

José Á. Hernando Universidade de Santiago de Compostela

Red Temática de Física del LHC Granada, 29 de Octubre de 2009

- -& Relevant BR 10⁻⁴ 10⁻⁹, rate O(Hz)
- 2kHz output rate, Data 35 kb/event, 10⁷ s/year
- Integrated luminosity @ 14 TeV: 2fb⁻¹ /year

LHCb detector

LHCb trigger overview

LO performance

PAQ arquitecture

Front End Electronic • 5. Zero suppression •**Ş**. Velo Calo Muon ·> Buffer data L0 Trigger ·> Readout Network Υ Y/N 1MHz input • 🦕 . Trigger and Gigabit Ethernet 50 Gb/s Fast control ·⊱ Event Filter Farm (EFF) trigger data · ~ 1000 boxes fast control full data ·⊱ ~50 subfarms Intel Xeon 2.33 GHz • . ·> 8 cores ·> Monitoring Farm

HLT1 Hadron lines, an example

HLT1 bandwidth division

HLT2 strategy and performance USC

HLT2 · Scenarios: leptonic, hadronic, democratic μ · Reduction factor (5-20) μμ IP •> Full reconstruction of the event Reco ·> Inclusive B search J/Ψ , no IP μ,μ · Several particles: 2->4 µ,t · Exclusive B search possible 21 Possible HLT2-Inclusive Bandwidth Division Line lepton topo-b topo-c combined ϕ 31 900 200 150 1800 rate (Hz) 650 L0×HLT1×HLT2-Inclusive Efficiencies 41 $B_d \rightarrow \mu \mu K^*$ 70% 59% 74% - $B_s
ightarrow J/\Psi \Phi$ 82% 34% 3% 38% 84% Φ 80% 95% $B_s \rightarrow \mu \mu$ 94% $B \rightarrow hh$ 2% 42% 42% -D* $B_{\prime\prime} \rightarrow D^0 K$ 18% 21% 4% - $B_s \rightarrow \Phi \gamma$ 1% 1% 51% 50% -**Bs->J/**ΨΦ **b** Events: $16\% \Rightarrow 50\%$ 2 kHz

Understanding the trigger

- Trigger Configuration Key (TCK)
 - ·⊱ Unique per event
 - Pefine lines of LOxHLT1xHLT2
- HLT Summary stored in raw event
 - Line decisions and candidates
- $\cdot \ensuremath{ \ensuremath{\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \e$
 - ·⊱ TIS events "trigger unbias" (4%)
 - \cdot **EVALUATE STATE STA**

LO B->hh as control channel of the Bs->µµ

UNIVERSITAT DE BARCELONA

Commissioning the trigger

•⊱ Cosmic

- ECal+Hcal coincidences
- Synchronization and comparison with emulation
- ·⊱ Beam dump (TED) 350 m upstream
 - ·⊱ compare LO muon and raw banks

· FEST

- ·⊱ Replace detector by a MC data injector!
- Exercise **PAQ** and online
- TCK configuration, data base, EFF monitoring, time measurements

First run conditions

	$\epsilon_{\rm L0 imes Hlt1} = 0.03$		
•> Visible collisions from few kHz to 2.7 MHz	Threshold	DC06	MC09
Conversion CO hundred 7 Tall 220 Hile 1031 and 201		MeV, mm	MeV, mm
•> Scenario: 08 dunches, 7 lev, 330 kHz, 10 ³¹ cm ² s ⁻¹	L0-h	3840	860
-> Soft 1.0 to 300 kHz (30% of FFF)	L0- μ	1200	120
	L0-e, γ	2800	2800
+> HLT1 nominal reduction factor 30	Hlt1-h: p_{T} , IP	1600, 0.09	250, 0.06
	Hlt1- μ : p_{T}	6200	1000
•& HL12 reduction factors (5-20)	Hlt1-e,: p_{T} , IP	2820, 0.13	2820, 0.13
·> Output 2kHz	Hlt1- γ : p_{T} , IP(t)	2800, 0.15	2800, 0.15

>1 MHz L0:harder cuts, Hlt1×Hlt2: nominal values .3-1 MHz L0: depends on farm size, Hlt1: nominal, Hlt2: looser <.3 MHz L0-loose, Hlt1: nominal, Hlt2: absent, very loose

 $< 2 \ \rm kHz$ Just L0-mbias+random trigger.

Conclusions

- The trigger of the LHCb selects inclusively B decaying into muons, hadrons, photons, electrons, from 13 MHz of visible interactions to 2 kHz of output rate
- The different levels of the trigger are efficient (>80%) except the LO hadron trigger (50%)
- Large contribution of the spanish Institutions (USC, UB)
 - \cdot In the design and implementation of the HLT1 (hadron, muon+track)
 - \cdot In the design and implementations of HLT2 (topological, muons)
 - ✤ HLT1 infrastructure
 - How to understand trigger biases using TIS events
- \cdot **EACD** trigger commissioning well advanced
- \cdot Conditions for the first run being established
- **Eagerly waiting for the data!**