to the number of
detected photons and the pixel size of the photon detector. In the following we will
present some theoretical calculations. These results will be compared later with full
simulations of the RICH detector.

Optical dispersion or chromatic aberration

The refractive index of a medium depends on the wavelength of the considered
photons, n=n( A ). Consequently, each photon is emitted with a different Cerenkov
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angle. The angular spread produced by the optical dispersion leads to an uncertainty
in the determination of the Cerenkov angle A©¢. From equation 3.1 we can derive:

ABc _ 1 1An (3.7)
AN V/n2BE—1n A\ '

being A\ the wavelength of the photon, n the refractive index of the medium, O
the Cerenkov angle and [ the velocity of the beam particle in units of the velocity
of light.

In order to estimate the contribution of this effect to the velocity resolution we
take two limit cases: a heavy ion with a low kinetic energy, 600 A MeV, and a heavy
ion with 1 A GeV. We will choose a liquid CgF14 radiator in order to compare these
results with those obtained with the HIRICH of R.Gernhauser [41]. We are going
to work in a wavelength range from 193.75 nm to 196.83 nm (energies of 6.4 eV and
6.3 eV respectively)!. For the calculations we will use the mean refractive index in
this range, that is n=1.28622. The results using expression 3.7 are shown in table
3.2.

| Energy MeV/u) | B | O¢ | ABc | AB/B |
600 0.7938 | 11.4 | 0.065 | 0.13%
1000 0.8760 | 27.3 | 0.026 | 0.133%

Table 3.2: Effect of the dispersion law on the velocity resolution. Limit cases of 600
MeV/u and 1000 MeV/u are studied. The projectile is a °® Ruyy. The radiator is an
8 mm thickness CgF14. The Cerenkov ring radii were measured at 200 mm from the
radiator. The photon statistics is not considered.

Paradoxically, the velocity resolution is better at lower energy (if we do not take
into account the number of detected photons). This is because we are working in a
narrow wavelength range, where the refractive index almost does not change. From
equation 3.6 the factor tan®¢ dominates the velocity resolution and this factor
becomes larger as increasing the velocity.

Radiator thickness

The different emission points of the photons along the particle trajectory inside
the radiator induce an additional dispersion proportional to the radiator thickness

'We are working in the UV region of the spectrum and due to transmission and efficiency effects
these numbers are representatives for our simulations
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AR = d - tan©¢. The corresponding uncertainty in the measurement of the radii
will be given by the relation [45]:

ﬁ _dv1i-— n?sin?O¢ (3.8)

R L ncosO¢

Figure 3.2: The results with this geometry are identical to the 90 degrees rotated
geometry showed in figure 3.1 [41] .

We can estimate this quantity for the two limit cases mentioned before. The
results are given in the table 3.3

| Energy (MeV/u)| B8 | ©¢ | AR/R| AB/B |
600 0.7938 | 11.4 3% 0.11%
1000 0.8760 | 27.3 | 2.8% | 0.48%

Table 3.3: Effect of the radiator thickness on the velocity resolution. Limit cases of
600 MeV/u and 1000 MeV/u are studied. The projectile is a *® Ruyy. The radiator
1s an 8 mm thickness C¢Fi4. The Cerenkov ring radii were measured at 200 mm from
the radiator. The photon statistics is not considered.

From the table 3.3we conclude that both limit cases give similar values of AR/R,
but the velocity resolution is better in the lower energy case. This is due only to
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the difference in the geometrical factor because of the different Cerenkov emission
angles. This factor increases with the ion velocity.

Energy-loss within the radiator

Particles traversing the radiator suffer a continuous energy loss due to electromag-
netic interactions. This energy loss affects the velocity resolution by a gradual
decrease of the Cerenkov angle and a reduction of the photon yield. The variation
of Cerenkov angle is related to the energy-loss by [46]:

(n%cos?©¢ — 1)3/2 1

ABO¢ =
© nsin®¢ Mc?

AE (3.9)

where Mc? is the mass of the projectile, n is the refractive index of the medium
and O¢ is the Cerenkov emission angle. Once more, we estimate some limit cases,
not only in energy but also in projectile charge because of the dependence on Z2 for
the stopping power. We fixed to 8 mm the thickness of the radiator ( CgFi4) and
we measured the ring radii at 200 mm from the radiator. The table 3.4 summarizes
the results.

| Projectile | Energy (MeV/u)| B8 | ©¢ | AE (MeV/u) | AO¢ | AB/B |

0B, 600 0.7938 | 11.4 8 0.014 | 0.28%
10B; 1000 0.8760 | 27.3 6 0.002 | 0.1%
% Ruugy 600 0.7938 | 11.4 66 0.116 | 2.3%
% Ruugy 1000 0.8760 | 27.3 99 0.017 | 0.9%
238 Ugy 600 0.7938 | 11.4 120 0.211 | 4.2%
238Ugg 1000 0.8760 | 27.3 105 0.028 | 1.45%

Table 3.4: Velocity resolution for several projectiles at the limit cases of 600 MeV/u
and 1000 MeV/u calculated from expression 3.5. AO¢ is given by expression 3.9.
The radiator is an 8 mm thickness C¢Fi4. The ring radii were measured at 200 mm
from the radiator. The photon statistics is not considered.

We observe in table 3.4 how the energy-loss plays the most important role in
the velocity resolution (whenever the photon statistics is not taken into account),
dominating over other effects as the radiator thickness and the optical dispersion.
This last effect could compete with the energy loss if we were working in a broad
wavelength range, where the refractive index could play a more dramatical role.
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Photon statistics

Up to now we have not taken into account the statistics of detected photons. The
number of expected photons can be estimated directly by integration of the Frank-
Tamm relation (equation 3.2). The number of emitted photons will not be the
number of detected ones due to transmission effects and quantum detection efficien-
cies (see figure 3.3). In order to estimate the final velocity resolution we should
consider the statistic of detected photons according to expression:

R R R A
/B Nph ﬂ rad 5 n(A) 6 dE ( )

where N, is the number of detected photons, rad, n(\) and dE means the
velocity resolution due to the radiator thickness, the optical dispersion and the
energy-loss.

We will concentrate now in a particular case, for example, a % Ru nuclei. For
this ion, a typical number of detected photons is larger than a thousand, keeping
this in mind, the obtained results are given in table 3.5. This table contains the
numerical quantity for each effect.

‘ Energy (MeV/u) ‘ (%)md ‘ (%)n(,\) ‘ (%)dE ‘ (%)theor AB/B ‘
600 0.11% 0.13% 2.3% 2.5% 0.15%
1000 0.48% 0.13% | 0.88% 1.0% 0.03%

Table 3.5: Estimated values for final velocity resolution weighted by the number of
detected photons. The projectile is a “°Ruyy. The radiator is an 8mm thickness
CeFis The ring radit were measured at 200 mm from the radiator.

In the next section, we will return over these results and the data obtained from
the simulations will be compared with them, keeping in mind that these theoretical
estimations were made only to have a first approach to the velocity resolution values.
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3.3 Simulation of the Cerenkov detector with GEANT
3.21

In this section we present the results obtained with the full simulations of the
Cerenkov detector. We will make a systematic analysis of the different factors which
contributes to the velocity resolution. Factors as the energy of the ions, their charge,
the thickness of the radiator, the distance between the radiator and the detector,
etc, will be systematically discussed.

For the simulation, study and optimization of the HIRICH we will use the code
GEANT 3.21. This is a Monte-Carlo code which allows to simulate the whole ex-
perimental setup and it is able to make the particle tracking within the setup taking
into account the primary interactions of these particles with matter. GEANT 3.21
has implemented some packages for the treatment of Cerenkov effect, the genera-
tion, tracking and absortion of the photons through the experimental setup. For
a detailed description of the GEANT 3.21 operation with Cerenkov photons see
appendix D.

In our simulations we have modified some of the default options of GEANT
to calculate the primary interactions of relativistic heavy ions in matter. As ex-
plained in chapter 2, the energy loss and anergy straggling are calculated using the
subroutine AMADEUS. The angular straggling is computed using the default op-
tions expressions by GEANT explained in chapter 2. We also include and empirical
parametrization of the absortion of Cerenkov photons in the radiator.

3.3.1 Description of the Cerenkov detector.

The simulated detector is based on a proximity focusing geometry [47] (see figure
3.1). It consists basically on a thick liquid or solid radiator (for liquid radiators two
fused quartz windows containing the liquid are sonsidered), a thin VUV-mirror? and
the photon detector with another fused quartz window at the entrance. Cerenkov
light produced by the ions traversing the radiator is reflected by a planar thin VUV-
mirror onto the photon detector. Due a tilt angle of 45° images are not modified and
the photon detector is protected from the direct interaction with the beam particles
(see figure 3.1). In the following we will make a detailed description of the different
components:

2Tn order to compare the simulations with measured data we will simulate the Cerenkov detector
build at the Munich Technik Universitet [41]. This detector works on the VUV region of the
spectrum but, actually, due to transmission effects, the effective wavelength range is extremely
narrow.
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e Radiators: We will investigate the results obtained with three different radi-
ators: Liquid Perfluorhexan (CgFl4), solid Magnesium Fluoride (M gF3), solid
Fused Quartz (S7i05).

The emission photon spectrum for the liquid CgFi4 and for the sold Si0,
radiators are shown in figure 3.3. This figure illustrates the dependence of the
photon spectrum with the energy of the incoming particle and the nature of
the radiator. As can be observed the intensity of emitted photons in the Si0,
radiator is higher than in the liquid CgFi4 due to the refractive index of the
material. In the same way, the intensity also increases with the energy of the
projectile. This behavior is explained by the Frank-Tamm relation (3.3).

The transmission probabilities of the photons inside the radiator has been
measured for the liquid CgFy4 radiator [48]. For simplicity, the transmission
for the solid MgF; and S0, radiators was supposed to be the same than the
CgF'4 one. The transmission used in the simulations is shown in figure 3.3.

e Fused Quartz windows (Si0O;): In addition to its use as a radiator, this
material is used as windows in the case of liquid radiator.

e VUV - wirror : Consists of a 400 gm thickness aluminum foil rotated 45
degrees.

e Photon detector : We have just simulated the quantum efficiency of the
detector and the pixel size since it plays an important role in the velocity
determination. The quantum efficiency is shown in figure 3.3 as given by [48].
At can be observed, the photon detector has an adecuated quantum efficiency
only for the ultra-violet range of the spectrum.

e Purified nitrogen (N,;) atmosphere: The whole setup is placed in a
Nitrogen atmosphere with a mean refractive index n=1.205 in our wavelength
range. This nitrogen atmosphere was introduced because it is difficult to
manage vacuum inside the radiator box due to the the detector structure.

3.3.2 Velocity determination from the Cerenkov photon rings.

The Cerenkov radiator produces ring imagines in the photon detector as the ones
shown in figure 3.4. From these images we can determine the mean radius and
the width of the rings. At this point the pixel size of the detector has an essential
role. Although the photon distribution for a section of the rings is expected to be
Gaussian [48], the pixel size of the detector leads to discrete distributions as shown
in figure 3.5. The uncertainty of the radius, AR, is calculated as the root mean
square (R.M.S) of the data set.
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Figure 3.3: Upper part: Cerenkov emission spectrum for a 3 Sc nuclei travers-
ing a solid SiOy radiator at 600 MeV/u (white histogram), a liquid C¢Fy4 radiator
at 600 MeV/u (grey histogram) and a liquid CeF14 radiator at 800 MeV/u (hori-
zontal hatched histogram) (thicknesses 2 mm). Bottom part: Detection quantum
efficiency of the photon detector (left) and transmission probability for the photons
through the radiators (right). The same transmission was selected for the three ra-
diators.

From figure 3.2 we can derive an expression which relates the radius of the photon
ring with the velocity £ of the ion passing through the radiator. This expression is:

R= g - tan [acos <$)] +L-tan lasz’n lZ—:sm <acos <$))H (3.11)

where n; and ny are the refractive index of the radiator and the expansion gap
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Figure 3.4: Typical ring patterns produced by the Cerenkov radiation in the photon
detector as a function of the energy of the projectile. From up to down and from
left to right 600, 700, 800 and 900 MeV/u respectively. The projectile was a * Ru
nucleus traversing an 8 mm thickness CgFi4 radiator and the photon detector was
situated 200 mm away from the radiator.

medium respectively, d is the radiator thickness and L is the distance between the
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Figure 3.5: Transversal cut of a ring image produced by the Cerenkov radiation
induced by a °® Ruyy nuclei traversing 4 mm of solid SiOy radiator. Due to the pizel
size, the shape of the distribution is hidden.

radiator and the detector. This expression can be manipulated to give:

d L| n282-1

This expression leads to a 4" degree polynomial solution for 5. We have solved
this expression by numerical methods chosing an optimized Newton-Raphson method
to find the roots of the equation. Only one of the solutions is real and in between 0
and 1.

Two assumptions have been made to find the solution of expression 3.12. On
the one hand the refractive indexes were taken as the mean refractive index in the
wavelenght range we are working in. On the other hand the emission point was
fixed at the middle of the radiator. These assumptions lead to an implicit error in
the algorithm. The influence of this effect is shown in figure 3.6. This influence is
completely negligible for low energies. At higher energies this effect should be taken
into account and added quadratically to the velocity resolution.
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Figure 3.6: Algorithm error for B resolution calculation (solid line) as a function of
the energy of the projectile. The dashed line shown the simulated B resolution for
an 8 mm thickness CgFy4 radiator. The photon detector was situated 200 mm away
from the radiator. The projectile was a *® Ruyy.

3.3.3 Simulation results for several radiators: liquid CgFiy,
solid MgF; and solid SiOs

In this section we want to investigate systematically the velocity resolution that we
obtain with different cerenkov radiators. This investigation will allow to optimize
the choice of the radiator and to define their thicknesses. In order to check the
validity of our simulations, first we will compare them with the estimated velocity
resolutions we obtained in section 3.2. In that section we estimated the velocity
resolution for a % Ruy, nuclei traversing an 8 mm thickness liquid CgF}4 radiator at
two different energies, taking the same cases we obtain:

e 1.0 GeV /u: In this case, the velocity resolution obtained from the simulations
was AS/B ~ 0.04 %, which is in good agreement with the Ag/5 ~ 0.03 %
estimated in the last section.

e 600 MeV /u: In this case, the velocity resolution obtained from the simula-
tions was AS/B = 0.11 %, which is in also in quite good agreement with the
AB/B =~ 0.15 % estimated in the last section.

Second, we will compare our simulation with available measured velocity resolu-
tions [41] obtained with a Cerenkov detector similar to the one we are simulating.
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The velocity resolution for the %® Ru4, nuclei has been experimentally measured for
an energy close to 1 GeV/u [41]. The result obtained was A5/ ~ 0.08 % (FWHM).
Due to the operation of the photon detector used by this Cerenkov, or simulation
has to be multiplied by a factor 1.9 to be realistic. This is due to the fact that when
a photon is detected, not only one pixel of the detector is fired, at lest 3 neighbor
pixels are also activated, while in the simulations this does not accur. Multipliy-
ing the result of our simulation by the factor 1.9 we obtain a velocity resolution
AB/B =~ 0.07 % (FWHM), which in good agreement with the measured values.

We conclude from here that the simulated values are in a quite good agreement
with the estimated values from the last section and with the experimental measured
data. In the following we will systematically simulate the different contributions
to this velocity resolution. For the solid Si0, radiator, the distance between the
photon detector and the radiator will be fixed at 100 mm beacuse otherway the
photon rings are too large to be detected.

Atomic number of the incoming ions.

In the expressions we have derived above for the velocity resolution (3.5 and 3.6), the
charge of the projectile does not appear explicitly. This dependence is hidden in the
statistical factor 1/v/N. From the Frank and Tamm relations 3.2 and 3.3 we notice
that the number of generated photons N depends on the square of the projectile
charge. Several simulations were made for different radiators in order to study the
dependence of the velocity resolution with the charge of the particle crossing the
radiator. The results are shown in figure 3.7.

As we observe, we obtain the worst resolution with the smallest charges is in
the liquid CgFi4. This result can be explained in termos of the short number of
generated photons within the radiator. The best resolution for the low charges is
obtained with the solid M gF; radiator rather than the solid Si0O, one, due to the
chromatic aberration, larger in the last radiator. In spite of the larger number of
generated photons within the SiOy this number is not enough to compensate the
chromatic dispersion.

However, at high charges (beyond Z=25) it can be observed that the velocity
resolution obtained with the solid Si0, is better than the one given by the MgF,
radiator, overcoming the dominant effect of the chromatic aberration due to the
large number of generated photons. In addition it can be also observed how the
best resolution at high charges is obtained with the liquid CgFi4 because in the
solid radiators, as we mentioned, the most important factor affecting the resolution
is the chromatic dispersion which has a little effect in the liquid radiators.
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Figure 3.7: Velocity resolution as a function of the charge of the projectile for several
radiators: liquid C¢F14 (solid line) , solid MgF» (dashed line) and solid SiOy (dot
line). The energy of the projectile was chosen to be 600 MeV/u. The thickness of
the all the radiators was 2 mm except for the liquid CgF14 radiator for which we
considered 4 mm. The photon detector was situated 200 mm away from the radiator
except for solid 510y which was 100 mm.

Kinetic energy of the incoming ions.

Expression 3.3 tell us that the number of generated photons in the radiator increases
with the energy of the particle. Additionally, from expression 3.6 we conclude that
the velocity resolution must improve with the number of detected photons. Several
simulations have been made for the three radiators: liquid CgF'4, solid MgF; and
solid Si0, in order to confirm this statement. The results of the simulations are
shown in figure 3.8.

As we expected, the velocity resolution improves with the kinetic energy of the
incoming ion due to the combination of two effects: first, the larger number of
generated photons and, two, the lower energy loss within the radiator. From figure
3.8 it can be observed that, as we explained in the last point, the velocity resolution
achieved with the solid Si0, is better than the achieved with the solid MgF; due
to the number of generated photons, overcoming the chromatic dispersion, higher
in the S70s radiator. For the same reasons, it is confirmed that the best velocity
resolution is achieved for the liquid Cg F'4 radiator although the number of generated
photons is lower than in the solid radiators.
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Figure 3.8: Velocity resolution as a function of the kinetic energy for the nucle:
% Ruas. Both solid radiators were chosen to be 2 mm thickness. The liquid CgFi4
radiator has 4 mm thickness and the photon detector was situated 200 mm away
from the radiator except for solid SiOy which was 100 mm.

Thickness of the radiator.

We have seen above that, in addition to the number of generated photons, the
most important factors affecting the velocity resolution are the chromatic aberration
and the energy loss in the radiator. Then, it would be interesting to analyze the
dependence of the velocity uncertainty as a function of the radiator thickness, to see
the competition between these effects, the energy loss and the photon generation.
The results are given in the figure 3.9

We can observe that, for all the radiators, the number of generated photons
cannot overcome the combined effect of energy loss in the radiator and the chromatic
aberration. We have to say that we cannot work with very thin radiators due to
the method we use to obtain the velocity measurements from the ring radii, which
required a photon statistic larger than 100. For this reason we take into account
radiator thicknesses which assure a photon statistic large enough.

Granularity of the photon detector.

As we mentioned before, we have not simulated the photon detector module. Any
photon which impact in this module is supposed to be detected. The real transmis-
sion and quantum detection efficiency were imposed ”a prior:” in the simulation.
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Figure 3.9: Velocity resolution for several radiator thicknesses for solid SiOy (dot
line) and MgF, (dashed line) and for the liquid CeF14 (solid line) radiators. The
projectile was a % Ru nuclei at 600 MeV /u for both solid radiators and at 1 GeV/u
for the liquid one.

In order to reproduce the results of the HIRICH built at the Munich Technical Uni-
versity, the same pixel size for the photon detector was chosen for our simulations (
6 x 6 mm?).

In figure 3.10 is shown how this pixel size affects to the velocity resolution. This
resolution decreases when we increase the pixel size, as we expected, but this effect
does not follow the same behavior for all the radiators. The velocity resolution
depends strongly on the ring width, AR, given mainly by the chromatic aberration
and the energy loss. The higher are these contributions, the lower is the influence
of the pixel size in the velocity resolution. As an example, the ring width in the
case of the CgFy4 radiator is AR ~ 5 mm (FWHM) and then a granularity higher
than this size will affect strongly the velocity resolution. However, for the solid Si0,
radiator AR ~ 30 mm (FWHM) and then the pixel size will not affect so strongly
the velocity resolution. This is the reason why the velocity resolution for this case
shows a nearly flat evolution with the pixel size.
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Chapter 4

Simulation of key experiments and
further improvements.

” He who breaks something has lost the way of wisdom. ”

Gandalf to Saruman.

The aim of this chapter is to simulate some representative key experiments which
require the use of the Cerenkov detector. These simulations will allow to determine
the optimum characteristics of the detector for each case. In particular we are
interested in the choice of the nature and thickness of the radiator. As we shown in
the second chapter, the atomic interactions of the ions with the radiator will affect
the final determination of their magnetic rigidity on the R3B dipole and their kinetic
energy. Consequently, we are interested in a radiator introducing the minimum
possible modification of the momentum of the ion produced in the reaction.

For our simulations we have considered three representative experiments which
require the identification of heavy ions with the Cerenkov detector. These exper-
iments are: fission investigations with exotic nuclei, spallation reactions and frag-
mentation reactions with medium mass exotic nuclei. These experiments cover a
large range of mass, kinetic energy and different experimental conditions as far as
the target thickness is concerned. Consequently we will try to define the optimum
radiator for each case.

As we will see, in some cases, the optimum radiator can be obtaining using
the radiator in a total internal reflection mode. At the end of the chapter we will
discuss the possibilities of this mode as well as possible improvements in the photon
detector.

ol
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4.1 Fission reactions in inverse kinematics

Recent experiments have demonstrated that fission studies with radioactive beams
are a powerful tool to investigate nuclear structure and dynamics [49]. These reac-
tions studied at relativistic energies in inverse kinematics are characterized by the
emission of two fission fragments in a back-to back configuration in the center-of-
mass frame. The Coulomb repulsion between both fragments leads to the popula-
tion of a sphere (center-of-mass)/ellipsoid (laboratory) in the velocity space. Con-
sequently the reaction residues cover a large angular and velocity range. These
requirements constitute a severe constraints for the dipole design and velocity mea-
surements in order to have a full acceptance for the reaction products. The Cerenkov
detector fulfill these conditions since it provides the required resolution in the ve-
locity measurement and a large angular acceptance.

The additional difficulty inherent to these experiments is the fact that the fission
residues will generate two rings at the same time in the RICH. Multiple ring patterns
are shown in figure 4.1. To determine the ring radii from these events, the same
assumption than in the single case has to be made: the ring centers are known.
Taking this into account, all the active (x,y) points in the photon detection plane
can be projected on two independent radii distributions, respect to both known
centers. The results are shown in figure 4.2. With this method, the ion velocity
can be determined with a negligible loss of accuracy as compared with a single ring
event. However, some problems could appear if the fission is a back-to-back event
emission in the beam axis. In this case, both rings would have the same center and
patterns as shown in 4.2 would appear. In such cases the determination of the ring
radius could be more complicated and could implicate a loss in accuracy.

To discuss these reactions we will take as an example several fragments from the
fission reaction of 2380jy;. We will analise some typical fission events covering the
charge range of fission residues (Z~30-60):

° 238U _)77 In +161 Sm 238U _>90 Br +148 La

° 238U _)103 Ir +135 Te 238U _)116 Rh +122 Ag

Additionally these cases cover both, symmetric and asymmetric fission events.
The energy of the Uranium beam has been chosen to be 600 MeV /u (a typical energy
for secondary beam experiments).

The selection of the radiator to be used in the Cerenkov detector will be strongly
influenced by the primary interactions of the heavy ions. Since these primary inter-
actions are an important source of velocity uncertainty we have to select a radiator
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Figure 4.1: Typical double-ring patterns from fission reactions. (Left) Double ring
pattern for the residues *°Brss and *8 Las; out-coming from the fission of 222Uy, at
600 MeV/u. This event correspond to an asymmetric fission. (Right) Double ring
pattern for the residues % Rhys and 122 Agy; out-coming from the fission of 238Uy at
600 MeV/u. This event corresponds to a symmetric fission.
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Figure 4.2: (Upper part) Double ring pattern for the residues * Brss and *® Las;
out-coming from the fission of 28Uy, at 600 MeV/u. (Lower part) Projected radii
for both rings. The ring centers are supposed known in both cases, as can be observed,
the photons from one ring are the “tail” in the other ring.

with low values for energy straggling, angular straggling and nuclear interaction
probabilities has to be selected. Additionally, the threshold energy for Cerenkov
radiation is a limiting condition to take into account. The primary interactions for
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a typical fission residue as % Ruyy have been simulated in both, liquid and solid
radiators according with the codes described in Chapter 1. The results are shown
in table 4.1.

| Radiator | Energy loss (MeV/u) | Qg (MeV) | Qy (mrad) | Reaction | Ty, (MeV/u) |

CoF1a(Amm) 82.3 21.9 1.40 12.6 % 550
M gF(4mm) 58.8 19.1 1.25 95 % 370
Si05(4mm) 46.2 16.9 1.08 6.9 % 285

Table 4.1: Simulated primary interaction of a typical fission residue (**Rugy). The
energy loss, energy straggling (Qg), angular straggling (Qy), reaction probability and
radiation energy threshold (Ty, ) are shown for several radiators with 4 mm thickness.
The 4 mm thickness liquid Ce¢F14 radiator has to be contained in a SiOy box with
two windows of 2 mm each.

According to the results shown in table 4.1, the best choice for the radiator to
study fission reactions will be a solid Si0s, not only for the low energy-loss, low
energy straggling and low angular straggling values, but also because of the small
Cerenkov emission threshold. For fission events we propose a solid Si0O, radiator
of 2 mm thickness working in the Ultra-Violet region of the spectrum with the
photon detector situated at 100 mm from the radiator. A thinner radiator will not
produce the required velocity resolution due to the low statistic of generated photons
(in chapter 3 we concluded that we need at least 100 photons to obtain the velocity
from a Cerenkov ring). The thickness of the radiator was chosen to be the one which
assures the velocity resolution of 10~® and, simultaneously, induces the minimum
primary interactions as possible and the lower reaction probability. The velocity
resolution for the residues produced in the fission of 28U is shown in figure 4.3
as a function of the atomic number of the fission residues (upper figure) and their
kinetic energy (lower figure). The range in charge covered by fission is indicated
by the vertical lines in the upper figure. The energy of the fissioning 28Uy, nuclei
was chosen to be a typical one for a secondary beam experiment, 600 MeV /u. We
can observe that a 2 mm thickness of Si0, radiator provides the required velocity
resolution for the fission residues down to an energy of 350 MeV/u. The range in
energy for the fission fragments is also shown in figure 4.3, this range comes from
the fact that the fragment emission in the center of mass frame in a fission reaction
is isotropic, the limit case corresponds with a back-to-back emission in the beam
line direction.

Once the radiator has been chosen, we have simulated the primary interactions
for the fission residues within the secondary target and within the whole Cerenkov
setup. In figure 4.4 we compare the energy-loss and energy straggling of the fis-
sion residues within the whole Cerenkov, compared with the energy loss and energy
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Figure 4.3: Upper part: Velocity resolution obtained with a 2 mm thickness Si0-
radiator as a function of the charge of the projectile. The range in charge covered
by fission events is indicated by the vertical lines. The energy of the projectile was
chosen to be 600 MeV/u. Bottom picture: velocity resolution as a function of the
projectile energy. The projectile is a *° Rugs nucleus, chosen to be an intermediate
fission residue. Both vertical lines denote the energy range covered by the fission
residues. The detection plane is situated 100 mm away from the detector in both
cases.

straggling within the secondary lead target' (3 g/cm? thickness) are shown respec-
tively. As can be observed in that figure, the energy loss and the energy straggling
induced by the radiator are smaller, for all the fission residues, compared to the
interactions with the target.

! The secondary target is used to induce the electromagnetic fission of the exotic primary beam.
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The angular straggling values for the fission residues were also calculated for both
the secondary lead target and the Cerenkov setup. The simulated values resulted
to be nearly the same for all the fragments, being 0.7 mrad within the Cerenkov
matter foils and 2.6 mrad within the secondary lead target.

30 T T T T T T T T

s S

3 B E = i ]
s d E < xL Target a
< 50 | E W 3 1
TR { ° |
®F E 20 —
40 | E ]
s [ .= Cerenkov ]
35 F E 15 |- - B
30 [ E I ]
F ] 10 [ .
25? - [ -7 1
20 | = 5 [ —

15 F E [
[T4 | S EAE I I I I N SN N N o Lovvn bbb b b b i b iw i 100
20 25 30 35 40 45 50 55 60 65 70 20 25 30 35 40 45 50 55 60 65 70
atomic number atomic number

Figure 4.4: Left Energy loss for the fission fragments as a function of the frag-
ment atomic number in the target (solid line) and the Cerenkov (dashed line) detec-
tor.Right Energy straggling for the fission fragments as a function of the fragment
atomic number. The energy-loss and angular straggling in 1.5 g/cm? of Lead target
is compared with the energy-loss in the whole Cerenkov setup (2 mm SiOy radiator,
nitrogen expansion gap and mirror).

The reaction probabilities in this setup due to nuclear interaction and electro-
magnetic dissotiation were also computed as explained in chapter 2. The results are
shown in table 4.2. As can be seen the reaction probabilities for all the nuclides in
the Cerenkov detector are lower than 5 % even for the heaviest nuclides. However
these values are larger than the reaction rates in the secondary lead target, and
consequently, have to be taken into account.

‘ Projectile ‘ Energy ‘ Reactioncerenkon ‘ Reactiongarget ‘

77ZTZ30 600 3.0 % 2.6 %
103 Zr 40 600 3.5 % 3.0%
15T es, 600 4.0 % 3.5 %
161 Smgs 600 4.4 % 4.0 %

Table 4.2: The reaction probability for a 2 mm thickness SiOy radiator and for the
half of 3 g/cm? secondary target thickness.

The Cerenkov detector will also affect the measurement of the kinetic energy of
the fission fragments. As mentioned in chapter 1, to better investigate the reaction
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mechanism we need to determine the excitation energy of the fissioning nuclei. For
this goal, we should be able to measure the kinetic energies of all the particles has
to be measured according to expression:

EX=>"mi+Y Ti+> ~vi—ma (4.1)

where E* is the projectile excitation energy, m4 is the projectile mass, m; and
T; are the mass and kinetic energy of all the particles out-coming the reaction and
7; is the energy of all the photons produced in the reaction. We are interested now
in the measurement of the kinetic energies (7;) of all the particles involved in the
reaction. The kinetic energies for the light particles as protons can be measured
with a ToF and the kinetic energies for neutrons will be measured with the LAND
detector. The measurement of the kinetic energies for the heavy fission residues
will be achieved with the RICH detector. The expression which relates the kinetic
energy with the velocity in the laboratory frame is:

1 —v- e/ c? 1 — v Vem/c?

2 2
1 — Uem 1- 2 2
T = §m2 l(L) + <%> -y% - tan®0 - 1)21| (4.2)

where m is the fragment mass and, v is longitudinal velocity in the laboratory
frame, v, is the velocity of the center of mass frame, which correspond to the
velocity of the fissioning nuclei. g and y are also referred to the fissioning nuclei and
f is the angle between the velocity vector of the residue and the beam trajectory.
To simulate realistic events, the residue velocity and emission angle were obtained
from a fission generator based on the Wilkins expression [50]:

TKE = 1.44. 222

(4.3)
with

p 2
D = ryAY? (1 + %) + rpAY? (1 + %) +d (4.4)

Ay, Ay, Z1, Z5 denote the mass and charge numbers of both fission fragments.
The parameters (ro=1.16 fm, d=2.0 fm and 3; = 8, = 0.625) were taken from Refs.
[50] and [51]. The Wilkins expression provides the kinetic for both fission fragments
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in the center of mass frame, from this we can extract the longitudinal velocity in
the laboratory frame needed for expression 4.2.

The primary interactions of heavy ions with matter will influence this measure-
ments because of the energy straggling and angular straggling. The first one will
affect the fragment velocity (v) and the second one will affect the particle angle
determination (6) . This effects have to be determined precisely in order to give the
uncertainty in the kinetic energy measurements. The energy straggling has to be
taking into account in the second half of the secondary target and inside the radia-
tor, however the angular straggling has to be taking into account in the secondary
target, the radiator, the nitrogen expansion gap, the mirror, the helium inside the
dipole and the position detectors. Keeping this in mind, kinetic energies have been
calculated for some typical fission fragments and for two different radiator thick-
nesses. The results are shown in figure 4.5. The kinetic energy can be determined
in both cases with an accuracy better than 20 %. In symmetric fission events, the
simulated kinetic energy gives an accuracy better than 15 %. As can be observed,
the reduction of the radiator thickness by a factor of 4, does not produce a great
improvement in the kinetic energy resolution. This effect can be explained if we con-
sider that the main contribution is due to the angular straggling in the secondary
lead target. In addition, as we mentioned in the chapter 3, we need an statistic
of 100 photons to assure the validity of the method to reconstruct velocities from
the ring radii. This statistic cannot be achieved with 500 ym or 1 mm thickness
radiators, this is the reason why we have chosen a 2 mm thickness radiator.
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Figure 4.5: Simulated kinetic energies for several fission residues from ?***Uyy at 600
MeV/u. The radiator was chosen to be 2 mm thickness SiOs.
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4.2 Fragmentation reactions in inverse kinemat-
ics.

The R3B setup is also designed to investigate fragmentation reactions of heavy nu-
clei in inverse kinematics. These reactions allow to address a large experimental
program covering different topics. Between others we can mentione spallation reac-
tions or fragmentation reactions induced by medium-mass exotic nuclei. Many of
these experiments require the detection of reactions residues covering a large range
in mass and atomic number. However the angular range is smaller when compared
with fission reactions.

For our simulations we have chosen three key experiments: spallation reaction
induced by 28 Ph and °6Fe between 1 GeV/u and 500 MeV/u on a thin liquid
hydrogen target, and fragmentation reaction induced by 32Sn at 600 MeV/u on a
thick lead target. A typical residue production in spallation reaction is shown in
figure 4.6.

Figure 4.6: Two-dimensional cluster plot of the isotopic production cross-sections
obtained from the reaction > Pb + p at 1 GeV/u [52]. Full black squares correspond
to the stable isotopes. Spallation and fission are separated by a minimum at Z=58.

In a fragmentation event, the kinetic energy of the fragment can be calculated
using the expression:

T = %m (vfm +3- Ufm) (4.5)

where v is the longitudinal velocity in the laboratory frame, v, is the projectile
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velocity and o, is the velocity dispersion in the center of mass frame assumed to
be Gaussian. As in the fission case, the primary interaction of heavy ions within the
matter foils in the setup will affect the values of v and o,,. Morrisey systematics?
[53] allows us to estimate the longitudinal velocity and the velocity dispersion for
any spallation fragment. From this we can study how the experimental setup affects
the kinetic energy measurements. We will make this study for the two examples
written above.

4.2.1 Spallation reaction 2®Pb (600 MeV /u) + p

We will consider here the fragments out-coming this reaction with masses down to
150. This corresponds to most of the production, since the cross section of fragments
with masses far from the projectile decreases very fast. For this reaction, we will
propose the same radiator as in the fission case, 2 mm thickness of solid Si0,
radiator, with the photon detector situated 100 mm away from the radiator. Other
radiators could be used as solid M gF; but, as can be seen in figure 4.3 this radiator
provides the required velocity only for energies above 500 MeV /u. The target used
in this case is a 90 mg/cm? of liquid Hy.

The primary interactions for several residues out-coming the reaction were simu-
lated. The residues taken as example were 2°0 P, Hg, 180 [y 173 Re 160V and “7Tb.
These residues were chosen to cover a large range in mass. In figure 4.7 we show
the comparison between the energy loss and energy-straggling values within the hy-
drogen target and the Cerenkov setup. In this case, the energy-loss and the energy
straggling values within the Cerenkov setup are larger than those suffered within
the secondary target, consequently we can conclude that in spallation studies, the
Cerenkov detector has to be taken into account as the higher error source for a later
particle identification.

As in the fission cases, the angular straggling was also simulated for the residues
produced in the reaction. These simulated values were observed to keep almost the
same values for all the residues. These values were 0.11 mrad whiten the secondary
hydrogen target and 0.80 mrad whiten the Cerenkov.

The reaction probabilities of the fragmentation residues were also calculated as
explained in chapter 2, the results are shown in table 4.3. As can be seen, these
reaction rates are always lower than 6 %, but higher in the Cerenkov than in the
reaction target.

2Those are empirical expressions fit to experimental data from spallation. The expression gives
the longitudinal momentum and the momentum dispersion of a spallation fragment.



4.2 Fragmentation reactions in inverse kinematics. 61

‘ Projectile ‘ Reactionarget ‘ Reactioncerenkov ‘

4T hes 3.7 % 4.9 %
160y bey 3.9 % 51 %
1 Rers 4.1 % 5.3 %
180]7"77 4.2 % 5.4 %
190 H gg 4.4 % 5.5 %
200 ppg,, 4.5 % 5.7 %

Table 4.3:  Reaction probabilities within 45 mg/cm? liquid hydrogen target and
within 2 mm thickness SiOy radiator (502 mg/cm?) for several fragmentation
residues out-coming the reaction 2% Pbgy (600 MeV/u) + p.

We calculate the kinetic energy of the fragments from expression 4.5. The kinetic
energy resolution is shown in figure 4.8. The behavior of this resolution can be
explained as follows: the Morrisey systematic gives the longitudinal velocity and its
dispersion, this dispersion will be later affected by the experimental setup due to the
energy straggling. The dispersion given by Morrisey is higher as larger is the mass
difference between the projectile and the fragment and then, the dispersion induced
by the Cerenkov matter foils is negligible as compared with those given by Morrisey.
The effect of the Cerenkov matter foils can thus be only observed in fragments close
to the projectile as deduced from figure 4.8. The kinetic energy uncertainty induced
by the setup as always lower than 1 %.

4.2.2 Spallation reaction *®Pb (1 GeV/u) + p

In this case we will study the same residues than in the reaction at 600 MeV /u,
analised in section 1.2.1. The used target will be also a 90 mg/cm? thickness of
liquid hydrogen, but, in this case we cannot use the solid Si0; radiator due the
energy acceptance of this radiator. From energies above 750 MeV /u, no photon
will exit the radiator due to total internal reflection. From this, we conclude that
we must use a different radiator as could be the solid MgF, or introduce a new
method to achieve the measurement of the ion velocity from a radiator working in
internal reflection mode. This will be introduced in the next section. We will choose
both radiators, solid M gF, working in normal mode and solid Si0; working in total
internal reflection mode (this working mode will be explained in the next section).
Due to the charge of the residues, 2 mm thickness for both radiators is sufficient to
assure enough photon statistic to obtain the ion velocity with the required accuracy.
The photon detector was situated 100 mm away from the radiator.

The primary interactions of selected residues within the Cerenkov setup were
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Figure 4.7: Simulated values of the energy loss (left) and energy straggling (right)
with the Cerenkov matter foils (dashed line) and with the secondary target (solid
line). The upper part correspond to the reaction > Pb (600 MeV/u) + p, the mid-
dle part corresponds to the reaction *Fe (600 MeV/u) + p and the bottom part
corresponds to the reaction *2Sn (600 MeV/u) + Pb.
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Figure 4.8: Kinetic energy resolution for the residues produced in the spallation of
the 28 Pb nuclei. The kinetic energy resolution has been simulated for two radiator
thicknesses, 1 mm (dashed line) and 2 mm (solid line). The influence of the Cerenkov
matter foils in the kinetic energy resolution can be observed only for fragments close
to the projectile.

calculated and are shown in figure 4.9. As can be observed, the effect is the same than
in other spallation reactions, the most important source of energy loss and energy
straggling is the Cerenkov setup. The angular straggling values were simulated for
all the residues taken into account within both radiators, these values were observed
to keep nearly constant for all the fragments. The angular straggling induced by the
secondary target was 0.07 mrad. The angular straggling induced by the Cerenkov
setup was 0.54 mrad for the M gF, radiator and 0.45 mrad for the Si0, radiator.

The reaction probabilities of the selected residues in the Cerenkov matter foils
and in the secondary target were also calculated as explained in chapter 2. The
obtained values are shown in table 4.4

The kinetic energies of the fragments have been calculated as indicated in expres-
sion 1.5. The kinetic energy resolution for the selected residues is shown in figure
4.10. As can be observed, the relative difference between Morrisey and simulated
predictions is always better than 1 %. This resolution is slightly better for the Si0s
radiator due to the lower primary interactions values of the ions with this radiator.
As can be observed in that figure the relative differences in kinetic energy are larger
as closer to the projectile mass.
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Figure 4.9: Simulated values of the energy loss (left) and energy straggling (right)
with the secondary target and with the Cerenkov matter foils for two different radi-
ators: solid MgFy (dashed line) and solid Si0s working in total internal reflection
mode (solid line).

‘ Projectile ‘ Reactiongrger ‘ Reactionprgr, ‘ Reactiong;o, ‘

Wi bes 3.7 % 6.1 % 5.1 %
160y o 4.0 % 6.2 % 5.3 %
13 Rers 4.2 % 6.6 % 5.5 %
180[7‘77 4.4 % 6.7 % 5.6 %
190 H ggo 4.5 % 6.8 % 5.7 %
200 ppg, 4.7 % 7.0 % 5.9 %

Table 4.4:  Reaction probabilities within 1.5 g/em? lead target and within 8 mm
thickness Si0, radiator (753 mg/cm?) for several fragmentation residues out-coming
the reaction *2Sn (600 MeV/u) + Pb.

4.2.3 Spallation reaction *Fe (600 MeV /u) + p

In this case, the fragments have a lower charge than in the 2% Pb fragmentation. The
number of photons generated in 2 mm of S70, is not enough to apply our method to
extract the ion velocity from the ring radius. We will propose then a new radiator,
5 mm thickness of solid Si0, radiator, with the light detector situated 100 mm
away from the radiator. The velocity resolution of 1072 is not necessary for these
light fragments. Making and analog development as made in chapter 1 to obtain
the needed accuracy in velocity we get that, in order to separate the nuclei 5 Fe
from its neighbor %> Fe, a precision of 6 x 1072 is sufficient. If we want to develop
experiments at energies close to 1GeV/u we have to use the solid SiO, radiator
working in total internal reflection mode or use a solid MgF, radiator with 3 mm
thickness.
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Figure 4.10: Kinetic energy resolution for the residues produced in the spallation
of the 2 Pb nuclei at 1 GeV/u. The kinetic energy resolution has been simulated
for two radiators: solid MgF, (solid line) and solid SiOy working in total internal
reflection mode (dashed line).

The primary interactions for these fragments whit the experimental setup were
also calculated and are shown in figure 4.7. As can be observed in that figure, the
effect is the same than in the spallation of the 2°® Pb, the influence of the reaction
target is negligible as compared with those suffered in the Cerenkov setup.

The reaction probabilities for all the residues in the Cerenkov matter foils and
in the secondary hydrogen target were also calculated as explained in chapter 2, the
obtained values are shown in table 4.5. As can be seen in this table, the reaction
rates are always lower than 8 %, but higher in the Cerenkov than in the reaction
target.

‘ Projectile ‘ Reactioniarget ‘ Reactioncerenkov ‘

55M’ﬂ25 1.9 % 7.3 %
®Sen 1.6 % 6.9 %
¥Cliy 1.3 % 6.2 %
25Mg12 1.1 % 5.5 %

%04 0.8 % 4.8 %

Table 4.5:  Reaction probabilities within 45 mg/cm? liquid hydrogen target and
within 5 mm thickness SiOo radiator (1255 mg/cm?) for several fragmentation
residues out-coming the reaction *Fe (600 MeV/u) + p.

The kinetic energy of the fragments have been calculated following expression



66 Simulation of key experiments and further improvements.

4.5. The kinetic energy resolution for the residues is shown in figure 4.11. As can
be observed, the relative difference between Morrisey and simulated predictions is
always smaller than 1 %. This difference, as in the spallation of the 2°® Pb nuclei,
becomes negligible for fragments far from the projectile for the reasons already
discussed and the influence of the matter foils of the Cerenkov detector increases for
fragments close to the projectile.
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Figure 4.11: Kinetic energy resolution for the residues produced in the spallation
of the ®Fe nuclei. The kinetic energy resolution has been simulated for two ra-
diator thicknesses, 5 mm (dashed line) and 4 mm (solid line). The influence of
the Cerenkov matter foils in the kinetic energy resolution can be observed only for
fragments close to the projectile.

4.2.4 Fragmentation reaction of medium-mass exotic nuclei
1328n (600 MeV /u) + Pb

In this case we will study the residues from a fragmentation reaction induced by
a thick target. We will study the fragmentation of the doubly magic *2Sn. The
selection of the radiator thickness and nature is given by the same considerations
than in the last cases. We can not use the solid M gF, radiator because it provides
the required accuracy only for fragments with energies above 500 MeV /u. We should
use then the solid Si0, radiator. The thickness of this radiator has to be fixed to
that which provides enough number of photons even for the lighter fragments. For
this reason the thickness was chosen to be 3 mm. The photon detector is situated at
100 mm from the radiator. The target used in this case has been a 3 g/cm? 2% Pb.
With this reaction we expect to study the influence of a heavy secondary target in
the kinetic energy resolution of the residues from the reaction.
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The primary interactions for several residues out-coming the reaction were sim-
ulated. The residues taken as example were 3°Sn, 12049, 110Ry, 1907y NOKr In
figure 4.7 we show the comparison between the energy loss and energy straggling
values within the lead target and the Cerenkov setup. In this case, the values calcu-
lated for the lead target are comparable to those calculated for the Cerenkov setup,
this should lead to an effective loss in the accuracy to determine the kinetic energy of
the residues. As above, the angular straggling was also simulated for these residues
and these values were observed to keep almost the same values for all the residues.
These values were 0.90 mrad within the Cerenkov setup and 2.65 mrad within the
lead secondary target.

The reaction probabilities of the residues in the Cerenkov matter and in the
secondary target were also calculated as explained in chapter 2, the obtained values
are shown in table 4.6. As can be observed, the reaction rates are always lower than
6 %, but higher in the Cerenkov than in the reaction target.

‘ Projectile ‘ Reactiongyget ‘ Reactioncerenkon ‘

130Sns50 3.4 % 6.0 %
120Ag47 3.3 % 5.8 %
110RU44 3.1 % 5.6 %
100Z7‘40 2.9 % 5.4 %
90K7‘36 2.8 % 5.1 %

Table 4.6:  Reaction probabilities within 1.5 g/cm? lead target and within 8 mm
thickness SiO radiator (758 mg/cm?) for several fragmentation residues out-coming
the reaction *32Sn (600 MeV/u) + Pb.

We have calculated the kinetic energy resolution of the residues from expression
4.5. The results are shown in figure 4.12. As we expected, the nature of the sec-
ondary target has a large influence in the kinetic energy resolution. The resolution
for fragments close to the projectile reach the 4 %, notably larger than those cases
where the secondary target is hydrogen. It can be also observed in the figure 4.12
that the most important influence to the kinetic energy resolution is the energy
straggling in the secondary lead target, this resolution is shown in that figure for
two different thickness of the radiator. Both cases give to similar kinetic energy
resolutions.
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Figure 4.12: Kinetic energy resolution for the residues produced in the spallation of
the 32Sn nuclei. The kinetic energy resolution has been simulated for two radiator
thicknesses for SiOs, 4 mm (dashed line) and 3 mm (solid line). The influence of
the Cerenkov matter foils in the kinetic energy resolution can be observed only for
fragments close to the projectile.

4.3 Total Internal Reflection Mode

In the last section we have used the solid Si0, radiator working in total internal
reflection mode in the simulation of the spallation reaction 2% Pb + p at 1 GeV/u.
In this section we will introduce the total internal reflection mode.

In the Chapter 3, we used a expression to get the velocity uncertainty from the
measurement of the ring radius (equation 3.6). The Snellius law was needed to
obtain that expression (see Appendix E). In that case, we disgard the possibility
when the law of refraction sinf; = Z—fsinﬁg does not give a real value for the angle
of refraction 6. We will now examine this case. It occurs when light is propagated
from an optical medium into one which is optically less dense, i.e, when Z—f <1

provided that the angle of incidence ; exceeds the critical value #; given by:

sinf, = e (4.6)
ny

When 0, = 6, the light emerges in a direction tangent to the boundary. If 6,
exceeds that limiting value, no light enters the second medium, being reflected into
the first medium and we speak of total reflection. We will take advantage of this
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effect in order to use a radiator working in this mode. The interest of working in this
mode is to extend the energy range of the Si0O, radiator which, as we mentioned,
can be used in the range between 300 MeV /u and 700 MeV /u. With this use of the
radiator, the energy range can be extended to any desired energy.

We will simulate a radiator with a truncated cone shape in order to allow the
photons exit the radiator from the side. In figure 4.13 we can observe the operation
mode of this kind of radiators, the Cerenkov emitted photons are reflected continu-
ously until the radiator tilted edge. The radiator edge is profiled so that the light is
not reflected again when reaching the it due to the tilt angle and is able to escape
from the radiator at that point (see figure 4.13). Operating in this way, at the light
detector plane a ring is also observed. The principal difference of this mode is that
the Cerenkov emission angle is determined from the expression:

fc = arctan — arcsin | — | sin |arctan — arctan ( )
TL— T2 n1 rL—T2 L
7)

(4.

where R is the ring radius, 7 is the mean radiator radius, L is the distance from
the radiator to the detector, r; and ro are the bottom and top radii of the radiator,
respectively, d is its thickness, n; and ny the refractive index of the radiator and
the expansion gap medium respectively. For the derivation of this equation see
Appendix E.

The choice of the radiator material depends on the incident particle energy range
wanted to be detected, that is, depending on the refractive index the critical angle
given by expression 4.6 takes different values. We calculated the energy threshold
to operate on internal reflection mode for the typical materials we have used up to
now to compose the radiators. The results are shown in table 4.7

According to the calculated values shown in table 4.7 and taking into account
the energy range we want to detect for fission and fragmentation (up to 700 MeV /u
approx.) the only possible choice is the solid SiO, radiator. In figure 4.14 we can
observe the results of the simulations made for an 3¢Ar;g nuclei as a function of
the kinetic energy. The resolution improves as higher is the projectile energy, as
expected, but is can be observed that the velocity resolution is worse than in a
direct detection not based on the internal reflection effect.

One problem of this operation mode is the photon losses at the radiator edge
due to the photons incidence angle. Every photon which reach the edge from “up”
to “down” will not be able to exit the radiator (see figure 4.15). This problem could
be avoided with a more complicated shape (see figure 4.15), of course, this would
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Figure 4.13: Operation mode of a total internal reflection radiator. The photons gen-
erated by the heavy ion passing through the radiator go rebounding by total reflection
till the edge.

| Material | 7 | O(degrees) | 8 | T (MeV/u) |

CeF1y | 1.2862 51.1 > 1.0 A
MgF, | 1.4263 44.8 0.984 4300
S10, 1.557 40.2 0.841 790

Table 4.7: Energy thresholds to work in total reflection mode for typical radiator
materials. 7 is the mean refractive index in the wavelength operation range, O,
s the critical Cerenkov emission angle and 8 and T are the threshold velocity and
energy of the incident particle, respectively. For our intentions we will choose the
solid S104 radiator due to the energy range we want to study. Notice that for the
liquid CgF'14 radiator there is no exists internal reflection.

translate in a more expensive cost for the radiator.

4.4 Alternative RICH photon detectors

As we mentioned in Chapter 3, no simulation was made about the photon detector
in the HIRICH. Every photon reaching the detection plane was supposed to be
detected in the simulation and the detection quantum efficiency was imposed “a
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Figure 4.14: Simulated velocity resolution for a radiator working in total internal
reflection mode for a radiator thickness of cm and a projectile of % Ru.

priori” in the tracking (see figure 3.3 in Chapter 3). In this section we will discuss
about the possibility of optimize this detection plane with different kinds of photon
detectors.

A great improvement for the Cerenkov detector would be the implementation of
new photon detectors with a higher quantum detection efficiency in the range of the
spectrum we are working. For this goal we will suggest photon detectors of recent
development as Hybrid Photon Detector (HPD) and Micro-Avalanche Photo Diodes
(LAPD).

Hybrid Photon Detectors (HPDs) combine in a single device vacuum photo-
cathode technology with solid-state technology. A photo-electron, released from the
conversion in a photo-cathode of an incident photon, is accelerated by an applied
high voltage of 12 to 20 kV onto a reverse-biased silicon detector. This kinetic energy
is then dissipated near the silicon surface, which results in the creation of 3000 to
5000 electron-hole pairs. Peak quantum efficiencies achieved with these detectors
reach 30 % at 200 nm wavelength. The light pattern incident on the photo-cathode
is imaged onto the silicon detector by an electrostatic or proximity-focusing electron
optics with collection efficiencies close to 100 %. One disadvantage of these detectors
is that the electron focusing cannot work near a magnetic field.

Avalanche Photo-Diodes (APDs) An avalanche photodiode is a silicon-based
semiconductor containing a p-n junction consisting of a positively doped p region
and a negatively doped n region sandwiching an area of neutral charge called the
depletion region. These diodes provide gain by the generation of electron-hole pairs
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Figure 4.15: Photon intensity loss at the edge of the radiator due to the photon
incident angle (top part). This problem can be avoided with a new radiator shape
(bottom part).

from an energetic electron that creates an ”avalanche” of electrons in the substrate
due to multiple collisions with the crystalline silicon lattice. This ”avalanche” of
electrons eventually results in electron multiplication that is analogous to the process
occurring in one of the dynodes of a photomultiplier tube. These detectors are
compact and immune to magnetic fields, are difficult to overload, and have a high
quantum efficiency that can reach 90 % at 200 nm.

These detectors would improve the detection quantum efficiency in the Ultra-
Violet range of the spectrum. This effect will lead to a higher number of detected
photons, highly improving the resolution on the velocity measurements. This would
allow to reduce the radiator thickness, avoiding effects relationated with energy-loss,
energy-straggling, angular-straggling and transmission probabilities, improving then
the later identification with the spectrometer. The implementation of such kind of
detectors could be a subject of further studies in the close future.



Conclusions

” In the end, one really has to do everything oneself in order to be
on top of the things; so, there is a lot of work to be done.”

Friedrich Nietzche.

The goal of this work was to simulate and optimize a Heavy Ion Ring Imaging
Cerenkov Detector (HIRICH). This detector will be used to measure the velocities
of heavy ions within the frame of the R3®B project, that will take place at GSI-
Darmstadt (Germany) in a close future. The simulations of the Cerenkov detector
were made with the code GEANT 3.21 because of the adecuated frame of this code.
GEANT 3.21, developed at CERN, is well suited to simulate the detector setup
proposed for R*B. This is a powerful Monte-Carlo code which allows to describe
the geometry of the detector, to track the particles through the different layers of
matter, to describe the atomic interactions of these particles and to simulate the
generation and propagation of Cerenkov radiation.

Since the Cerenkov detector (radiator + mirror) represents a non negligible layer
of matter traversed by the ions in the R3B setup, the final identification of these ions
can suffer from their interactions with these layers of matter. To investigate this
problematic we analised systematically the primary interactions of ions with matter,
mainly: energy loss, energy straggling and angular straggling. We investigated sev-
eral codes in order to determine the most realistic description of these interactions.
These codes were ATIMA, AMADEUS, GEANT 3.21 and SRIM 2000. From these
studies we concluded that the codes SRIM 2000 and GEANT 3.21 are not suited to
compute energy losses and energy straggling for heavy ions in the energy range that
we are interested. Consequently, GEANT 3.21 had to be modified and external sub-
routines were implemented for this goal. In contrast, the angular straggling values
provided by GEANT 3.21 were in a good agreement with the experimental data.
The reaction probabilities within the setup were also studied taking into account
the cross sections for nuclear interaction and electromagnetic dissotiation.

The code GEANT 3.21 provides several internal packages for the treatment of
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Cerenkov radiation. These packages allow to make the tracking of Cerenkov photons
through the experimental setup, taking into account transmission effects, the dis-
persion law of the radiator, etc. A complete simulation of a Cerenkov detector was
made taking into account these parameters. The response of the photon detector
was also simulated by introducing in the code the detection quantum efficiency and
the detector granularity. A comprehensive analysis of the performances of different
radiators was made by changing several technical aspects of three radiators: liquid
CeF'4, solid M gF; and solid Si0,. These systematic simulations were developed for
the considered radiators as a function of the charge of the incoming ion, its kinetic
energy, the radiator thickness and the photon detector granularity. It was observed
that the velocity resolution improves with the charge of the incoming ion but, at
charges higher than Z=25-30 this improvement is compensated by the energy loss
in the radiator. The velocity resolution also improves with the kinetic energy of the
incoming ion due to the higher number of emitted photons and the lower energy
loss in the radiator. The expected improvement in the velocity resolution with the
radiator thickness due to the enhancement of the photon emission was observed to
be not only compensated, but even dominated by the energy loss in the radiator and
the dispersion law. The effect of the granularity of the photon detector was observed
from the simulations to be a non-determinant factor in the velocity resolution.

The last part of this work was dedicated to the simulation of some hey ex-
periments in order to choose the best option for the nature and thickness of the
radiator to achieve the required velocity resolution, but minimizing the nuclear and
atomic interactions. Some representative cases were selected: the fission of 238U
at 600 MeV /u, the spallations %Fe + p 600 MeV/u, 2°Pb + p 1 GeV/u and the
fragmentation '32Sn + Pb 600 MeV /u in inverse kinematics.

In fission reactions we had to deal with multiple-ring pattern events due to the
simultaneously emission of both fission residues. The atomic and nuclear interac-
tions of some representative residues passing through the different radiators were
compared with those suffered in the secondary target in order to choose the best
option for the radiator. These interaction rates together with the energy range of
the different radiators was used to determine the optimum radiator. The solid M gF,
radiator provides the required velocity accuracy only for energies above 500 MeV /u.
Due to the energy range covered by the fission fragments, the reaction could give
residues with an energy below 500 MeV /u or fission experiments at lower energies
than 600 MeV/u could be developed and then the achieved resolution will not be
sufficient to identify them with the M gF5 radiator. For these reasons, finally it was
proposed, for fission studies, a 2 mm thickness solid Si0, radiator. The kinetic
energy uncertainty induced by the setup was also simulated. We concluded that
this uncertainty depends mostly on the atomic interactions in the lead target. The
selection of the radiator thus, will not strongly affect the accuracy in the kinetic
energy measurements.
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In spallation reactions the same features than in the fission case were simulated
for different reactions. The selection of the radiator was given by the same con-
siderations than in the fission case, the reaction rates and the energy range of the
reaction residues. At low energies the proposed radiators were: 2 mm thickness of
solid Si0, for the spallation of the 208 Pb nuclei, and 5 mm thickness of solid Si0O,
radiator for the spallation of the ¢ Fe nuclei due to the lower charge of the spalla-
tion residues. At higher energies, for the spallation of the 2*® Ph nuclei at 1 GeV/u
two radiators were proposed: a 2 mm thickness solid MgF; or a 2 mm thickness
solid S0, radiator, but working in total internal reflection mode. The discussion
of this operation mode was also developed in the last chapter of this work. The
uncertainty in the kinetic energy induced by the matter foils in the setup was also
simulated for typical spallation residues of each reaction. In this case, the influence
of the secondary hydrogen target in the kinetic energy determination is negligible
compared with the uncertainty induced by the Cerenkov radiator.

The same simulations were done in the case of the fragmentation of the 32Sn
in a heavy target. In this case the proposed radiator was a 3 mm thickness solid
S10, radiator in order to get a high velocity resolution even for the lightest residues
from this reaction. The uncertainty in the kinetic energy measurements induced
by the Cerenkov matter foils was simulated as in the previous cases. The atomic
interactions of the fragmentation residues in the secondary lead target were also the
main uncertainty sources as in the fission case. Consequently, the resolution in this
measurement, will not be highly conditioned by the radiator selection.

Finally we over viewed new photon detectors of recent development in order to

discuss possible the improvements in the velocity resolution with the implementation
of these new detectors.
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Appendix A

Algorithm for energy-loss

calculations used in the code
AMADEUS

In the second Chapter we have described how several codes under study cimputed
the energy losses for heavy ions. In this appendix the method used by the code
AMADEUS is explained in detail.

The basic idea was to parameterise the range of ions in any material by using an

analytical function that can be inverted. Then the energy loss in a layer of matter
with thickness d can be obtained as:

AE(d) = E; — E; (A.1)

where F; is the initial energy of the ion and £} is the remaining energy of the ion
after traversing the layer of matter that can easily be calculated from the residual
ranges before and behind the layer, r(E;) and r(Ey), since

r(Ey) =r(Ei) —d (A.2)

and the function r(E) can be inverted.
To determine the function r(FE), first we calculated the range of a number of

different projectile-stopper combinations by numerical integration of the stopping-
power expressions presented in the appendix of Ref. [7]. Then we fitted the values
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Table A.1: Parameters p; to p;g which provide the range of any ion with energy
between 100 and 200 A MeV in Be, C and Al according to the expression A.3.

in Be (Z = 4) in C (Z = 6) in Al (Z = 13)
pp = —1.28428 - 10~* 6.67801 - 10~ —6.68659 - 107°
py = —1.73612- 1076 —3.92137-10°¢ —1.85311-10°¢
ps = 8.89892 - 1078 1.36917- 1077 8.73192- 1078
ps = —7.05115- 10710 —9.72996 - 10710 —6.90141 - 10710
ps = —0.553492 —0.490202 —0.530758
pe = 9.12049 - 103 7.51599 - 103 8.98953 - 103
pr = 2.68184 2.61390 2.68916

ps = —0.210108 - 1073 —6.00822-1073 —5.33772-1073
po = 7.74360 - 1074 —0.199549 - 10~ —0.214131
pro = —1.28428 - 10~ 7.31880- 1074 7.73008 - 10~*

in an energy range between 100 A MeV and 2 A GeV with the least squares method
to the function:

A
7(Zy, Ap, EJAp) =k Z—’; 10°  mg/cm? (A.3)
P
where
K = (1 + plZp + pQZ;g + ngg + p4Z§) . [(p5 + p(,-Zp) (A4)

+(pr + psZp)logio(E/Ay) + (b9 + pr0Zy)logio(E/Ay)]
with A, and Z, the mass and atomic number of the ion, respectively, and E/A,
its energy in A MeV.
The set of parameters p; to pjp resulting from the fit are listed in table A.1 for Be,
C and Al and in table A.2 for Sn, Ta and Pb. The different sets of parameters were
adjusted separately to each stopper material but simultaneously for 21 projectiles
from Z, = 3 to Z, = 92 and for all energies between E/A = 100 MeV and 2 GeV.

The factor k in equation A.3 allows to interpolate the calculation of the range
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Table A.2: Parameters p; to p;g which provide the range of any ion with energy
between 100 and 200 A MeV in Sn, Ta and Pb according to the expression A.3.

in Sn (Z = 50) in Ta (Z = 73) in Pb (Z = 82)
p = 1.23639 - 1073 —1.99249-10°° —3.75861 - 10~*
po = —6.13893 - 106 —2.27944 - 106 —3.73902 - 106
ps = 1.84116 - 1077 1.05063 - 1077 1.48861 - 1077
ps = —1.20551 - 107 —8.29122 . 10710 —1.12159 - 107°
ps = —0.263421 —0.325062 —0.166220
pe = 6.34349 - 103 9.75017 - 10—3 1.26920 - 102
pr = 2.61081 2.68814 2.59061

pg = —6.38315- 1073 —6.07419 - 1073 —7.25322-1073
pe = —0.204813 —0.218986 —0.202004 - 10~
po = 6.63267 - 10~* 8.69283 - 10~ 1.17942 - 1073

to other stopping materials than those used for the fit. This factor can be obtained
from the following relations:

0<Z, <5: k=A,/9.012-(4/7,)"%
5<Z,<9: k= A4,/12.011-(
9<7Z,<32: k=A,/26.982-(
32< 7, <64: k= A,;/118.69 - (50/7,)"38
64< 7, <72: k= A,/180.95-(
T2< Z,<92: k= A;/207.20 - (

where A; and Z; represent the mass and the atomic numbers of the stopping
material, respectively. When the stopping material is a mixture of different isotopes,
the mean mass number has to be used for A;.

A more accurate determination of the range can be obtained by applying the
correction factor F,,., to the equation A.3:

A K
7(Zyp, Ap, EJAp) = k Z—g 10°- F.ppy  mg/em? (A.5)
P

with
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Foorr = 1/(0.965735686 + 9.79114F — 03 - R + 3.17099E — 03 - R? (A.6)
—6.71227E — 04 - R® + 2.28409E — 05 - R*)

where R = Z7 /1000

This analytical range-energy relation (A.5) can be inverted according to the
following equation:

—(pr+pgZp) \j((p'?_{—pSZp) 2_p5+P6Zp (A.7)
) .

E(Z, A, r)=102®o+r107p) —
( v ) 2(p9 +p10Zp Do +p1()Zp

log1o(rk/5§7;( )

+
(L+p12Zp +p2Z2 + 323 + paZ}) (po + p10Zp)

Expressions A.5 and A.7 allow us to calculate analytically the range and energy
of any ion traversing any stopping material, and together with equations A.1 and
A.2 we can determine their energy loss. Therefore, these analytical range-energy
relations constitute a very fast algorithm for energy-loss calculations, well suited for
technical applications.

The analytical range-energy relations provide another important advantage: The
fact that the functions A.5 and A.7 are the exact inverse functions of each other
avoids systematical inconsistencies which could occur if tabulated range values are
interpolated.
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Appendix B

Energy Losses Tables

Experimental measured data for several projectile-target combinations. Light and
heavy projectiles passing trough light and heavy targets data were measured. Several
energies are also printed. The same projectile-target combinations were simulated
with all the codes under study in order to compare the results.

Projectile(MeV /u) Target Data AMADEUS ATIMA GEANT SIRM

97 A (115.3) Be  30.34(1.0) 2.6 25 11.9 1.7
(257.7) Be  19.54(0.7) 0.2 0.3 0.0 1.4
(117.0) Al 29.56(1.0) A7 A7 7.6 0.9
(255.7) Al 19.49(0.7) -1.9 -2.2 2.5 -3.9
(286.7) Al 18.36(3.3) 1.3 -1.6 -2.6 -4.0
(110.9) Cu  25.56(1.3) 1.3 2.5 1054 04
(263.4) Cu  16.62(1.1) -1.6 15 27 46
(117.6) Pb  18.11(1.3) 2.1 0.5 11.4 2.1
(255.5) Pb  12.75(0.9) 1.1 0.9 2.1 4.1

208 Pp(130.7) Be  30.35(1.0) 2.7 25 8.6 1.0
(201.8) Be  23.79(0.5) -1.2 -0.7 2.8 -0.0
(120.4) Al 31.02(0.6) -4.8 4.4 8.0 0.7
(202.6) Al 23.45(0.6) -3.3 2.4 0.5 2.4
(193.3) Cu  20.64(0.6) -1.3 -1.6 1.3 2.7
(132.2) Ta  19.12(1.3) 2.1 -0.3 9.3 1.0
(201.8) Ta  15.56(0.6) -1.0 0.8 2.6 1.0

Table B.1: Comparison between codes and experimental data [22] The values of
different codes are showed as relative values to the experimental data in percent.
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Projectile(MeV /u) Target Data AMADEUS ATIMA GEANT SIRM

209 B4(168.8) Be  26.84(0.8) -1.9 -1.4 5.5 0.4
264.0 Be  21.27(1.2) 0.2 -0.4 0.2 -1.6
525.1 Be  15.81(0.8) 1.8 0.4 4.4 4.8
879.6 Be  13.73(0.6) 0.4 -0.4 -7.0 7.4

157 Al 27.41(3.5) -3.6 -3.2 -3.8 -1.4
162.8 Al 27.03(0.7) -2.6 -3.6 3.1 2.0
171.0 Al 26.04(2.5) -0.5 -2.3 4.0 -1.1
183.0 Al 25.01(2.5) -2.2 -1.6 3.6 -1.0
269.6 Al 21.18(1.5) -3.3 -3.4 -3.6 5.4
498.6 Al 16.42(0.5) -2.0 -2.9 -8.6 -8.4
866.7 Al 13.78(0.5) 1.4 -0.6 -8.6 9.0
163.3 Cu  22.82(0.9) 1.1 -1.3 4.6 -1.1
258.8 Cu  18.38(1.1) 1.1 -1.2 -2.0 4.2
495.2 Cu  14.36(0.6) -1.0 -2.5 -8.8 -8.8
874.7 Cu  12.17(0.6) -2.1 -1.6 -9.7 -10.0
185.6 Ta  16.67(1.1) -1.0 0.0 3.7 -1.3
166.5 Ag  20.39(0.9) 3.7 -1.0 4.4 -1.3
261.6 Ag  16.58(1.2) -3.0 1.1 -2.2 4.5
500.1 Ag  12.81(0.5) 0.5 -0.6 7.4 -7.3
873.4 Ag  11.11(0.5) -0.9 -0.8 -9.6 9.9
165.8 Au  17.25(0.8) -0.6 -0.5 4.9 0.8
260.4 Au  14.12(1.1) 0.6 -0.5 -1.8 -4.0
492.3 Au  11.03(0.5) 2.3 0.3 -7.0 6.7
851.6 Au  9.66(0.4) 0.5 -0.4 9.7 9.7
186.4 Pb  16.12(1.2) -1.5 -1.0 3.0 -2.0

Table B.2: Comparison between codes and experimental data [22]. The values of
different codes are showed as relative values to the experimental data in percent.
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Projectile(MeV /u) Target Data AMADEUS ATIMA GEANT SIRM

80(690) Be 0.125(1.6) 0.0 0.8 1.6 1.6

C 0.138(2.9) 0.7 0.0 1.4 1.4

Al 0.123(3.2) 0.0 0.8 1.6 0.8

10 Ar(985) Be  0.587(2.7) 0.5 1.2 0.7 0.7
C 0.640(2.9) 0.5 0.1 0.2 0.2

Al 0.584(3.2) -2.6 -0.5 -1.8 1.7

Cu  0.494(3.2) 0.6 2.2 1.6 1.6

Pb  0.389(3.1) 0.0 1.5 0.7 0.7

8 Ni(260) Be  2.477(2.5) 2.3 -0.5 -1.4 -1.1
(430) Be 1.904(2.0) 0.3 -0.3 -1.4 -1.5

8 Kr(420) Be  3.206(1.5) 0.5 -0.5 2.2 2.2
(900) Be  2.432(1.5) 0.7 0.2 -1.8 2.2

136 X ¢(780) Be  5.861(1.3) 0.3 -0.9 -4.9 -5.1
C 6.524(1.3) -0.4 -2.3 -5.9 -6.1

Al 5.806(2.1) -0.3 -0.8 -5.8 -5.8

Cu  5.077(1.3) 0.3 -0.8 -5.9 -6.0

Pb  3.959(1.6) 0.0 -0.5 -6.4 -6.2

197 A4,(950) Be  12.124(1.0) 0.0 0.2 -6.5 -6.7
C  13.256(1.2) 1.0 0.6 -5.8 -6.0

Al 12.086(1.3) 0.5 0.4 -7.8 -7.8

Cu  10.572(1.2) 0.6 0.5 -7.6 -7.9

Pb  8.332(1.2) -1.6 0.8 -8.6 -8.8

209 B4(157) Al 27.406(3.5) -3.6 -3.2 -3.8 -1.4
23817(900) Be  16.648(1.1) 1.1 1.1 -6.3 -6.7
C  18.470(1.5) 0.7 0.1 -6.9 7.4

Al 16.739(1.0) -0.2 0.5 -8.4 -8.7

Ti  15.739(1.5) -1.9 0.4 -8.6 -8.8

Cu  14.703(1.1) 0.8 0.4 -8.7 9.1

Au  11.728(1.5) 1.4 0.8 -9.6 -9.6

Pb  1.533(1.8) 0.7 1.1 -9.4 9.7

Table B.3: Comparison between codes and experimental data [?] The values of
different codes are showed as relative values to the experimental data in percent.
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Appendix C

Deduction of the geometrical
factor I'.

We will derive the geometrical factor in expression 3.6.

From 3.1 is easy to get

Ap

nycos20

that is equation 3.5

Using Snellius Law we have:

1
= ———sinfA = A = Btanf A — AS = tanf Al

n 08
nysind = nosing = nycosd Al = nocospAp —> Al = —thmﬁc SOAQD
ny cosf
Then, we can rewrite expresion C.1 as
AB = "2 42 Ay
n cosb
Looking at the figure 3.2 we can see
R cos?p + sin?p AR AR 1
tanp = — = =— = Ap=————
T cos?p L T + tan?y

(C.1)



Substituting this into C.3, manipulating,using again the Snellius Law and weigth-
ing the result with the number of detected photoelectrons we obtain, finally

AB 1 AR tan?0

- _ C.5
B VN R 1+ tan?p (C.5)
From here, we conclude that the geometrical factor I' is given by:
tan?0
__anv (C.6)
14 tan?e
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Appendix D

Simulation of Cerenkov photons
with GEANT 3.21

When a charged particle cross a dielectric medium with a velocity higher than
the group velocity of light in the material GEANT code call to the GGCKOV
routine which generates a number of Cerenkov photons according to the Frank-
Tamm relation (equation 3.2) whenever the user had defined the dielectric medium
as a radiator by calling the routine GSCKOV. This photons are stored in the JSTAK
stack for further tracking. To define a dielectric medium as a radiator, the user has
to provide the refractive index and the radiation length of the material as a function
of the wavelength.

The generated Cerenkov photons are tracked in the routine GTCKOV. The pho-
tons to be tracked are defined by two vectors, the photon momentum (7= hk) and
the photon polarisation (€). By convention the direction of the polarisation vector
is that of the electric field. The photon is tracked taking into account processes
as in flight absortion or boundary action. Whenever a photon reaches a medium
boundary, the behaviour of the photon at the surface boundary is determined by
three quantities:

e Refraction or reflection angle, this represents the kinematic of the effect.

e Amplitude of the reflected and refracted waves, this is the dynamic of the
effect.

e Probability of the photon to be refracted or reflected, this is the quantum
mechanical effect which we have to take into account if we want to describe
the photon as a particle and not as a wave.
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GEANT distinguish between three kinds of boundary action, dielectric-black
material, dielectric-metal and dielectric-dielectric. The first case is trivial in the
sense that the photon is inmediately absorbed. The second case is also simple
because the photon can not be transmitted, so the probability for the photon to
be absorbed is estimated and, if the photon is not absorbed, then is reflected. The
remaining case is more complicated and is extensively described in the GEANT
Manual[3], section PHYS260.

In our simulation, the photons are tracked untill they reach the detection plane
defined by the user. During the tracking, the photon absortion probabilities calcu-
lated by GEANT have been desactivated and new absortion probabilities have to
be introduced by the user because the default values given by GEANT were not in
good agreement with those measured in the Munich Technical University [41].
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Appendix E

Velocity determination in total
internal reflection mode.

We will derive here the expression which allow us to determine the velocity of the
particle passing through the radiator from the direct measurement of the ring radius
in total reflexion mode. In the total reflexion mode we can determine directly the
Cerenkov emission angle.

Figure E.1:

This will be a pure geometrical problem. Looking at figure E.1 we have find a
relation between Cerenkov angle - and the angle &, which is determined by the
radiator radii:
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then:

bo=¢—0 (E.2)

Figure E.2:

Additionally, the different refractive index of the radiator and the gap expansion
medium induce the refraction of the photon at the boundary. Looking at figure E.2
we can find an expression which relates the refracted angle ¢ with the angle fixed

by the radiator shape &:

the remaining angles follow the relationship:

a+¢+5:g=¢:g—5 (E.4)
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We are already close to the solution because the angle § in fig F.2 is the one we
measure from the raing radii, as it is shown in the figure E.3. From this, we can
derive:

R—7
= E.
6 = arctan ( 7 ) (E.5)

¢ = arctan ( ) (E.6)

r—r

where R is the ring radius, 7 is the mean radiator radius, L is the distance from
the radiator to the detector, r; and ry are the bottom and top radii of the radiator,
respectively, and d is its thickness.

Figure E.3:

From this expression we can give the ¢ angle (expression E.4) as follows:

d R -
¢ = arctan <7“1 — 7"2> — arctan (T) (E.7)

Finally, making use of the Snellius law we obtain:

f = arcsin [@ sin (;5] (E.8)
m
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being n; and ny the refractive index of the radiator and the expansion gap
medium respectively.

The reader must notice that this # angle is not the Cerenkov angle, but the inci-
dent angle to the normal of the radiator boundary. Remembering the realationship
between this angle and the Cerenkov angle (expression E.2) we can finally deduce
the following expression for the Cerenkov angle:

( d ) . an ( : l ( d ) R—7F
fc = arctan — arcsin | — | sin |arctan — arctan (—)
TR — T2 nq N — T2 L
9)

(E.
In the same way than in the second chapter, we have to make the assumption

that the photon is emited in the middle of the radiator. The distande L from the
radiator to the detector has to be taken from the radiator half height.
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