

Diego Martínez Santos (Universidade de Santiago de Compostela) on behalf of ATLAS, CMS and LHCb collaborations

- Motivation for the study of $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ as an indirect probe of NP
- Analyses at the LHC: ATLAS/CMS/LHCb
- How to find such a rare decay and disentangle from background
- Normalization and Calibration to get a correct BR
- Conclusions

IMDIREC6 APPROACH

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ can access NP through new virtual particles entering in the loop \rightarrow indirect search of NP
- Indirect approach can access higher energy scales and see NP effects earlier:
-Some examples:
- $3{ }^{\text {rd }}$ quark family inferred by Kobayashi and Maskawa (1973) to explain CP V in K mixing (1964). Directly observed in 1977 (b) and 1995 (t)
-Neutral Currents discovered in 1973, Z^{0} directly observed in 1983

InDIREC6 APPROACH

- $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ can access NP through new virtual particles entering in the loop \rightarrow indirect search of NP
- Indirect approach can access higher energy scales and see NP effects earlier:
- A very early example of how indirect measurements give information about higher scales () :
-Ancient Greece: Earth must be some round object, Eratosthenes measurement of Earth's radius in c. III BC (using differences in shadows at different cities)
\bullet Roundness of Earth not directly observed until ~1946-61

Eratosthenes

WILSOn COEFFICIEIES

Hadronic weak decays are often studied in terms \mathbf{e}^{-} of effective hamiltonians of local operators Q_{i} :

$$
H_{e f f} \propto \sum_{i} C_{i} \hat{Q}_{i}
$$

effective local theory

Degrees of freedom of exchanged particles are integrated out giving rise to the Wilson coefficients $\mathbf{C}_{\mathbf{i}}$.

DECAY PHYSICS

 $B R\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)=\frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3}}\left|V_{t b}^{*} V_{t q}\right|^{2} \tau_{B q} M_{B q}^{3} f_{B q}^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{M_{B q}^{2}}} \times$$\times\left\{M_{B q}^{2}\left(1-\frac{4 m_{\mu}^{2}}{M_{B q}^{2}} C_{S}^{2}+\left[M_{B q} \oint_{p}+\frac{2 m_{\mu}}{M_{B q}} C_{10}\right]^{2}\right\}\right.$
$\mathrm{C}_{\mathrm{S}, \mathrm{P}} \rightarrow$ scalar and pseudo scalar are negligible in SM
C_{10} gives the only relevant contribution

This decay is very suppressed in SM:

$$
\mathrm{BR}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)=(3.35 \pm 0.32) \times 10^{-9} \mathrm{BR}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu \mu\right)=(1.03 \pm 0.09) \times 10^{-10}
$$

M.Blanke et al., JHEP 10 003,2006

Current experimental upper limit (CDF, $3.7 \mathrm{fb}^{-1}$) still one order of magnitude to reach such values. @ 90\% CL:

$$
\mathrm{BR}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)<3.6 \times 10^{-8} \quad \mathrm{BR}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu \mu\right)<6.0 \times 10^{-9}
$$

ПEW PHYSICS EFFECZS

NP can contribute to this decay rate (specially SUSY at high $\tan \beta\left(\tan \beta=v_{u} / v_{d}\right)$):

- More than one Higgs \rightarrow contributions to $\mathbf{C}_{\mathbf{S}, \mathbf{P}}$

- 2 HDM-II : BR proportional to $\tan ^{4} \beta$
- SUSY (MSSM): above + extra $\tan ^{6} \beta+\ldots$
- RPV SUSY: tree level diagrams
- Technicolor (TC2), Little Higgs (LHT) ... modify $\mathbf{C}_{\mathbf{1 0}}$.

NP can modify the BR from < SM up to current experin

\rightarrow Whatever the actual value is, it will have an impact on NP searches

NUHM: best χ^{2} of the fit \rightarrow BR $\sim 2 \times 10^{-8}$

DE COMPOSTEL

J.Ellis et. al. Phys.Rev.D76:115011, 2007[arXiv:0708.2079v4 [hep-ph]] (2008)

MCPVMFV: Enhancements up to current u.l, but also < SM depending on the phases

	CMSSM	mGMSB	mAMSB
BR $\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$	$\sim 4.5 \times 10^{-8}$	$\sim 3.2 \times 10^{-8}$	$\sim 0.4 \times 10^{-8}$

S. Heinemeyer et al., arXiv:0805.2359v2 [hep-ph]

LHC SEnSIbIVI6Y $60 \quad \mathrm{~B}_{S} \rightarrow \mu^{+} \mu^{-}$

LHC EXPERIMENOS

ATLAS \& CMS:

- General purpose experiments
- Central detectors $|\eta|<2.5$
- High pt physics at $\mathrm{L}=10^{33}$ -
$10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- B - physics: high pt muon triggers

LHCb:

- B - physics dedicated experiment
- Forward spectrometer $1.9<\eta<4.9$
- Lower pt triggers. Efficient also for purely hadronic channels (see talk of Leandro de Paula) - Instant Luminosity 2-5 $\times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

AnALYSIS

Triggered and offline reconstructed (incl. muon identification) signal events per fb^{-1} (i.e., effective $B_{s} \rightarrow \mu \mu$ cross section)

	ATLAS	CMS	LHCb
\# evts/fb			
-13.3	13.39	36.2	
For trigger	$\mathrm{L}=10^{33}$	$\mathrm{~L}>10^{32}$	$\mathrm{~L}=2 \times 10^{32}$

strategy

$$
\begin{aligned}
& \sigma_{b \bar{b}} \quad \begin{array}{l}
\text { assumed to be } 500 \mu \text { barn, } \mathrm{BR}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)=(\mathrm{SM}) \\
\text { ATLAS/LHCb: } 3.35 \times 10^{-9} \quad \text { CMS: } 3.9 \times 10^{-9}
\end{array} \\
& \text { M. Artuso et al. }
\end{aligned}
$$

Main issues:
Eur. Phys. J. C (2008) 57: 309-492

- Background discrimination: offline cuts/ multivariate analysis
- Normalization to another B channel with well known BR
- It avoids needing the knowledge of xsections \& integrated luminosity
- Cancelation of systematic uncertainties

ATLAS analysis: CERN-OPEN-2008-020 [arXiv:0901.0512] (B-physics chapter)
CMS analysis: CMS PAS BPH-07-001 (2009)
LHCb analysis: LHCb-PUB-2007-033 (2007), LHCb-PUB-2008-018 (2008)

USEFUL VABLABLES

-Usual signatures of a given B decay:
-Detached Secondary Vertex: large lifetime, distance of flight (DOF), Impact Parameter (IP) of daughters...
-B coming from Primary Vertex: small B IP, small momentum-to-flight direction ("pointing")
-Good quality Secondary Vertex: small χ^{2}, small DOCA (Distance Of Closest Approach)

$$
\text { Iso }=\frac{p_{T}(B)}{p_{T}(B)+} \begin{aligned}
& \sum_{1 \mathrm{GeV}(\mathrm{ATLAS})} p_{T}^{i}\left(\Delta R_{i}<1.0\right) \\
&>0.9 \mathrm{GeV} \text { (CMS) }
\end{aligned} \Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}
$$

LHCb: Above definition not suitable for LHCb geometry. Isolation is defined per muon as the no. of tracks compatible with a common μ-track SV
-Invariant Mass around Bs: For combinatorial bkg. sensitivity scales as $1 / \sqrt{\sigma_{M}}$ $\sigma_{\text {ATLAS }} \sim 90 \mathrm{MeV}, \sigma_{\text {CMS }} \sim 53 \mathrm{MeV}, \sigma_{\text {LHCb }} \sim 22 \mathrm{MeV}$

USEFUL VARLABLES

mu2so

	$\sigma_{b \bar{b}}$ assumed to be 500μ barn	
atlas	$\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ efficiency	$\mathrm{bb} \rightarrow \mu \mu \mathrm{X}$ efficiency
Isolation>0.9	0.24	(2.6 $\pm 0.3) \times 10^{-2}$
$\mathrm{L}_{\mathrm{xy}}>0.5 \mathrm{~mm}$	0.26	$(1 \pm 0.3) \times 10^{-3}$ *)
$\alpha<0.017 \mathrm{rad}$	0.23	
$\mathrm{M}=\mathrm{M}_{\mathrm{BS}}{ }^{+140}{ }^{-70 \mathrm{MeV}}$	0.76	0.079
$\begin{aligned} & \text { Evts } / 10 \mathrm{fb}^{-1} \\ & \mathrm{BR}=3.35 \times 10^{-9} \end{aligned}$	5.6	$14^{+13}{ }_{-10}$

(Efficiencies w.r.t following preselection criteria: $4<\mathrm{M}<7.3$ $\mathrm{GeV}, \chi^{2}<10, \mathrm{~L}_{\mathrm{xy}}<2 \mathrm{~cm}$. Isolation cut in signal also includes a factor 0.46 from trigger efficiency. This cuts are for analysis with $\mathrm{L}>\sim 10 \mathrm{fb}^{-1}$)

ATLAS is also preparing an analysis based on a boosted decision tree

क- $\mathrm{cl}^{\text {cms }}$	$\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$	$\mathbf{b b} \rightarrow \boldsymbol{\mu} \boldsymbol{\mu} \mathbf{X}$
$4.8<\mathrm{M}<6 \mathrm{GeV}$	~ 1.	0.048
$\cos (\alpha)>0.9985$	0.73	0.11
DOF > 17 \%	0.58	0.092
$\chi^{2}<5$	0.94	0.411
Isolation > 0.85	0.47	0.018
$\begin{aligned} & \left\|\mathrm{M}-\mathrm{M}_{\mathrm{Bs}}\right\|<100 \\ & \mathrm{MeV} \end{aligned}$	0.94	0.17
Evts/fb ${ }^{-1}$ $B R^{*}=3.9 \times 10^{-9}$	2.36	$2.5{ }^{+0.7}{ }_{-0.6}$

*M. Artuso et al. Eur. Phys. J. C (2008) 57: 309-492 (see expr. 128)

CMS estimates total bkg as ~ 6.53

- LHCb uses cuts just to get a reasonable rate of events to analyze
- Selected signal candidates are classified in a 3D parameter space, according to:
-Invariant mass (in a window of 60 MeV around B_{s} peak)
-PID likelihood with info from different subdetectors, to get rid of possible remaining misid
-Geometry likelihood:
-Combines several variables related candidate geometry AnvaríantMass
-Best separation power
- 3D space is binned, so that each bin is treated as an independent experiment
- Results are combined using Modified Frequentist Approach.

How the Geometry likelihood is built:

1. Input variables: min Impact Parameter Significance $\left(\mu^{+}, \mu^{-}\right)$, DOCA, Impact Parameter of B, lifetime, iso - μ^{+}, iso- μ
2. They are transformed to Gaussian through cumulative and inverse error function
3. In such space correlations are more linear-like \rightarrow rotation matrix, and repeat 2
4. Transformations under signal hyp. $\rightarrow \chi^{2}$, under bkg. $\rightarrow \chi_{\mathrm{B}}^{2}$.
5. Discriminating variable is $\chi^{2}-\chi^{2}{ }_{\mathrm{B}}$, made flat for better visualization.

lifetime

SERSIGIVBIES

(expected S (for $\mathrm{BR}=3.35 \mathrm{e}-9$) \& B per fb^{-1} in each experiment LHCb bins parameter space $\rightarrow \mathrm{N}$ experiments)

$$
S_{(\mathrm{BR}=3.35 \mathrm{e}-9)}=2.05
$$

$$
B=6.53
$$

LHCb	GL	
$\begin{array}{\|l} \hline \text { Mass } \\ \text { (MeV) } \end{array}$	$\begin{aligned} & \hline 0.5- \\ & 0.65 \end{aligned}$	0.65-1
$\begin{aligned} & \hline 5406.6 \\ & 5429.6 \end{aligned}$	$\begin{aligned} & S=0.13 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=0.3 \\ & B=8_{-5}^{+50} \end{aligned}$
$\begin{aligned} & \hline 5384.1 \\ & 5406.6 \end{aligned}$	$\begin{aligned} & S=0.55 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=1.4 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{aligned} & \hline \hline 5353.4 \\ & 5384.1 \end{aligned}$	$\begin{aligned} & \hline S=1.6 \\ & B=11_{-7}^{+15} \end{aligned}$	$\begin{aligned} & S=3.8 \\ & B=11_{-7}^{+15} \end{aligned}$
$\begin{array}{ll} \hline \mathbf{5 3 3 1 . 5} & - \\ \text { 5353.4 } & \end{array}$	$\begin{aligned} & \hline S=0.6 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=1.5 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \hline \mathbf{5 3 0 9 . 6} & - \\ \mathbf{5 3 3 1 . 5} & \end{array}$	$\begin{aligned} & \hline S=0.2 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=0.45 \\ & B=8_{-5}^{+10} \end{aligned}$

(expected S (for $\mathrm{BR}=3.35 \mathrm{e}-9$) \& B per fb^{-1} in each experiment LHCb bins parameter space $\rightarrow \mathrm{N}$ experiments)

$$
\begin{aligned}
& S_{(\mathrm{BR}=3.35 \mathrm{e}-9)}=2.05 \\
& \mathrm{~B}=6.53
\end{aligned}
$$

LHCb	GL	
$\begin{aligned} & \text { Mass } \\ & \text { (MeV) } \end{aligned}$	$\begin{aligned} & \hline 0.5- \\ & 0.65 \end{aligned}$	0.65-1
$\begin{array}{ll} \hline 5406.6 & \text { - } \\ 5429.6 \end{array}$	$\begin{aligned} & S=0.13 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=0.3 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \hline 5384.1 & - \\ 5406.6 \end{array}$	$\begin{aligned} & S=0.55 \\ & B=8_{-5}^{10} \end{aligned}$	$\begin{aligned} & \hline S=1.4 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \hline 5353.4 & - \\ 5384.1 & \end{array}$	$\begin{aligned} & S=1.6 \\ & B=11_{-7}^{+15} \end{aligned}$	$\begin{aligned} & \hline S=3.8 \\ & B=11_{-7}^{+15} \end{aligned}$
$\begin{array}{ll} \hline 5331.5 & - \\ \mathbf{5 3 5 3 . 4} & \end{array}$	$\begin{aligned} & S=0.6 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=1.5 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \mathbf{5 3 0 9 . 6} & - \\ \mathbf{5 3 3 1 . 5} & \end{array}$	$\begin{aligned} & S=0.2 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=0.45 \\ & B=8_{-5}^{+10} \end{aligned}$

- 90% CL exclusion sensitivity as a function of time

Assuming nominal luminosities since the beginning
$\mathrm{CMS} \rightarrow \mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\mathrm{LHCb} \rightarrow \mathrm{L}=2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

SERSTOTMOIES

(expected S (for $\mathrm{BR}=3.35 \mathrm{e}-9$) \& B per fb^{-1} in each experiment LHCb bins parameter space $\rightarrow \mathrm{N}$ experiments)

$$
S_{(\mathrm{BR}=3.35 \mathrm{e}-9)}=2.05
$$

$$
B=6.53
$$

LHCb	GL	
$\begin{aligned} & \text { Mass }_{(\mathbf{M e V})} \end{aligned}$	$\begin{aligned} & \hline 0.5- \\ & 0.65 \end{aligned}$	0.65-1
$\begin{array}{ll} \hline \hline 5406.6 & - \\ 5429.6 \end{array}$	$\begin{aligned} & S=0.13 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=0.3 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \hline 5384.1 & - \\ 5406.6 \end{array}$	$\begin{aligned} & S=0.55 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=1.4 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{aligned} & \hline 5353.4 \\ & 5384.1 \end{aligned}$	$\begin{aligned} & S=1.6 \\ & B=11_{-7}^{+15} \end{aligned}$	$\begin{aligned} & \hline S=3.8 \\ & B=11_{-1}^{+15} \end{aligned}$
$\begin{array}{ll} \hline \mathbf{5 3 3 1 . 5} & - \\ \text { 5353.4 } & \end{array}$	$\begin{aligned} & \hline S=0.6 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=1.5 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \hline 5309.6 & - \\ \mathbf{5 3 3 1 . 5} & \end{array}$	$\begin{aligned} & \hline S=0.2 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=0.45 \\ & B=8_{-5}^{10} \end{aligned}$

- Signal evidence sensitivity as a function of L
-(Signal + Background observed)

SERSTOTMOIES

(expected S (for $\mathrm{BR}=3.35 \mathrm{e}-9$) \& B per fb^{-1} in each experiment LHCb bins parameter space $\rightarrow \mathrm{N}$ experiments)

- Signal evidence sensitivity as a function of time

Assuming nominal luminosities since the beginning $\mathrm{CMS} \rightarrow \mathrm{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\mathrm{LHCb} \rightarrow \mathrm{L}=2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

LHCB	GL	
$\begin{aligned} & \text { Mass } \\ & (\mathbf{M e V}) \end{aligned}$	$\begin{aligned} & 0.5- \\ & 0.65 \end{aligned}$	0.65-1
$\begin{array}{ll} \hline 5406.6 & - \\ 5429.6 \end{array}$	$\begin{aligned} & S=0.13 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & S=0.3 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{array}{ll} \hline 5384.1 & - \\ \mathbf{5 4 0 6 . 6} & \end{array}$	$\begin{aligned} & S=0.55 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=1.4 \\ & B=8_{-5}^{+10} \end{aligned}$
$\begin{aligned} & 5353.4 \\ & 5384.1 \end{aligned}$	$\begin{aligned} & S=1.6 \\ & B=11_{-7}^{+15} \end{aligned}$	$\begin{aligned} & S=3.8 \\ & B=11_{-7}^{+15} \end{aligned}$
$\begin{array}{ll} \hline 5331.5 & - \\ \mathbf{5 3 5 3 . 4} & \end{array}$	$\begin{aligned} & \hline \hline S=0.6 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline \hline S=1.5 \\ & B=8_{-5}^{+10} \end{aligned}$
5309.6	$\begin{aligned} & \hline \hline S=0.2 \\ & B=8_{-5}^{+10} \end{aligned}$	$\begin{aligned} & \hline S=0.45 \\ & B=8_{-5}^{+10} \end{aligned}$

LHC S6ARGUP

- LHC first data:
-Less energy ($3.5+3.5 \mathrm{TeV}$) -Less instant luminosity
- Exclusion sensitivity for
-45\% of $\sigma_{b b}$ w.r.t. 14 TeV
(Pythia ratio $\sigma_{\mathrm{bb} _7 \mathrm{TeV}} / \sigma_{\mathrm{bb} _14 \mathrm{TeV}}$), so $225 \mu \mathrm{~b}$
- First 10 months after LHC startup (assumed $300 \mathrm{pb}^{-1}$)
- This data could allow LHCb to
 overtake Tevatron limits and impose new constraints on SUSY models

ПORMALIZAJIOn \& CALIBRAGIOn

- Normalization is needed to convert \# events into a BR w/o relying on knowledge of $\sigma_{b b}$, integrated luminosity or absolute efficiencies

$$
B R=B R_{n} \frac{\varepsilon_{n}}{\varepsilon} \cdot \frac{P\left(b \rightarrow B_{n}\right)}{P\left(b \rightarrow B_{s}\right)} \cdot \frac{N}{N_{n}}
$$

- $\mathrm{P}\left(\mathrm{b} \rightarrow \mathrm{B}^{+}, \mathrm{B}_{\mathrm{d}}\right) / \mathrm{P}\left(\mathrm{b} \rightarrow \mathrm{B}_{\mathrm{s}}\right)$ implies $\mathrm{a} \sim 14 \%$ systematic. Normalization to a B_{s} mode would introduce larger errors because of poorly known $B_{s} B$'s
- The fraction of efficiencies (acceptance, trigger, selection, PID...) needs to be computed/cancelled.
- ATLAS/CMS/LHCb : to $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi(\mu \mu) \mathrm{K}^{+}$
-Similar trigger and muon ID
-The selection can be made similar to signal
-But: Extra track to be reconstructed $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{*} / \mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi(\mu \mu) \mathrm{K}^{+}$or other similar ratios allow to study this

nORMALLZAOIOn

- LHCb also uses normalization to $\mathrm{B} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}\left(\mathrm{B}_{\mathrm{d}, \mathrm{s}} \rightarrow \mathrm{K} \pi, \mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi, \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{KK} \ldots\right)$
- Same geometry \& kinematics than signal, different trigger (hadronic) and PID
- How to get rid of the differences:
-Use $B \rightarrow$ hh events Triggered Independently of Signal
-Several thousands of such events per fb^{-1} will be available
-Use $\mathrm{b} \rightarrow \mathrm{J} / \Psi \mathrm{X}$ to emulate muon ID and trigger on that sample as a function of p / pt

- LHCb: signal is distributed in several bins of a 3D space
- We need to know not only overall normalization, also the fraction of signal in each bin
\bullet Invariant mass \rightarrow Can be calibrated with $\mathrm{B}_{\mathrm{s}} \rightarrow$ KK
$\cdot \mathrm{GL} \rightarrow$ (inclusive) $\mathrm{B} \rightarrow$ hh triggered independent of signal (TIS)
\cdot PID likelihood $\rightarrow \mathrm{J} / \Psi$ taking p , pt distributions from B \rightarrow hh TIS

Data: Bs $\rightarrow \mu \mu$
Red: Fit to data itself
Blue: Function from calibration

- A measurement/exclusion of $\mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)$ will have an important impact on NP searches
- LHC offers exceptional conditions for this study, scanning from current upper limit to < SM prediction
- LHCb takes advantage of its B-physics dedicated trigger, as well as good invariant mass resolution, having the best sensitivity for a given luminosity

- ATLAS/CMS benefit from their capabilities to run at higher luminosities
- The use of control channels such as $\mathrm{B}^{+} \rightarrow \mathrm{J} / \Psi(\mu \mu) \mathrm{K}^{+}$ and $\mathrm{B} \rightarrow \mathrm{hh}$ allows to perform a MC free analysis

\mathbf{s}
mek USC

BACkGROUnD
 LEVEL

- ATLAS/CMS/LHCb: amount of bkg in the signal region has to be known
- Bkg is dominated by combinatorial ($\mathrm{bb} \rightarrow \mu \mu \mathrm{X}$) and hence can be understood from sidebands
- Linear or exponential fit gives the bkg level in the signal region

- Specific/peaking bkg is negligible in current simulations

How the Geometry likelihood is built:

1. Input variables: min IPS $\left(\mu^{+}, \mu^{-}\right)$, DOCA, IP of B, lifetime, iso $-\mu^{+}$, iso- μ^{-}
2. They are transformed to gaussian through cumulative and inverse error function
3. In such space correlations are more linear-like \rightarrow rotation matrix, and repeat 2

Supposing $\mathrm{bb} \rightarrow$ mumu is also the dominant bkg at the Bd window, for each luminosity you can access to 3-4 times smaller BR for Bd than for Bs.

ROUGH SEnSIGIVIGY

 CALCULAEION- Signal yield $\rightarrow \sigma^{\text {eff } *} \mathbf{L}$
\bullet bkg under the peak scales linearly with invariant mass resolution σ_{M}

$$
S / \sqrt{B} \propto \frac{\sigma_{s i g}^{e f f}}{\sqrt{\sigma_{b k g}^{e f f} \sigma_{M}}} \sqrt{L}
$$

ПORMALLEAGION

- $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K} \pi$ has to be separated from the inclusive sample \rightarrow Use of the RICH system \rightarrow Extra efficiency factor to account for
- $\mathrm{B} \rightarrow$ hh can self-calibrate this eff. using ratio $\mathrm{B}_{\mathrm{d}} \rightarrow$ $\mathrm{K} \pi / \mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi$ (very well known ratio of xsections) and the number of inclusive $\mathrm{B} \rightarrow \mathrm{hh}$, as well as the good $\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{\mathrm{d}}$ mass separation in LHCb
- Alternatively, $\mathrm{D}^{*} \rightarrow \mathrm{D}^{0}(\mathrm{~K} \pi) \pi$ reweighting by p, pt, can be also used (see Laurence Carson talk)

$$
\begin{gathered}
f(B d \rightarrow K \pi)=0.677 \quad 0.039 \\
(\mathrm{MC}=0.681) \\
\mathrm{f}(\mathrm{Bd} \rightarrow \pi \pi)=0.169 \pm 0.015 \\
(\mathrm{MC}=0.172) \\
\mathrm{f}(\mathrm{Bs} \rightarrow \mathrm{~K} \pi)=0.0401 \pm 0.0012 \\
(\mathrm{MC}=0.0435) \\
\mathrm{f}(\mathrm{Bs} \rightarrow \mathrm{KK})=0.114 \pm 0.011 \\
(\mathrm{MC}=0.102)
\end{gathered}
$$

Output of a MC experiment using $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K} \pi / \mathrm{B}_{\mathrm{d}} \rightarrow \pi \pi$ to calibrate RICH effs.

GIGLE OF GHE SLIDE

Full expression $\left(\mu_{q}\right.$ the ratio of masses $\left.m_{d} / m_{b}\right)$

$$
\begin{aligned}
& B R\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)=\frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3} \sin ^{4} \theta_{W}}\left|V_{t b}^{*} V_{t q}\right|^{2} \tau_{B q} M_{B q}^{3} f_{B q}^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{M_{B q}^{2}} \times} \\
& \times\left\{M_{B q}^{2}\left(1-\frac{4 m_{\mu}^{2}}{M_{B q}^{2}}\right)\left(\frac{C_{S}-\mu_{q} C_{S}^{\prime}}{1+\mu_{q}}\right)^{2}+\left[M_{B q}\left(\frac{C_{P}-\mu_{q} C_{P}^{\prime}}{1+\mu_{q}}\right)+\frac{2 m_{\mu}}{M_{B q}} C_{A}-C_{A}^{\prime}\right]\right\}
\end{aligned}
$$

Figure -: Correlation in initial and Gaussian space.

Separation of $B d \square K \pi$

Extract the fraction of different components of $\mathrm{B} \square \mathrm{hh}$, without relying on MC PID efficiencies:

1. Measure those fractions in a "high purity" limit (PID cuts $>\mathrm{X}$):
(Example for $X=20$):
$\mathrm{KK} \square \mathrm{N}^{\prime}{ }_{\mathrm{kk}}=502$
$\mathrm{K} \pi \square \mathrm{N},{ }_{k \pi}=3292$
$\pi \pi \square \mathrm{N}^{\prime}{ }_{\pi \pi}=827$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{kk}}^{\prime}=0.109 \quad \text { Not necessary the same as } \\
& \mathrm{f}_{\mathrm{k} \pi}^{\prime}=0.712 \quad \text { in the nonPID } \boldsymbol{B} \square \boldsymbol{h} \boldsymbol{h} \\
& \mathrm{f}^{\prime}{ }_{\pi \pi}=0.179 \quad \text { sample !!! }
\end{aligned}
$$

(Then the true fraction should be):
$f_{K \pi}=\frac{f_{K \pi}^{\prime} / \varepsilon_{K} \varepsilon_{\pi}}{f_{K K}^{\prime} / \varepsilon_{K}{ }^{2}+{ }^{f^{\prime}{ }_{K \pi} / \varepsilon_{K} \varepsilon_{\pi}}+{ }^{f^{\prime}{ }_{\pi \pi} / \varepsilon_{\pi}{ }^{2}}}=\frac{f_{K \pi}^{\prime}}{f^{\prime}{ }_{K \pi}+f^{\prime}{ }_{K K}\left(\varepsilon_{\pi} / \varepsilon_{K}\right)+f^{\prime}{ }_{\pi \pi}\left(\varepsilon_{K} / \varepsilon_{\pi}\right)}$
(Separate Bs $\square \mathrm{K} \pi$ and $\mathrm{Bd} \square \mathrm{K} \pi$ is not an issue because of the mass resolution)

Separation of $B d \square K \pi$ (II)

2. The ratio $\left(\varepsilon_{\pi} / \varepsilon_{K}\right) \square$ thus the right fractions can be easily extracted from Bd modes, where the BR's are known.

$$
\frac{N\left(B_{d}^{0} \rightarrow K \pi\right)}{N\left(B_{d}^{0} \rightarrow \pi \pi\right)}=\frac{B R\left(B_{d}^{0} \rightarrow K \pi\right)}{B R\left(B_{d}^{0} \rightarrow \pi \pi\right)}=3.96 \pm 0.36 \Rightarrow \frac{\varepsilon_{\pi}}{\varepsilon_{K}}=(3.96 \pm 0.36) \cdot \frac{N_{\pi \pi}^{\prime}}{N^{(d)}{ }_{K \pi}}
$$

3. To ensure the high purity limit, repeat $1 \& 2$ until a plateau on the results is reached

$$
\begin{gathered}
f(\boldsymbol{B} \boldsymbol{d} \square \boldsymbol{K} \boldsymbol{\pi})=0.677 \quad 0.039 \\
(\mathrm{MC}=0.681) \\
\mathrm{f}(\mathrm{Bd} \square \pi \pi)=0.169 \pm 0.015 \\
(\mathrm{MC}=0.172) \\
\mathrm{f}(\mathrm{Bs} \square \mathrm{~K} \pi)=0.0401 \pm 0.0012 \\
(\mathrm{MC}=0.0435) \\
\mathrm{f}(\mathrm{Bs} \square \mathrm{KK})=0.114 \pm 0.011 \\
(\mathrm{MC}=0.102)
\end{gathered}
$$

