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An analysis of B± → D K ± and B± → Dπ± decays is presented where the D meson is reconstructed
in the two-body final states: K ±π∓, K + K − and π+π−. Using 1.0 fb−1 of

√
s = 7 TeV pp collisions,

measurements of several observables are made including the first observation of the suppressed mode
B± → [π± K ∓]D K ±. CP violation in B± → D K ± decays is observed with 5.8σ significance.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

A fundamental feature of the Standard Model and its three
quark generations is that all CP violation phenomena are the re-
sult of a single phase in the CKM quark-mixing matrix [1]. The
validity of the theory may be tested in several ways, and one —
verifying the unitarity condition V ud V ∗

ub + V cd V ∗
cb + Vtd V ∗

tb = 0 —
is readily applicable to B mesons. This condition describes a trian-
gle in the complex plane whose area is proportional to the amount
of CP violation in the theory [2]. Following the observation of CP
violation in the B0 system [3], the focus has turned to testing the
unitarity of the theory by over-constraining the sides and angles of
this triangle. Most related measurements involve loop or box di-
agrams, and for which the CKM mechanism is typically assumed
when interpreting data [4]. This means the least-well determined
observable, the phase γ = arg(−V ud V ∗

ub/V cd V ∗
cb) is of particular

interest as γ �= 0 can produce direct CP violation in tree decays.
Some of the most powerful methods for determining γ are

measurements of the partial widths of B± → D K ± decays where
the D signifies a D0 or D̄0 meson. In this case, the amplitude
for the B− → D0 K − contribution is proportional to V cb whilst the
B− → D̄0 K − amplitude depends on V ub . If the D final state is ac-
cessible for both D0 and D̄0 mesons, the interference of these two
processes gives sensitivity to γ and may exhibit direct CP viola-
tion. This feature of open-charm B− decays was first recognised in
its application to CP eigenstates, such as D → K +K − , π+π− [5]
but can be extended to other decays, e.g. D → π−K + . This sec-
ond category, labelled “ADS” modes in reference to the authors
of [6], requires the favoured, b → c decay to be followed by a dou-
bly Cabibbo-suppressed D decay, and the suppressed b → u decay
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to precede a favoured D decay. The amplitudes of such combina-
tions are of similar total magnitude and hence large interference
can occur. For both the CP-mode and ADS methods, the interesting
observables are partial widths and CP asymmetries.

In this Letter, we present measurements of the B± decays
in the CP modes, [K +K −]Dh± and [π+π−]Dh± , the suppressed
ADS mode [π±K ∓]Dh± and the favoured [K ±π∓]Dh± combina-
tion where h indicates either pion or kaon. Decays where the
bachelor — the charged hadron from the B− decay — is a kaon
carry greater sensitivity to γ . B− → Dπ− decays have some lim-
ited sensitivity and provide a high-statistics control sample from
which probability density functions (PDFs) are shaped. In total, 13
observables are measured: three ratios of partial widths

R f
K/π = Γ (B− → [ f ]D K −) + Γ (B+ → [ f ]D K +)

Γ (B− → [ f ]Dπ−) + Γ (B+ → [ f ]Dπ+)
, (1)

where f represents K K , ππ and the favoured Kπ mode, six CP
asymmetries

A f
h = Γ (B− → [ f ]Dh−) − Γ (B+ → [ f ]Dh+)

Γ (B− → [ f ]Dh−) + Γ (B+ → [ f ]Dh+)
, (2)

and four charge-separated partial widths of the ADS mode relative
to the favoured mode

R±
h = Γ (B± → [π±K ∓]Dh±)

Γ (B± → [K ±π∓]Dh±)
. (3)

Elsewhere, similar analyses have established the B± → DCPh±
modes [7–9] and found evidence of the B± → [π±K ∓]D K ± de-
cay [10–12]. Analyses of B± → [K 0

S π+π−]D K ± decays [13,14]
have yielded the most precise measurements of γ though a 5σ
observation of CP violation from a single analysis has not been
achieved. This work represents the first simultaneous analysis of
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B± → DCPh± and B± → DADSh± modes. It is motivated by the
future extraction of γ which, with this combination, may be de-
termined with minimal ambiguity.

This Letter describes an analysis of 1.0 fb−1 of
√

s = 7 TeV data
collected by LHCb in 2011. The 2010 sample of 35 pb−1 is used
to define the selection criteria in an unbiased manner. The LHCb
experiment [15] takes advantage of the high bb̄ and cc̄ cross sec-
tions at the Large Hadron Collider to record large samples of heavy
hadron decays. It instruments the pseudorapidity range 2 < η < 5
of the proton–proton (pp) collisions with a dipole magnet and a
tracking system which achieves a momentum resolution of 0.4–
0.6% in the range 5–100 GeV/c. The dipole magnet can be operated
in either polarity and this feature is used to reduce systematic ef-
fects due to detector asymmetries. In 2011, 58% of data were taken
with one polarity, 42% with the other. The pp collisions take place
inside a silicon microstrip vertex detector that provides clear sep-
aration of secondary B vertices from the primary collision vertex
(PV) as well as discrimination for tertiary D vertices. Two ring-
imaging Cherenkov (RICH) detectors with three radiators (aero-
gel, C4 F10 and C F4) provide dedicated particle identification (PID)
which is critical for the separation of B− → D K − and B− → Dπ−
decays.

A two-stage trigger is employed. First a hardware-based deci-
sion is taken at a frequency up to 40 MHz. It accepts high trans-
verse energy clusters in either an electromagnetic calorimeter or
hadron calorimeter, or a muon of high transverse momentum (pT).
For this analysis, it is required that one of the three tracks form-
ing the B± candidate points at a deposit in the hadron calorimeter,
or that the hardware-trigger decision was taken independently of
these tracks. A second trigger level, implemented entirely in soft-
ware, receives 1 MHz of events and retains ∼ 0.3% of them. It
searches for a track with large pT and large impact parameter (IP)
with respect to the PV. This track is then required to be part of a
secondary vertex with a high pT sum, significantly displaced from
the PV. The displaced vertex is selected, with ∼ 75% efficiency, by
an online decision tree algorithm that uses pT, χ2

IP, flight distance
and vertex quality information of the B± candidate. Full event re-
construction occurs offline, and after preselection around 2.5 × 105

events are available for final analysis.
Approximately one million simulated events for each B± →

[h+h−]Dh± signal mode are used as well as a large inclusive sam-
ple of generic B → D X decays. These samples are generated us-
ing a tuned version of Pythia [16] to model the pp collisions.
EvtGen [17] encodes the particle decays and Geant4 [18] describes
interactions in the detector. Although the shapes of the signal
peaks are determined directly on data, the inclusive sample assists
in the understanding of the background. The signal samples are
used to estimate the relative efficiency in the detection of modes
that differ only by the bachelor track flavour.

2. Event selection

Sixteen combinations of B± → Dh± , D → h±h∓ are formed
where each h can be either a pion or a kaon. The candidate
D meson mass must be within 1765–1965 MeV/c2 to be ac-
cepted. D daughter tracks are required to have pT > 250 MeV/c
but this requirement is tightened to 0.5 < pT < 10 GeV/c and
5 < p < 100 GeV/c for bachelor tracks to ensure best pion versus
kaon discrimination. The decay chain is refitted [19] constraining
the vertices to points in space and the D candidate to its nominal
mass, mD0

PDG [20].
Reconstructed candidates are selected using a boosted deci-

sion tree (BDT) discriminator [21]. It is trained using a simulated
sample of B± → [K ±π∓]D K ± and background events from the

D-mass sideband (35 < |m(hh) − mD0

PDG| < 100 MeV/c2) of the in-
dependent sample collected in 2010. The BDT uses the following
properties of the candidate B± decay:

• From the tracks, the D and B±: pT and χ2
IP with respect to the

PV;
• From the B± and D: decay time, flight distance from the PV

and vertex quality;
• From the B±: the angle between the momentum vector and a

line connecting the PV to its decay vertex.

Information from the rest of the event is employed via an isola-
tion variable that considers the imbalance of pT around the B±
candidate,

ApT = pT(B) − ∑
n pT

pT(B) + ∑
n pT

, (4)

where the
∑

n pT sums over the n tracks within a cone around
the candidate excluding the three signal tracks. The cone is de-
fined by a circle of radius 1.5 in the plane of pseudorapidity and
azimuthal angle (measured in radians). The signal B decay tends
to be more isolated with greater pT asymmetry than combinato-
rial background. As no PID information is used as part of the BDT,
it performs equally well for all modes considered here.

The optimal cut value on the BDT response is chosen by consid-
ering the combinatorial background level (b) in the invariant mass
distribution of favoured B± → [Kπ ]Dπ± candidates. The large sig-
nal peak in this sample is scaled to the anticipated ADS-mode
branching fraction to provide a signal estimate (s). The quantity
s/

√
s + b serves as an optimisation metric. The BDT response peaks

towards 0 for background and 1 for signal. The optimal cut is found
to be > 0.92 for the ADS mode; this is also applied to the favoured
mode. For the cleaner CP modes, a cut of BDT > 0.80 gives a simi-
lar background level but with a 20% higher signal efficiency.

PID information is quantified as differences between the log-
arithm of likelihoods, lnLh , under different particle hypothe-
ses (DLL). Daughter kaons of the D meson are required to
have DLLKπ = lnLK − lnLπ > 2 and daughter pion must have
DLLKπ < −2. Multiple candidates are arbitrated by choosing the
candidate with the best-quality B± vertex; only 26 events in the
final sample of 157 927 require this consideration.

The number of candidates from B decays that do not con-
tain a true D meson can be reduced by requiring the flight dis-
tance significance of the D candidate from the B− vertex to be
> 2. The effectiveness of this cut is monitored in the D sideband
where it is seen to remove significant structures peaking near the
B− mass. A simulation study of the B− → K −K +K − , K −π+π−
and K −K +π− modes suggests this cut leaves 2.5, 1.3 and 0.8
events respectively under the B− → [K +K −]D K − , [π+π−]D K −
and [π+K −]D K − signals. This cut also removes cross feed (e.g.
B− → [K −π+]Dπ− as a background of [π+π−]D K −) which oc-
curs when the bachelor is confused with a D daughter for events
with a low D decay time. Finally, the combination of the bach-
elor track and the D-daughter track of opposite charge is made
under the hypothesis both tracks are muons. The parent B candi-
date is vetoed if the invariant mass of this combination is within
±22 MeV/c2 of either the J/ψ or ψ(2S) mass [20].

Due to misalignment, the reconstructed B± mass is not iden-
tical to the established value, mB±

PDG [20]. As simulation is used
to define background shapes, it is useful to apply linear momen-
tum scaling factors separately to the two polarity datasets so the
B± mass peak is closer to mB±

PDG. After this correction, the D0 →
K −π+ mass peak is measured at 1864.8 MeV/c2 with a resolution
of 7.4 MeV/c2. Selected D candidates are required to be within
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Fig. 1. Invariant mass distributions of selected B± → [K ±π∓]D h± candidates. The left plots are B− candidates, B+ are on the right. In the top plots, the bachelor track passes
the DLLKπ > 4 cut and the B candidates are reconstructed assigning this track the kaon mass. The remaining events are placed in the sample displayed on the bottom row
and are reconstructed with a pion mass hypothesis. The dark (red) curve represents the B → D K ± events, the light (green) curve is B → Dπ± . The shaded contribution
are partially reconstructed events and the total PDF includes the combinatorial component. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)
±25 MeV/c2 of mD0

PDG. This cut is tight enough that no cross feed
occurs from the favoured mode into the CP modes. In contrast, the
ADS mode suffers a potentially large cross feed from the favoured
mode in the circumstance that both D daughters are misidentified
(K ↔ π ). The invariant mass spectrum of such cross feed is broad
but peaks around mD0

PDG. It is reduced by vetoing any ADS candi-
date whose D candidate mass under the exchange of its daughter
track mass hypotheses, lies within ±15 MeV/c2 of mD0

PDG. Impor-
tantly for the measurements of R±

h , this veto is also applied to the
favoured mode. With the D mass selection and the D daughter PID
requirements, this veto reduces the rate of cross feed to an almost
negligible rate of (6 ± 3) × 10−5.

Partially reconstructed events populate the invariant mass re-
gion below the B± mass. Such events may enter the signal re-
gion, especially where Cabibbo-favoured B → X Dπ± modes are
misidentified as B → X D K ± . The large simulated sample of in-
clusive Bq → D X decays, q ∈ {u,d, s}, is used to model this back-
ground. After applying the selection, two non-parametric PDFs [22]
are defined (for the Dπ± and D K ± selections) and used in the
signal extraction fit. These PDFs are applied to all four D modes
though two additional contributions are needed in specific cases.
In the D → K +K − mode, Λ0

b → [p+K −π+]Λc h− enters if the
pion is missed and the proton is reconstructed as a kaon. In the
B± → DADS K ± mode, partially reconstructed B̄0

s → D0 K +π− de-
cays represent an important, Cabibbo-favoured background. PDFs
of both these sources are defined from simulation, smeared by
the modest degradation in resolution observed in data. When dis-
cussing these contributions, inclusion of the charge conjugate pro-
cess is implied throughout.

3. Signal yield determination

The observables of interest are determined with a binned
maximum-likelihood fit to the invariant mass distributions of se-
lected B candidates [23]. Sensitivity to CP asymmetries is achieved
by separating the candidates into B− and B+ samples. B± → D K ±
events are distinguished from B± → Dπ± using a PID cut on the
DLLKπ of the bachelor track. Events passing this cut are recon-

structed as D K ± , events failing the cut are reconstructed as the
Dπ± final state. The fit therefore comprises four subsamples —
(B+, B−) × (D K , Dπ) — for each D mode, fitted simultaneously
and displayed in Figs. 1–4. The total PDF is built from four or
five components representing the various sources of events in each
subsample.

1. B± → Dπ±: In the sample failing the bachelor PID cut, a mod-
ified Gaussian function,

f (x) ∝ exp

( −(x − μ)2

2σ 2 + (x − μ)2αL,R

)
(5)

describes the asymmetric peak of mean μ and width σ where
αL(x < μ) and αR(x > μ) parameterise the tails.
True B± → Dπ± events that pass the PID cut are recon-
structed as B± → D K ± . As these events have an incorrect
mass assignment they form a displaced mass peak with a tail
that extends to higher invariant mass. These events are mod-
elled by the sum of two Gaussian PDFs also altered to include
tail components. All parameters are allowed to vary except the
lower-mass tail which is fixed to ensure fit stability and later
considered amongst the systematic uncertainties. These shapes
are considered identical for B− and B+ decays and for all four
D modes. This assumption is validated with simulation.

2. B± → D K ±: In the sample that passes the DLLKπ cut on
the bachelor, the same modified Gaussian function is used.
The mean and the two tail parameters are identical to those
of the larger, B± → Dπ± peak. The width is 0.95 ± 0.02
times the Dπ± width, as determined by a standalone study
of the favoured mode. Its applicability to the CP modes is
checked with simulation, assigning an additional systematic
uncertainty of 0.01. Events failing the PID cut are described
by a fixed shape that is obtained from simulation and later
varied to assess the systematic error.

3. Partially reconstructed B → D X : A fixed, non-parametric PDF,
derived from simulation, is used for all subsamples. The yield
in each subsample varies independently, making no assump-
tion of CP symmetry.
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Fig. 2. Invariant mass distributions of selected B± → [K + K −]D h± candidates. See the caption of Fig. 1 for a full description. The contribution from Λb → Λ±
c h∓ decays is

indicated by the dashed line.

Fig. 3. Invariant mass distributions of selected B± → [π+π−]D h± candidates. See the caption of Fig. 1 for a full description.
4. Combinatoric background: A linear approximation is adequate
to describe the slope across the invariant mass spectrum con-
sidered. A common slope is used in all subsamples, though
yields vary independently.

5. Mode-specific backgrounds: In the D → K K mode, two extra

components are used to model Λ0
b → Λ+

c h− decays. Though
the total contribution is allowed to vary, the shape and relative
proportion of Λ+

c K − and Λ+
c π− are fixed. This latter quantity

is estimated at 0.060 ± 0.015, similar to the effective Cabibbo
suppression observed in B mesons. For the B± → DADS K ±
mode, the shape of the B̄0

s → D0 K +π− background is taken
from simulation. In the fit, this yield is allowed to vary though
the reported yield is consistent with the simulated expecta-
tion, as derived from the branching fraction [24] and the bb̄
hadronisation [25].

The proportion of B± → Dh± passing or failing the PID re-
quirement is determined from a calibration analysis of a large
sample of D∗± decays reconstructed as D∗± → Dπ± , D → K ∓π± .
In this calibration sample, the K and π tracks may be identi-
fied, with high purity, using only kinematic variables. This facili-
tates a measurement of the RICH-based PID efficiency as a func-
tion of track momentum, pseudorapidity and number of tracks
in the detector. By reweighting the calibration spectra in these
variables to match the events in the B± → Dπ± peak, the ef-
fective PID efficiency of the signal is deduced. This data-driven
technique finds a retention rate, for a cut of DLLKπ > 4 on
the bachelor track, of 87.6% and 3.8% for kaons and pions, re-
spectively. A 1.0% systematic uncertainty on the kaon efficiency
is estimated from simulation. The B± → Dπ± fit to data be-
comes visibly distorted with variations to the fixed PID efficiency
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Fig. 4. Invariant mass distributions of selected B± → [π± K ∓]D h± candidates. See the caption of Fig. 1 for a full description. The dashed line here represents the partially
reconstructed, but Cabibbo favoured, B0

s → D̄0 K −π+ and B̄0
s → D0 K +π− decays where the pions are lost. The pollution from favoured mode cross feed is drawn, but is too

small to be seen.
Table 1
Corrected event yields.

B± mode D mode B− B+

D K ± K ±π∓ 3170 ± 83 3142 ± 83
K ± K ∓ 592 ± 40 439 ± 30
π±π∓ 180 ± 22 137 ± 16
π± K ∓ 23 ± 7 73 ± 11

Dπ± K ±π∓ 40 767 ± 310 40 774 ± 310
K ± K ∓ 6539 ± 129 6804 ± 135
π±π∓ 1969 ± 69 1973 ± 69
π± K ∓ 191 ± 16 143 ± 14

> ±0.2% so this value is taken as the systematic uncertainly for
pions.

A small negative asymmetry (defined in the same sense as
Eq. (2)) is expected in the detection of K − and K + mesons due to
their different interaction lengths. A fixed value of (−0.5 ± 0.7)% is
assigned for each occurrence of strangeness in the final state. The
equivalent asymmetry for pions is expected to be much smaller
and (0.0 ± 0.7)% is assigned. This uncertainty also accounts for the
residual physical asymmetry between the left and right sides of
the detector after summing both magnet-polarity datasets. Simula-
tion of B meson production in pp collisions suggests a small excess
of B+ over B− mesons. A production asymmetry of (−0.8 ± 0.7)%
is assumed in the fit such that the combination of these estimates
aligns with the observed raw asymmetry of B± → J/ψ K ± decays
at LHCb [26]. Ongoing studies of these instrumentation asymme-
tries will reduce the associated systematic uncertainty in future
analyses.

The final B± → Dh± signal yields, after summing the events
that pass and fail the bachelor PID cut, are shown in Table 1.
The invariant mass spectra of all 16 B± → [h+h−]Dh± modes are
shown in Figs. 1–4. Regarding the B± → Dπ± mass resolution: re-
spectively, 14.1 ± 0.1, 14.2 ± 0.1 and 14.2 ± 0.2 MeV/c2 are found
for the D → K K , Kπ and ππ modes with common tail param-
eters αL = 0.115 ± 0.003 and αR = 0.083 ± 0.002. As explained
above, the B± → D K ± widths are fixed relative to these values.

The ratio of partial widths relates to the ratio of event yields
by the relative efficiency with which B± → D K ± and B± → Dπ±

Table 2
Systematic uncertainties on the observables. PID refers to the fixed efficiency of
the DLLKπ cut on the bachelor track. PDFs refers to the variations of the fixed
shapes in the fit. “Sim” refers to the use of simulation to estimate relative effi-
ciencies of the signal modes which includes the branching fraction estimates of the
Λ0

b background. Ainstr. quantifies the uncertainty on the production, interaction and
detection asymmetries.

×10−3 PID PDFs Sim Ainstr. Total

R Kπ
K/π 1.4 0.9 0.8 0 1.8

R K K
K/π 1.3 0.8 0.9 0 1.8

Rππ
K/π 1.3 0.6 0.8 0 1.7

AKπ
π 0 1.0 0 9.4 9.5

AKπ
K 0.2 4.1 0 16.9 17.4

AK K
K 1.6 1.3 0.5 9.5 9.7

Aππ
K 1.9 2.3 0 9.0 9.5

AK K
π 0.1 6.6 0 9.5 11.6

Aππ
π 0.1 0.4 0 9.9 9.9

R−
K 0.2 0.4 0 0.1 0.4

R+
K 0.4 0.5 0 0.1 0.7

R−
π 0.01 0.03 0 0.07 0.08

R+
π 0.01 0.03 0 0.07 0.07

decays are reconstructed. This ratio, estimated from simulation, is
1.012, 1.009 and 1.005 for D → K K , Kπ,ππ respectively. A 1.1%
systematic uncertainty accounts for the imperfect modelling of the
relative pion and kaon absorption in the tracking material, though
no evidence of large imperfections are seen.

The fit is constructed such that the observables of interest are
parameters of the fit and all systematic uncertainties discussed
above enter the fit as constant numbers in the model. To evaluate
the effect of these systematic uncertainties, the fit is rerun many
times varying each of the systematic constants by its uncertainty.
The resulting spread (RMS) in the value of each observable is taken
as the systematic uncertainty on that quantity and is summarised
in Table 2. Correlations between the uncertainties are considered
negligible so the total systematic uncertainty is just the sum in
quadrature. For the ratios of partial widths in the favoured and
CP modes, the uncertainties on the PID efficiency and the rela-
tive width of the D K ± and Dπ± peaks dominate. These sources
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also contribute in the ADS modes, though the assumed shape of
the B̄0

s → D0 K +π− background is the largest source of systematic
uncertainty in the B± → DADS K ± case. For the CP asymmetries,
instrumentation asymmetries at LHCb are the largest source of un-
certainty.

4. Results

The results of the fit with their statistical uncertainties and as-
signed systematic uncertainties are:

R Kπ
K/π = 0.0774 ± 0.0012 ± 0.0018,

R K K
K/π = 0.0773 ± 0.0030 ± 0.0018,

Rππ
K/π = 0.0803 ± 0.0056 ± 0.0017,

AKπ
π = −0.0001 ± 0.0036 ± 0.0095,

AKπ
K = 0.0044 ± 0.0144 ± 0.0174,

AK K
K = 0.148 ± 0.037 ± 0.010,

Aππ
K = 0.135 ± 0.066 ± 0.010,

AK K
π = −0.020 ± 0.009 ± 0.012,

Aππ
π = −0.001 ± 0.017 ± 0.010,

R−
K = 0.0073 ± 0.0023 ± 0.0004,

R+
K = 0.0232 ± 0.0034 ± 0.0007,

R−
π = 0.00469 ± 0.00038 ± 0.00008,

R+
π = 0.00352 ± 0.00033 ± 0.00007.

From these measurements, the following quantities can be de-
duced:

RCP+ ≈ 〈
R K K

K/π , Rππ
K/π

〉
/R Kπ

K/π

= 1.007 ± 0.038 ± 0.012,

ACP+ = 〈
AK K

K , Aππ
K

〉
= 0.145 ± 0.032 ± 0.010,

RADS(K ) = (
R−

K + R+
K

)
/2

= 0.0152 ± 0.0020 ± 0.0004,

AADS(K ) = (
R−

K − R+
K

)
/
(

R−
K + R+

K

)
= −0.52 ± 0.15 ± 0.02,

RADS(π) = (
R−

π + R+
π

)
/2

= 0.00410 ± 0.00025 ± 0.00005,

AADS(π) = (
R−

π − R+
π

)
/
(

R−
π + R+

π

)
= 0.143 ± 0.062 ± 0.011,

where the correlations between systematic uncertainties are taken
into account in the combination and angled brackets indicate
weighted averages. The above definition of RCP+ is only approxi-
mate and is used for experimental convenience. It assumes the ab-
sence of CP violation in B± → Dπ± and the favoured B± → D K ±
modes. The exact definition of RCP+ is

Γ (B− → DCP+K −) + Γ (B+ → DCP+K +)

Γ (B− → D0 K −)
(6)

so an additional, and dominant, 1% systematic uncertainty ac-
counts for the approximation. For the same reason, a small ad-
dition to the systematic uncertainty of R Kπ

K/π is needed to quote

this result as the ratio of B± branching fractions,

B(B− → D0 K −)

B(B− → D0π−)
= (7.74 ± 0.12 ± 0.19)%.

To summarise, the B± → D K ± ADS mode is observed with ∼ 10σ
statistical significance when comparing the maximum likelihood
to that of the null hypothesis. This mode displays evidence (4.0σ )
of a large negative asymmetry, consistent with the asymmetries
reported by previous experiments [10–12]. The B± → Dπ± ADS
mode shows a hint of a positive asymmetry with 2.4σ signifi-
cance. The K K and ππ modes both show positive asymmetries.
The statistical significance of the combined asymmetry, ACP+ , is
4.5σ which is similar to that reported in [7,9] albeit with a smaller
central value. All these results contain dependence on the weak
phase γ and will form an important contribution to a future mea-
surement of this parameter.

Assuming the CP-violating effects in the CP and ADS modes are
due to the same phenomenon (namely the interference of b → cūs
and b → uc̄s transitions) we compare the maximum likelihood
with that under the null-hypothesis in all three D final states
where the bachelor is a kaon. This log-likelihood difference is di-
luted by the non-negligible systematic uncertainties in ACP+ and
AADS(K ) which are dominated by the instrumentation asymme-
tries and hence are highly correlated. In conclusion, with a total
significance of 5.8σ , direct CP violation in B± → D K ± decays is
observed.
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