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Measurements of b-hadron masses are performed with the exclusive decay modes B+ → J/ψ K +,
B0 → J/ψ K ∗0, B0 → J/ψ K 0

S , B0
s → J/ψφ and Λ0

b → J/ψΛ using an integrated luminosity of 35 pb−1

collected in pp collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum
scale is calibrated with J/ψ → μ+μ− decays and verified to be known to a relative precision of 2 ×10−4

using other two-body decays. The results are more precise than previous measurements, particularly in
the case of the B0

s and Λ0
b masses.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Within the Standard Model of particle physics, mesons and
baryons are colourless objects composed of quarks and gluons.
These systems are bound through the strong interaction, described
by quantum chromodynamics (QCD). A basic property of hadrons
that can be compared to theoretical predictions is their masses.
The most recent theoretical predictions based on lattice QCD cal-
culations can be found in Refs. [1,2]. The current experimental
knowledge of the b-hadron masses as summarized in Ref. [3] is
dominated by results from the CDF Collaboration [4]. In this Let-
ter precision measurements of the masses of the B+ , B0, B0

s and
Λ0

b are presented as well as the mass splittings with respect to
the B+ . The results are based on a data sample of proton–proton
collisions at

√
s = 7 TeV at the Large Hadron Collider collected by

the LHCb experiment, corresponding to an integrated luminosity of
35 pb−1.

The LHCb detector [5] is a forward spectrometer providing
charged particle reconstruction in the pseudorapidity range 2 <

η < 5. The most important elements for the analysis presented
here are precision tracking and excellent particle identification.
The tracking system consists of a silicon strip vertex detector
(VELO) surrounding the pp interaction region, a large area silicon
strip detector located upstream of a dipole magnet with a bending
power of about 4 Tm, and a combination of silicon strip detectors
and straw drift-tubes placed downstream. The combined tracking
system has a momentum resolution δp/p that varies from 0.4% at
5 GeV/c to 0.6% at 100 GeV/c. Pion, kaon and proton separation is
provided by two ring imaging Cherenkov (RICH) detectors whilst
muons are identified by a muon system consisting of alternating
layers of iron and multi-wire proportional chambers.

✩ © CERN for the benefit of the LHCb Collaboration.

The data used for this analysis were collected in 2010. The trig-
ger system consists of two levels. The first stage is implemented
in hardware and uses information from the calorimeters and the
muon system. The second stage is implemented in software and
runs on an event filter farm. Dedicated trigger lines collect events
containing J/ψ mesons. For this analysis all events are used re-
gardless of which trigger line fired.

Simulation samples used are based on the Pythia 6.4 genera-
tor [6] configured with the parameters detailed in Ref. [7]. QED
final state radiative corrections are included using the Photos

package [8]. The EvtGen [9] and Geant4 [10] packages are used
to generate hadron decays and simulate interactions in the detec-
tor, respectively.

The alignment of the tracking system, as well as the calibration
of the momentum scale based on the J/ψ → μ+μ− mass peak,
were carried out in seven time periods corresponding to different
running conditions. The procedure takes into account the effects
of QED radiative corrections which are important in the J/ψ →
μ+μ− decay. Fig. 1 shows that the reconstructed J/ψ mass after
alignment and calibration is stable in time to better than 0.02%
throughout the data-taking period. The validity of the momen-
tum calibration has been checked using samples of K 0

S → π+π− ,
D0 → K −π+ , D̄0 → K +π− , ψ(2S) → μ+μ− , Υ (1S) → μ+μ−
and Υ (2S) → μ+μ− decays. In each case the mass distribution
is modelled taking into account the effect of radiative corrections,
resolution and background, and the mean mass value extracted. To
allow comparison between the decay modes, the deviation of the
measured mass from the expected value [3] is converted into an
estimate of the momentum scale bias, referred to as α. This is de-
fined such that the measured mass is equal to the expected value
if all particle momenta are multiplied by 1 − α. Fig. 2 shows the
resulting values of α. The deviation for the considered modes is
±0.02%, which is taken as the systematic uncertainty on the mo-
mentum scale.
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Fig. 1. Reconstructed J/ψ → μ+μ− fitted mass as a function of run number after the momentum calibration procedure discussed in the text. The vertical dashed lines
indicate the boundaries of the seven calibration periods. A fit of a constant function (horizontal line) has a χ2 probability of 6%. The shaded area corresponds to the assigned
uncertainty on the momentum scale of 0.02%.
Fig. 2. Momentum scale bias α, extracted from the reconstructed mass of various
two-body decays after the momentum calibration procedure described in the text.
By construction one expects α = 0 for the J/ψ → μ+μ− calibration mode. The
black error bars represent the statistical uncertainty whilst the (yellow) shaded ar-
eas include contributions to the systematic error from the fitting procedure, the
effect of QED radiative corrections and the uncertainty quoted by the PDG [3] on
the mass of the decaying meson. The (red) dashed lines correspond to the assigned
uncertainty on the momentum scale of 0.02%. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
Letter.)

2. Event selection

A common strategy, aiming at high signal purity, is adopted for
the reconstruction and selection of B+ → J/ψ K + , B0 → J/ψ K ∗0,
B0 → J/ψ K 0

S , B0
s → J/ψφ and Λ0

b → J/ψΛ candidates (the inclu-
sion of charge-conjugated modes is implied throughout). In gen-
eral, only tracks traversing the whole spectrometer are used; how-
ever, since K 0

S and Λ particles may decay outside of the VELO,
pairs of tracks without VELO hits are also used to build K 0

S and
Λ candidates. The χ2 per number of degrees of freedom (χ2/ndf)
of the track fit is required to be smaller than four. The Kullback–
Leibler (KL) distance [11] is used to identify pairs of reconstructed
tracks that are very likely to arise from hits created by the same
charged particle: if two reconstructed tracks have a symmetrized
KL divergence less than 5000, only that with the higher fit quality
is considered.

J/ψ → μ+μ− candidates are formed from pairs of oppositely-
charged muons with a transverse momentum (pT) larger than
0.5 GeV/c, originating from a common vertex with χ2/ndf < 11,
and satisfying |Mμμ − M J/ψ | < 3σ where Mμμ is the recon-
structed dimuon mass, M J/ψ is the known J/ψ mass world
average value [3], and σ is the estimated event-by-event un-
certainty on Mμμ . The selected J/ψ candidates are then com-
bined with one of K + , K ∗0 → K +π− , φ → K +K − , K 0

S → π+π−
or Λ → pπ− to create b-hadron candidates. Mass windows

of ±70 MeV/c2, ±12 MeV/c2, ±12 MeV/c2 (±21 MeV/c2) and
±6 MeV/c2 (±6 MeV/c2) around the world averages [3] are used
to select the K ∗0, φ, K 0

S and Λ candidates formed from tracks
with (without) VELO hits, respectively. Kaons are selected by cut-
ting on the difference between the log-likelihoods of the kaon and
pion hypotheses provided by the RICH detectors (� lnLK−π > 0).
To eliminate background from B0

s → J/ψφ in the B0 → J/ψ K ∗0

channel, the pion from the K ∗0 candidate is required to be in-
consistent with the kaon hypothesis (� lnLK−π < 0). To further
improve the signal purity, a requirement of pT > 1 GeV/c is ap-
plied on the particle associated with the J/ψ candidate. For final
states including a V 0 (K 0

S or Λ), an additional requirement of
L/σL > 5 is made, where L is the distance between the b-hadron
and the V 0 decay vertex, and σL is the uncertainty on this quan-
tity.

Each b-hadron candidate is associated with the reconstructed
pp primary interaction vertex with respect to which it has the
smallest impact parameter significance, and this significance is re-
quired to be less than five. As there is a large combinatorial back-
ground due to particles originating directly from the pp primary
vertex, only b-hadron candidates with a reconstructed decay time
greater than 0.3 ps are considered for subsequent analysis. A decay
chain fit [12] is performed for each candidate, which constrains the
reconstructed J/ψ mass and, if applicable, the reconstructed K 0

S
or Λ mass to their nominal values [3]. The χ2/ndf of the fit is re-
quired to be smaller than five. The mass of the b-hadron candidate
is obtained from this fit and its estimated uncertainty is required
to be smaller than 20 MeV/c2.

3. Results

The b-hadron masses are determined by performing unbinned
maximum likelihood fits to the invariant mass distributions, in
which the signal and background components are described by
a Gaussian and an exponential function, respectively. Alternative
models for both the signal and background components are con-
sidered as part of the systematic studies. Fig. 3 shows the invariant
mass distributions and fits for the five modes considered in this
study. The signal yields, mass values and resolutions resulting from
the fits are given in Table 1.

The presence of biases due to neglecting QED radiative cor-
rections in the mass fits is studied using a simulation based on
Photos [8]. The fitted masses quoted in Table 1 for the B+ →
J/ψ K + and B0 → J/ψ K ∗0 are found to be underestimated by
0.14 ± 0.01 MeV/c2 and 0.11 ± 0.01 MeV/c2, respectively, when
radiative corrections are ignored; they are therefore corrected for
these biases, and the uncertainty is propagated as a systematic ef-
fect. The bias for the B0

s → J/ψφ mode is negligible due to the
restricted phase space for the kaons from the φ decay. There is no
bias for the B0 → J/ψ K 0

S and Λ0
b → J/ψΛ modes since the J/ψ ,

K 0
S and Λ masses are constrained in the vertex fits.
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Fig. 3. Invariant mass distributions for (a) B+ → J/ψ K + , (b) B0 → J/ψ K ∗0, (c) B0 → J/ψ K 0
S , (d) Λ0

b → J/ψΛ, and (e) B0
s → J/ψφ candidates. In each case the result of

the fit described in the text is superimposed (solid line) together with the background component (dotted line).

Table 1
Signal yields, mass values and mass resolutions obtained from the fits shown in Fig. 3 together with the values
corrected for the effect of QED radiative corrections as described in the text. The quoted uncertainties are statistical.

Decay mode Yield Fitted mass
[MeV/c2]

Corrected mass
[MeV/c2]

Resolution
[MeV/c2]

B+ → J/ψ K + 11 151 ± 115 5279.24 ± 0.11 5279.38 ± 0.11 10.5 ± 0.1

B0 → J/ψ K ∗0 3308± 65 5279.47 ± 0.17 5279.58 ± 0.17 7.7 ± 0.2

B0 → J/ψ K 0
S 1184 ± 38 5279.58 ± 0.29 5279.58 ± 0.29 8.6 ± 0.3

B0
s → J/ψφ 816± 30 5366.90 ± 0.28 5366.90 ± 0.28 7.0 ± 0.3

Λ0
b → J/ψΛ 279± 19 5619.19 ± 0.70 5619.19 ± 0.70 9.0 ± 0.6
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Table 2
Systematic uncertainties (in MeV/c2) on the mass measurements.

Source of uncertainty B+ → J/ψ K + B0 → J/ψ K ∗0 B0 → J/ψ K 0
S B0

s → J/ψφ Λ0
b → J/ψΛ

Mass fitting:
– Background model 0.04 0.03 <0.01 0.01 <0.01
– Resolution model 0.01 0.02 0.06 0.02 0.07
– Radiative corrections 0.01 0.01 – – –

Momentum calibration:
– Average momentum scale 0.30 0.27 0.30 0.22 0.27
– η dependence of momentum scale 0.04 <0.01 0.09 0.03 0.02

Detector description:
– Energy loss correction 0.10 <0.01 0.05 0.03 0.09

Detector alignment:
– Vertex detector (track slopes) 0.05 0.04 0.04 0.03 0.04

Quadratic sum 0.33 0.27 0.33 0.23 0.30

Table 3
Systematic uncertainties (in MeV/c2) on the differences of mass measurements, expressed with respect to the B+ → J/ψ K + mass
(e.g. the last column gives the systematic uncertainties on M(Λ0

b → J/ψΛ) − M(B+ → J/ψ K +)).

Source of uncertainty B0 → J/ψ K ∗0 B0 → J/ψ K 0
S B0

s → J/ψφ Λ0
b → J/ψΛ

Mass fitting:
– Background model 0.05 0.04 0.04 0.04
– Resolution model 0.02 0.06 0.02 0.07
– Radiative corrections <0.01 0.01 0.01 0.01

Momentum calibration:
– Average momentum scale 0.03 <0.01 0.08 0.03
– η dependence of momentum scale 0.04 0.05 0.01 0.02

Detector description:
– Energy loss correction 0.10 0.05 0.07 0.01

Detector alignment:
– Vertex detector (track slopes) 0.01 0.01 0.02 0.01

Quadratic sum 0.12 0.10 0.12 0.09
4. Systematic studies and checks

To evaluate the systematic error, the complete analysis is re-
peated (including the track fit and the momentum scale cali-
bration when needed), varying within their uncertainties the pa-
rameters to which the mass determination is sensitive. The ob-
served changes in the central values of the fitted masses relative
to the nominal results are then assigned as systematic uncertain-
ties.

The dominant source of uncertainty is the limited knowledge
of the momentum scale. The mass fits are repeated with the mo-
mentum scale varied by ±0.02%. After the calibration procedure a
±0.07% variation of the momentum scale remains as a function of
the particle pseudorapidity η. To first order the effect of this av-
erages out in the mass determination. The residual impact of this
variation is evaluated by parameterizing the momentum scale as
a function of η and repeating the analysis. The amount of mate-
rial traversed in the tracking system by a particle is known to 10%
accuracy [13]; the magnitude of the energy loss correction in the
reconstruction is therefore varied by 10%. To ensure the detector
alignment is well understood a further test is carried out: the hor-
izontal and vertical slopes of the tracks close to the interaction
region, which are determined by measurements in the VELO, are
changed by 1 × 10−3, corresponding to the precision with which
the length scale along the beam axis is known [14]. Other uncer-
tainties arise from the fit modelling: a double Gaussian function
(with common mean) for the signal resolution and/or a flat back-
ground component are used instead of the nominal Gaussian and
exponential functions. The effect of possible reflections due to par-
ticle mis-identification is small and can be neglected. Finally, a
systematic uncertainty related to the evaluation of the effect of
the radiative corrections is assigned. Tables 2 and 3 summarize
the systematic uncertainties assigned on the measured masses and
mass differences.

The stability of the measured b-hadron masses is studied by
dividing the data samples according to the polarity of the spec-
trometer magnet, final state flavour (for modes where the final
state is flavour specific), as well as whether the K 0

S and Λ daughter
particles have VELO hits. As a cross-check the analysis is repeated
ignoring the hits from the tracking station before the magnet. This
leads to an average shift in measured masses compatible with sta-
tistical fluctuations. In addition, for the B+ and B0 modes where
the event samples are sizable, the measurements are repeated in
bins of the b-hadron kinematic variables. None of these checks re-
veals a systematic bias.

5. Conclusions

The b-hadron masses are measured using data collected in 2010
at a centre-of-mass energy of

√
s = 7 TeV. The results are

M
(

B+ J/ψ K +) = 5279.38 ± 0.11 (stat) ± 0.33 (syst) MeV/c2,

M
(

B0 J/ψ K (∗)0) = 5279.58 ± 0.15 (stat) ± 0.28 (syst) MeV/c2,

M
(

B0
s J/ψφ

) = 5366.90 ± 0.28 (stat) ± 0.23 (syst) MeV/c2,

M
(
Λ0

b J/ψΛ
) = 5619.19 ± 0.70 (stat) ± 0.30 (syst) MeV/c2,

where the B0 result is obtained as a weighted average of M(B0 →
J/ψ K ∗0) = 5279.58 ± 0.17 ± 0.27 MeV/c2 and M(B0 → J/ψ K 0

S ) =
5279.58 ± 0.29 ± 0.33 MeV/c2 assuming all systematic uncertain-
ties to be correlated, except those related to the mass model. The
dominant systematic uncertainty is related to the knowledge of the
average momentum scale of the tracking system. It largely cancels
in the mass differences. We obtain

M
(

B0 → J/ψ K (∗)0) − M
(

B+ → J/ψ K +)

= 0.20 ± 0.17 (stat) ± 0.11 (syst) MeV/c2,
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Table 4
LHCb measurements, compared to both the best previous measurements and the
results of a global fit to available b-hadron mass data [3]. The quoted errors include
statistical and systematic uncertainties. All values are in MeV/c2.

Quantity LHCb
measurement

Best previous
measurement

PDG fit

M(B+) 5279.38 ±0.35 5279.10 ±0.55 [4] 5279.17 ± 0.29

M(B0) 5279.58 ±0.32 5279.63 ±0.62 [4] 5279.50 ± 0.30

M(B0
s ) 5366.90 ±0.36 5366.01 ±0.80 [4] 5366.3 ± 0.6

M(Λ0
b) 5619.19 ±0.76 5619.7 ±1.7 [4] –

M(B0) − M(B+) 0.20±0.20 0.33±0.06 [15] 0.33± 0.06

M(B0
s ) − M(B+) 87.52 ±0.32 – –

M(Λ0
b) − M(B+) 339.81 ±0.72 – –

M
(

B0
s → J/ψφ

) − M
(

B+ → J/ψ K +)

= 87.52 ± 0.30 (stat) ± 0.12 (syst) MeV/c2,

M
(
Λ0

b → J/ψΛ
) − M

(
B+ → J/ψ K +)

= 339.81 ± 0.71 (stat) ± 0.09 (syst) MeV/c2,

where the B0 result is a combination of M(B0 → J/ψ K ∗0) −
M(B+ → J/ψ K +) = 0.20 ± 0.20 ± 0.12 MeV/c2 and M(B0 →
J/ψ K 0

S ) − M(B+ → J/ψ K +) = 0.20 ± 0.31 ± 0.10 MeV/c2 under
the same hypothesis as above.

As shown in Table 4, our measurements are in agreement with
previous measurements [3,4]. Besides the difference between the
B+ and B0 masses they are the most accurate to date, with sig-
nificantly improved precision over previous measurements in the
case of the B0

s and Λ0
b masses.
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M. Plo Casasus 36, G. Polok 25, A. Poluektov 44,33, E. Polycarpo 2, D. Popov 10, B. Popovici 28, C. Potterat 35,
A. Powell 51, J. Prisciandaro 38, V. Pugatch 41, A. Puig Navarro 35, W. Qian 52, J.H. Rademacker 42,
B. Rakotomiaramanana 38, M.S. Rangel 2, I. Raniuk 40, G. Raven 24, S. Redford 51, M.M. Reid 44,
A.C. dos Reis 1, S. Ricciardi 45, K. Rinnert 48, D.A. Roa Romero 5, P. Robbe 7, E. Rodrigues 47,50,
F. Rodrigues 2, P. Rodriguez Perez 36, G.J. Rogers 43, S. Roiser 37, V. Romanovsky 34, M. Rosello 35,n,
J. Rouvinet 38, T. Ruf 37, H. Ruiz 35, G. Sabatino 21,k, J.J. Saborido Silva 36, N. Sagidova 29, P. Sail 47,



LHCb Collaboration / Physics Letters B 708 (2012) 241–248 247

B. Saitta 15,d, C. Salzmann 39, M. Sannino 19,i, R. Santacesaria 22, C. Santamarina Rios 36, R. Santinelli 37,
E. Santovetti 21,k, M. Sapunov 6, A. Sarti 18,l, C. Satriano 22,m, A. Satta 21, M. Savrie 16,e, D. Savrina 30,
P. Schaack 49, M. Schiller 24, S. Schleich 9, M. Schlupp 9, M. Schmelling 10, B. Schmidt 37, O. Schneider 38,∗,
A. Schopper 37, M.-H. Schune 7, R. Schwemmer 37, B. Sciascia 18, A. Sciubba 18,l, M. Seco 36,
A. Semennikov 30, K. Senderowska 26, I. Sepp 49, N. Serra 39, J. Serrano 6, P. Seyfert 11, M. Shapkin 34,
I. Shapoval 40,37, P. Shatalov 30, Y. Shcheglov 29, T. Shears 48, L. Shekhtman 33, O. Shevchenko 40,
V. Shevchenko 30, A. Shires 49, R. Silva Coutinho 44, T. Skwarnicki 52, A.C. Smith 37, N.A. Smith 48,
E. Smith 51,45, K. Sobczak 5, F.J.P. Soler 47, A. Solomin 42, F. Soomro 18, B. Souza De Paula 2, B. Spaan 9,
A. Sparkes 46, P. Spradlin 47, F. Stagni 37, S. Stahl 11, O. Steinkamp 39, S. Stoica 28, S. Stone 52,37,
B. Storaci 23, M. Straticiuc 28, U. Straumann 39, V.K. Subbiah 37, S. Swientek 9, M. Szczekowski 27,
P. Szczypka 38, T. Szumlak 26, S. T’Jampens 4, E. Teodorescu 28, F. Teubert 37, C. Thomas 51, E. Thomas 37,
J. van Tilburg 11, V. Tisserand 4, M. Tobin 39, S. Topp-Joergensen 51, N. Torr 51, E. Tournefier 4,49,
M.T. Tran 38, A. Tsaregorodtsev 6, N. Tuning 23, M. Ubeda Garcia 37, A. Ukleja 27, P. Urquijo 52, U. Uwer 11,
V. Vagnoni 14, G. Valenti 14, R. Vazquez Gomez 35, P. Vazquez Regueiro 36, S. Vecchi 16, J.J. Velthuis 42,
M. Veltri 17,g , B. Viaud 7, I. Videau 7, X. Vilasis-Cardona 35,n, J. Visniakov 36, A. Vollhardt 39,
D. Volyanskyy 10, D. Voong 42, A. Vorobyev 29, H. Voss 10, S. Wandernoth 11, J. Wang 52, D.R. Ward 43,
N.K. Watson 55, A.D. Webber 50, D. Websdale 49, M. Whitehead 44, D. Wiedner 11, L. Wiggers 23,
G. Wilkinson 51, M.P. Williams 44,45, M. Williams 49, F.F. Wilson 45, J. Wishahi 9, M. Witek 25,
W. Witzeling 37, S.A. Wotton 43, K. Wyllie 37, Y. Xie 46, F. Xing 51, Z. Xing 52, Z. Yang 3, R. Young 46,
O. Yushchenko 34, M. Zavertyaev 10,a, F. Zhang 3, L. Zhang 52, W.C. Zhang 12, Y. Zhang 3, A. Zhelezov 11,
L. Zhong 3, E. Zverev 31, A. Zvyagin 37

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Roma Tor Vergata, Roma, Italy
22 Sezione INFN di Roma La Sapienza, Roma, Italy
23 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
24 Nikhef National Institute for Subatomic Physics and Vrije Universiteit, Amsterdam, The Netherlands
25 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
26 AGH University of Science and Technology, Krakow, Poland
27 Soltan Institute for Nuclear Studies, Warsaw, Poland
28 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
29 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
30 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
31 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
33 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
34 Institute for High Energy Physics (IHEP), Protvino, Russia
35 Universitat de Barcelona, Barcelona, Spain
36 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
37 European Organization for Nuclear Research (CERN), Geneva, Switzerland
38 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
39 Physik-Institut, Universität Zürich, Zürich, Switzerland
40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
43 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
44 Department of Physics, University of Warwick, Coventry, United Kingdom
45 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
46 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom



248 LHCb Collaboration / Physics Letters B 708 (2012) 241–248

47 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
48 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
49 Imperial College London, London, United Kingdom
50 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
51 Department of Physics, University of Oxford, Oxford, United Kingdom
52 Syracuse University, Syracuse, NY, United States
53 CC-IN2P3, CNRS/IN2P3, Lyon-Villeurbanne, France p

54 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil q

55 University of Birmingham, Birmingham, United Kingdom
56 Physikalisches Institut, Universität Rostock, Rostock, Germany r

* Corresponding author.
E-mail address: Olivier.Schneider@epfl.ch (O. Schneider).

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
b Università di Bari, Bari, Italy.
c Università di Bologna, Bologna, Italy.
d Università di Cagliari, Cagliari, Italy.
e Università di Ferrara, Ferrara, Italy.
f Università di Firenze, Firenze, Italy.
g Università di Urbino, Urbino, Italy.
h Università di Modena e Reggio Emilia, Modena, Italy.
i Università di Genova, Genova, Italy.
j Università di Milano Bicocca, Milano, Italy.
k Università di Roma Tor Vergata, Roma, Italy.
l Università di Roma La Sapienza, Roma, Italy.

m Università della Basilicata, Potenza, Italy.
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
o Hanoi University of Science, Hanoi, Viet Nam.
p Associated member.
q Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
r Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.

mailto:Olivier.Schneider@epfl.ch

	Measurement of b-hadron masses
	1 Introduction
	2 Event selection
	3 Results
	4 Systematic studies and checks
	5 Conclusions
	Acknowledgements
	Open access
	References
	LHCb Collaboration


