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The B0
s –B0

s oscillation frequency �ms is measured with 36 pb−1 of data collected in pp collisions at√
s = 7 TeV by the LHCb experiment at the Large Hadron Collider. A total of 1381 B0

s → D−
s π+ and

B0
s → D−

s π+π−π+ signal decays are reconstructed, with average decay time resolutions of 44 fs and
36 fs, respectively. An oscillation signal with a statistical significance of 4.6σ is observed. The measured
oscillation frequency is �ms = 17.63 ± 0.11 (stat) ± 0.02 (syst) ps−1.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

After the observation of B0–B0 mixing and the measurement of
its strength in 1987 [1], it took a further 19 years for the B0

s –B0
s

frequency to be measured for the first time [2,3]. This is mainly
due to the fact that the B0

s –B0
s oscillation frequency is 35 times

larger than that for the B0–B0 system, posing a considerable chal-
lenge for the decay time resolution of detectors. For the LHCb
experiment, the ability to resolve these fast B0

s –B0
s oscillations is a

prerequisite for many physics analyses. In particular it is essential
for the study of the time-dependent CP asymmetry of B0

s → J/ψφ

decays [4]. The oscillation frequency in the B0
s –B0

s system is given
by the mass difference between the heavy and light mass eigen-
states, �ms (we use units with h̄ = 1). In this Letter, we report a
measurement of �ms by the LHCb experiment with data collected
in 2010.

The LHCb spectrometer covers the pseudo-rapidity range 2 to 5.
In this region, b hadrons are produced with a large Lorentz boost
and have an average flight path of 7 mm. The LHCb detector con-
sists of several components arranged along the LHC beam line. The
vertex detector (VELO) surrounds the collision point, followed by
a first Ring Imaging Cherenkov (RICH) counter, a tracking station,
a dipole magnet, three more tracking stations, a second RICH de-
tector, a calorimeter system and a muon detector. The calorimeter
system consists of a scintillating pad detector (SPD), a preshower
detector, an electromagnetic calorimeter and a hadronic calorime-
ter. A detailed description of the detector can be found in Ref. [5].
The precise spatial resolution of the VELO results in an impact pa-
rameter resolution of 20–50 μm in the x and y directions1 for
charged particles with transverse momenta in the range relevant
for B0

s daughter tracks used in this analysis. The x and y resolu-

✩ © CERN for the benefit of the LHCb Collaboration.
1 LHCb uses a right-handed Cartesian coordinate system with the x direction

pointing inside the LHC ring, the y direction pointing upwards and the z direction
running along the beamline from the interaction point towards the spectrometer.

tion in the position of the primary vertex reconstruction is about
15 μm while the z resolution is about 80 μm. This excellent per-
formance results in the decay time resolution needed to observe
the fast B0

s –B0
s oscillations. The invariant mass resolution provided

by the tracking system and the π/K separation given by the two
RICH detectors provide clean B0

s meson signals with small back-
ground. The particle identification capabilities of the RICH together
with the calorimeter and muon systems allow the initial flavour
of the B0

s to be tagged using charged kaons, electrons and muons,
respectively.

In the next section, the data sample used and the analysis strat-
egy are introduced. This is followed by descriptions of the analysis
of the invariant mass and decay time distributions, and the flavour
tagging. Finally, we discuss the fit result for the oscillation fre-
quency and the associated systematic uncertainties.

2. Data sample and analysis strategy

The analysis uses B0
s candidates reconstructed in four flavour-

specific decay modes,2 namely B0
s → D−

s (φ(K+K −)π−)π+ , B0
s →

D−
s (K ∗0(K +π−)K −)π+ , B0

s → D−
s (K +K −π−)π+ and B0

s →
D−

s (K +K −π−)π+π−π+ . To avoid double counting, candidates
that pass the selection criteria of one mode are not considered for
the following modes. All reconstructed decays are flavour-specific
final states, thus the flavour of the B0

s at the time of its decay
is given by the charges of the final state particles of the decay.
A combination of tagging algorithms is used to identify the B0

s
flavour at production. The algorithms provide for each event a tag-
ging decision as well as an estimate of the probability that this
decision is wrong (mistag probability). These algorithms have been
optimized and calibrated using large event samples of flavour-
specific B → μ+D∗− X and B+ → J/ψ K + decays and a sample
of B0 → D−π+ decays.

2 Unless explicitly stated, inclusion of charge-conjugated modes is implied.
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Fig. 1. Mass distributions for (a) B0
s → D−

s (φπ−)π+ , (b) B0
s → D−

s (K ∗0 K −)π+ , (c) B0
s → D−

s (K + K −π−)π+ and (d) B0
s → D−

s π+π−π+ candidates. The fits and the various
background components are described in the text. “Partial” refers to background from partially reconstructed B0

s decays, “mis-id” refers to background from fully or partially
reconstructed B0 and Λb decays with one mis-identified daughter particle, and “comb” refers to combinatorial background.
The analysis is based on a data set of 36 pb−1 of pp colli-
sions at

√
s = 7 TeV collected in 2010. The first trigger level is

implemented in hardware, while the second trigger level is based
on software. Trigger conditions were progressively tightened over
the duration of the data taking period to cope with the rapidly in-
creasing instantaneous luminosities delivered by the LHC. In the
hardware trigger, the events used in this analysis were selected
by requiring a cluster with a minimum transverse energy in the
hadronic calorimeter. The applied threshold was increased from 2.5
to 3.6 GeV throughout the data taking period. A cut on the number
of hits in the SPD detector was applied to reject very high occu-
pancy events. The software trigger for the first 2.4 pb−1 of data
required a good quality displaced vertex reconstructed from two
tracks with transverse momenta pT of at least 500 MeV/c. For the
remaining data, a two-level software trigger was applied. A good
quality track with large impact parameter with respect to the pri-
mary vertex was required with pT > 1.85 GeV/c and momentum
p > 13.3 GeV/c [6]. For events passing these criteria, a good qual-
ity displaced vertex was required, formed out of two tracks with
pT > 0.5 GeV/c and p > 5 GeV/c and with a mass variable in the
range 2 to 7 GeV/c2 [7].

Some of the offline event selection criteria are optimized in-
dividually for each of the four decay modes under study. In this
way specific features such as the masses of the intermediate φ and
K ∗0 resonances or the helicity angle distribution of the K ∗0 can
be used. The selection criteria common to all decay modes exploit
the long B0

s lifetime by applying cuts on the impact parameters of
the daughter tracks, on the angle of the reconstructed B0

s momen-
tum relative to the line between the reconstructed primary vertex
and the B0

s vertex and on the B0
s decay time. Additional cuts are

applied on the p and pT of the B0
s candidate and its decay prod-

ucts as well as on particle identification variables and on track
and vertex quality. Finally, cuts on the impact parameter signifi-
cance of the reconstructed D−

s and its distance of closest approach
to the primary vertex are applied. The reconstructed D−

s mass is
required to be consistent with the PDG value [8]. After this selec-
tion, a total of about 14,400 candidates remain in the B0

s → D−
s π+

invariant mass window of [4.80,5.85] GeV/c2 and in the B0
s →

D−
s π+π−π+ invariant mass window of [5.00,5.60] GeV/c2.

An unbinned likelihood method is employed to fit simultane-
ously the invariant mass and decay time distributions of the four
decay modes. The probability density functions (PDFs) for the sig-
nal and for the background in each of the four modes can be
written as

P = Pm(m)Pt(t,q|σt, η)Pσt (σt)Pη(η), (1)

where m is the reconstructed invariant mass of the B0
s candidate,

t is its reconstructed decay time and σt is the event-by-event
estimate of the decay time resolution given by the event recon-
struction algorithm. The tagging decision q can be 0 (no tag), −1
(different flavour at production and decay) or +1 (same flavour at
production and decay). The predicted event-by-event mistag prob-
ability η can take values between 0 and 0.5. The terms Pm and Pt

describe the invariant mass distribution and the decay time dis-
tribution, respectively. Pt is a conditional probability depending
on σt and η. The terms Pσt and Pη are required to ensure the
proper relative normalization of Pt for signal and background [9].
These terms are determined directly from the data, using the mea-
sured distribution in the upper B0

s invariant mass sideband for the
background PDF and the sideband subtracted distribution in the
invariant mass signal region for the signal PDF.

3. Fit to the invariant mass distributions

The invariant mass of each B0
s candidate is determined in a ver-

tex fit using a constraint on the D−
s mass. The invariant mass spec-

tra for the four decay modes after all selection criteria are shown
in Fig. 1. The four distributions are fit simultaneously taking into
account contributions from signal, combinatorial background and b
decay backgrounds. The signals are described by Gaussian distribu-
tions. The fit constrains the mean of the Gaussian distributions to
be the same for all four decay modes, whereas it allows the width
to be different for the B0

s → D−
s π+ and the B0

s → D−
s π+π−π+

modes, respectively. The combinatorial backgrounds are described
by exponential functions. Their parameters are allowed to vary
individually for the four decay modes. An alternative parameteriza-
tion of the combinatorial backgrounds by a first order polynomial
is used as part of the systematic studies.
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Table 1
B0

s signal yields.

Decay mode Signal yield

B0
s → D−

s (φπ−)π+ 515 ±25
B0

s → D−
s (K ∗0 K −)π+ 338 ±27

B0
s → D−

s (K + K −π−)π+ 283 ±27
B0

s → D−
s π+π−π+ 245 ±46

Total 1381 ±65

The b decay backgrounds include partially reconstructed B0
s de-

cays, as well as fully and partially reconstructed B0 and Λb decays
with one mis-identified daughter particle. Their shapes are derived
from a large simulated event sample, where all selection cuts were
applied on generator level quantities. The invariant mass spectra
were then smeared with a Gaussian distribution to take into ac-
count effects of detector resolution. This approach was validated
by comparing the results with those from a full simulation includ-
ing a detailed description of the detector response. The relative
normalization factors for the different b decay backgrounds are pa-
rameters in the fit. They are constrained to be the same for the
three B0

s → D−
s π+ decay modes.

The fit returns a value of m(B0
s ) = 5364.7 ± 0.7 MeV/c2, about

1.5 MeV/c2 below the PDG value [8]. This mass shift is attributed
to imperfections in the detector alignment and magnetic field cal-
ibration. A dedicated study on the momentum scale resulted in a
correction for this effect [10]. This calibration procedure is how-
ever not used for the analysis presented here as the momentum
scale correction largely cancels in the calculation of �ms . The mass
templates describing b decay backgrounds are shifted according to
the observed bias. The fit gives signal mass resolutions of σm =
18.1 MeV/c2 for the B0

s → D−
s π+ modes and σm = 12.7 MeV/c2

for the B0
s → D−

s π+π−π+ mode, respectively. The signal yields
extracted from the fit are summarized in Table 1. For the re-
mainder of the analysis, the invariant B0

s mass range is limited
to [m(B0

s )−3σm,5.85 GeV/c2] and [m(B0
s )−3σm,5.60 GeV/c2] for

the B0
s → D−

s π+ and B0
s → D−

s π+π−π+ modes, respectively. The
lower cut of this asymmetric mass window is chosen to reject all
background candidates from partial reconstructed B0

s decays. The
only remaining b decay backgrounds are thus due to mis-identified
B0 and Λb decays. The candidates in the high mass sidebands pro-
vide a clean sample of combinatorial background. Including them
in the fit permits to determine the decay time distribution and
tagging behaviour of this background contribution.

The parameters derived in the fit to the mass distributions are
fixed for the remainder of the analysis.

4. Fit to the decay time distribution

Ignoring detector resolution effects, selection biases and flavour
tagging, the distribution of the decay time t of the signal is de-
scribed by

Pt(t) ∝ Γse−Γst cosh

(
�Γs

2
t

)
θ(t), (2)

where Γs is the B0
s decay width and �Γs the decay width differ-

ence between the heavy and the light mass eigenstates. In the fit
�Γs is fixed to its PDG value of 0.09Γs [8]. As part of the eval-
uation of systematic uncertainties on �ms , the assumed value of
�Γs is varied within its current uncertainty between 0 and 0.2Γs .
The step function θ(t) restricts the PDF to positive decay times.

The true decay time is convolved with the decay time res-
olution function of the detector. An event-by-event estimate of
the decay time resolution is calculated by the fitting algorithm,

which reconstructs the decay vertex of the B0
s and computes its

decay length and decay time. No constraint on the D−
s mass is

applied in the computation of the decay time in order to mini-
mize sensitivity to the knowledge of the momentum scale of the
experiment. The decay time uncertainty calculated by the fitting
algorithm does not include possible effects from an imperfect un-
derstanding of the detector material or its spatial alignment. To
correct for such effects, the calculated event-by-event decay time
uncertainties, σt , are multiplied by a constant scale factor Sσt . The
value of Sσt is determined from data, using a sample of fake B0

s
candidates formed by a prompt D−

s and a π+ from the primary
vertex. The contamination due to secondary D−

s from B decays
is estimated and statistically subtracted using the measured D−

s
impact parameter distribution. The distribution of decay times for
this fake B0

s sample, each divided by its calculated event-by-event
uncertainty, is fitted with a Gaussian function and Sσt is taken as
the resulting standard deviation. Using the full sample of fake B0

s
candidates, a value of Sσt = 1.3 is obtained. This value is used as
the nominal scale factor in the �ms analysis. Studying different re-
gions of phase space of the fake B0

s candidates separately, values
for Sσt between 1.2 and 1.4 are obtained. This variation is taken
into account for evaluating the systematic uncertainties on �ms .
Including the nominal scale factor Sσt = 1.3, the average decay
time resolution is 44 fs for the B0

s → D−
s π+ sample and 36 fs for

the B0
s → D−

s π+π−π+ sample. The decay time resolution is taken
into account in the PDF by convolving Eq. (2) with a Gaussian G
with mean zero and standard deviation 1.3σt .

The shape of the decay time distribution is distorted by trigger
and offline selection criteria which require several particles with
large impact parameter with respect to the primary vertex. This
is accounted for in the PDF by introducing an acceptance func-
tion ε(t), derived from a full detector simulation. Determining ε(t)
from simulation is deemed acceptable since it cancels to first or-
der in the determination of �ms . The untagged signal decay time
PDF becomes

Pt(t|σt) ∝
[
Γse−Γst cosh

(
�Γs

2
t

)
θ(t)

]
⊗ G(t, Sσt σt)ε(t). (3)

The decay time distributions for the b decay backgrounds from B0

and Λb decays are described in the same way as that for sig-
nal B0

s candidates, using the PDG values for their lifetimes and
�Γ = 0. The shape of the decay time distribution for the com-
binatorial background is described by the sum of two exponential
functions multiplied by a second order polynomial. The parame-
ters of these functions are derived from the high mass sidebands.
Fig. 2 illustrates the results of the lifetime fit. Within its statisti-
cal uncertainty the reconstructed B0

s lifetime agrees with the PDG
value [8].

5. Flavour tagging

To determine the flavour of the B0
s candidate at production

we exploit the fact that b quarks are predominantly produced in
quark–antiquark pairs. The quark which is not part of the B0

s me-
son gives rise to an opposite-side b hadron. For opposite-side b
hadron decay candidates, the charge of displaced muons, electrons
and kaons and a decay vertex charge estimate are combined using
a neural network to form a single opposite-side tagging decision.
The tagging decision has a probability to be wrong which is called
the mistag probability, ω. For each event an estimate, η, of the
mistag probability, is determined based upon topological and kine-
matic properties of the event, including the number of primary
vertices, the number of tagging particle candidates, the impact
parameter of the tagging particle and of the B0

s candidate with
respect to the primary vertex, and the p and pT of the selected
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Fig. 2. Decay time distributions for (a) B0
s → D−

s (φπ−)π+ , (b) B0
s → D−

s (K ∗0 K −)π+ , (c) B0
s → D−

s (K + K −π−)π+ and (d) B0
s → D−

s π+π−π+ candidates. The data and the
fit projection are from a mass range of ± 3σm around the reconstructed B0

s mass. The abbreviations for the various fit components are introduced in Fig. 1.
tagging particle and the B0
s candidate. The optimization of the tag-

ging algorithms and an initial calibration of η are performed in an
independent analysis using large event samples of B → μ+D∗− X
and B+ → J/ψ K + decays. More details on the individual tagging
algorithms and this calibration procedure can be found in Ref. [11].

The B → μ+D∗− X and B+ → J/ψ K + events used in the
optimization and calibration were collected using different trig-
ger and selection criteria than for the B0

s → D−
s π+ and B0

s →
D−

s π+π−π+ events used in the �ms analysis described here. As
trigger and selection cuts can bias the distributions of the event
properties used by the tagging algorithms, this could result in
a biased estimate for the B0

s → D−
s π+ and B0

s → D−
s π+π−π+

events. Therefore, a re-calibration is performed using a sample
of 6000 B0 → D−π+ events, which have a similar topology to
the B0

s → D−
s π+ and B0

s → D−
s π+π−π+ events, and were col-

lected using the same trigger and similar selection cuts. This
event sample is used to perform a measurement of the B0–B0

flavour oscillation using a very similar method to that described
here. In that measurement the true event mistag probability, ω,
is parameterized as a linear function of η using the relationship
ω(η) = a + b × (η − 〈η〉), where 〈η〉 = 0.3276 is the mean of the
distribution of the η values obtained from the initial tagger op-
timization. The parameters a = 0.311 ± 0.022 and b = 0.61 ± 0.25
are determined as part of the maximum likelihood fit of the B0–B0

oscillation signal and found to be consistent with the original
calibration. As a by-product of this re-calibration procedure the
B0–B0 oscillation frequency is measured. The resulting value of
�md = 0.499 ± 0.032 (stat) ± 0.003 (syst) ps−1, though statisti-
cally less precise, is in good agreement with the PDG value of
�md = 0.507 ± 0.004 ps−1 [8] and provides a valuable cross check
of the procedure.

The statistical power of the tagging is determined by the “ef-
fective” tagging efficiency for signal events and is defined as

εeff = εs × 1∑
i W i

∑
i

(
1 − 2ω(ηi)

)2 × W i, (4)

where the signal tagging efficiency εs is a free parameter in the
fit of the oscillation frequency described in the next section. W i
is the probability for being a signal event as determined by the
invariant mass and decay time PDFs. The index i runs over all B0

s
candidates.

6. Measurement of the oscillation frequency

To determine the oscillation frequency, �ms , the decay time
PDF for signal candidates with tagging information is modified in
the following way:

Pt(t,q|σt, η) ∝
{
Γse−Γst 1

2

[
cosh

(
�Γs

2
t

)

+ q
[
1 − 2ω(η)

]
cos(�mst)

]
θ(t)

}

⊗ G(t, Sσt σt)ε(t)εs. (5)

The decay time PDF for untagged signal events is given by Eq. (3)
multiplied by an additional factor (1 − εs). The calibration pa-
rameters a and b of the mistag probability ω(η) are identical for
all signal and b decay background components. Within Gaussian
constraints they are set to the values found in the calibration de-
scribed in the previous section. The signal tagging efficiency εs for
the B0

s → D−
s π+ and B0

s → D−
s π+π−π+ modes are two separate

parameters in the fit. The same values of εs are however used for
signal and b decay background components in each of these two
categories. In the description of the combinatorial background a
separate parameter for the tagging efficiency is introduced for each
of the four modes. In addition, tagging asymmetry parameters are
introduced in the PDFs for the combinatorial background, to allow
for a different number of events tagged as B0

s or B0
s in each mode.

As expected the fit results for these asymmetries are compatible
with zero.

The fit for the oscillation frequency �ms is performed simul-
taneously to all four B0

s decay modes and gives �ms = 17.63 ±
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Fig. 3. Likelihood scan for �ms in the range [0.0,25.0] ps−1. The line at −2� ln L =
20.9 indicates the value in the limit �ms = ∞.

Fig. 4. Measured asymmetry for B0
s candidates in bins of the decay time t modulo

2π/�ms . The projection of the likelihood fit is superimposed.

0.11 ps−1 (statistical uncertainty only). Signal tagging efficiencies
of εs = (23.6±1.3)% and εs = (17.6±3.2)% are found for the B0

s →
D−

s π+ and B0
s → D−

s π+π−π+ modes, respectively. The combined
effective tagging efficiency for all four modes is εeff = (3.8 ± 2.1)%.
The likelihood profile as a function of the assumed oscillation fre-
quency �ms is shown in Fig. 3. The statistical significance of the
signal is evaluated to be 4.6σ by comparing the likelihood value
at the minimum of the fit with that found in the limit �ms = ∞.

To illustrate the oscillation pattern, we define the time-depen-
dent mixing asymmetry as

Amix(t) = N+(t) − N−(t)

N+(t) + N−(t)
(6)

where N+(t) and N−(t) are the number of background subtracted
B0

s signal candidates with a given decay time t and tagging de-
cision +1 and −1, respectively. Note, that this definition of the
asymmetry does not include any information on the mistag prob-
abilities and therefore does not use the full information of the
likelihood fit. Despite the limited size of the sample, the oscillation
pattern is clearly visible when the asymmetry is plotted in bins of
the decay time modulo 2π/�ms (Fig. 4). In an ideal scenario of
perfect tagging and perfect decay time resolution the amplitude of
this oscillation would be 1.0. The observed amplitude is reduced
due to the performance of the tagging algorithm by a factor 0.41.
Another reduction of 0.65 occurs due to the limited decay time
resolution.

7. Systematic uncertainties

The dominant source of systematic uncertainty is due to the
knowledge of the absolute decay time scale of the experiment. This
uncertainty is dominated by the knowledge of the z scale. A rel-
ative uncertainty of 0.1% on the z scale and thus on the decay
length is assigned based on comparisons of detector surveys and

Table 2
Summary of the systematic uncertainties on �ms . The total systematic un-
certainty is defined as the quadratic sum of the individual components.

Source Uncertainty [ps−1]

Momentum scale 0.004
z scale 0.018
Combinatorial background mass shape 0.010
Decay time resolution 0.006

Total systematic uncertainty 0.022

a software alignment using reconstructed tracks. This leads to a
systematic uncertainty of 0.018 ps−1 on �ms . A second contribu-
tion to the decay time scale is due to the momentum scale of the
experiment. From an independent analysis of the mass scale us-
ing various known resonances an uncertainty of the uncalibrated
momentum scale of less than 0.1% is estimated. This uncertainty
partially cancels as it enters both the reconstructed B0

s mass and
the B0

s momentum. The resulting relative uncertainty on the decay
time is 0.02%, which translates to an absolute systematic uncer-
tainty of 0.004 ps−1 on �ms .

The next largest systematic uncertainty is related to the de-
scription of the combinatorial background in the fit to the mass
spectra. It is evaluated by replacing the exponential function by a
first order polynomial. Based on the shift in the value obtained for
�ms , a systematic uncertainty of 0.010 ps−1 is assigned. Finally,
based on variations of the decay time resolution scale factor Sσt

within its estimated uncertainty from 1.2 to 1.4, a systematic un-
certainty of 0.006 ps−1 is assigned on �ms . These contributions to
the systematic uncertainty on �ms are summarized in Table 2.

Various other possible sources of systematic effects have been
studied, such as the decay time resolution model, the decay time
acceptance, releasing parameters of the invariant mass and decay
time PDF in the mixing fit, different parameterizations of the in-
variant mass of the b decay backgrounds and variations of the
value of �Γs . They are found to be negligible.

8. Conclusion

A measurement of the B0
s –B0

s oscillation frequency �ms is per-
formed using B0

s → D−
s π+ and B0

s → D−
s π+π−π+ decays col-

lected in 36 pb−1 of pp collisions at
√

s = 7 TeV in 2010. The result
is found to be

�ms = 17.63 ± 0.11 (stat) ± 0.02 (syst) ps−1. (7)

This is in good agreement with the previous best measurement
of �ms = 17.77 ± 0.10 (stat) ± 0.07 (syst) ps−1, reported by the
CDF Collaboration [3]. As a by product of the analysis we also
determine a value for the B0–B0 oscillation frequency �md =
0.499 ± 0.032 (stat) ± 0.003 (syst) ps−1. Our results are com-
pletely dominated by statistical uncertainties and thus significant
improvements are expected with larger data sets.
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