

Diego Martínez Santos (Universidade de Santiago de Compostela) on behalf of ATLAS, CMS and LHCb collaborations

PROGRAMA NACIONAL DE BECAS FPU

- Motivation for the study of $B_s \rightarrow \mu\mu$ as an indirect probe of NP
- Analyses at the LHC: ATLAS/CMS/LHCb
 - How to find such a rare decay and disentangle from backgroundNormalization and Calibration to get a correct BR
- Conclusions

3

• $B_s \rightarrow \mu\mu$ can access NP through new virtual particles entering in the loop \rightarrow indirect search of NP

• Indirect approach can access higher energy scales and see NP effects earlier:

•Some examples:

•3rd quark family inferred by Kobayashi and Maskawa (1973) to explain CP V in K mixing (1964). Directly observed in 1977 (b) and 1995 (t)

•Neutral Currents discovered in 1973, Z⁰ directly observed in 1983

• $B_s \rightarrow \mu\mu$ can access NP through new virtual particles entering in the loop \rightarrow indirect search of NP

• Indirect approach can access higher energy scales and see NP effects earlier:

•A very early example of how indirect measurements give information about higher scales ③:

Ancient Greece: Earth must be some round object, Eratosthenes measurement of Earth's radius in c. III BC (using differences in shadows at different cities)
Roundness of Earth not directly observed until ~1946-61

~2.3 K years till the direct observation...

Eratosthenes

An example of similar approach: Fermi's theory of neutron decay

 $BR(B_s \rightarrow \mu\mu)$ expressed in eff. th. as:

C_{P,S,10} (pseudoscalar, scalar and axial) depend on the underlying model (SM, SUSY...)

$$BR(B_{q} \rightarrow \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} |V_{tb}^{*}V_{tq}|^{2} \tau_{Bq}M_{Bq}^{3}f_{Bq}^{2}\sqrt{1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}} \times \left\{M_{Bq}^{2}\left(1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}\right)C_{s}^{2}\left[M_{Bq}C_{P} + \frac{2m_{\mu}}{M_{Bq}}C_{10}\right]^{2}\right\}$$

$$BR(B_{q} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} |V_{lb}^{*}V_{lq}|^{2} \tau_{Bq}M_{Bq}^{3}f_{Bq}^{2}\sqrt{1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}} \times \left\{M_{Bq}^{2}\left(1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}\right)C_{3}^{2} + \left[M_{Bq}C_{P} + \frac{2m_{\mu}}{M_{Bq}}C_{10}\right]^{2}\right\}$$

 $C_{S,\,P} \rightarrow$ scalar and pseudo scalar are negligible in SM

 C_{10} gives the only relevant contribution

This decay is very suppressed in SM:

 $BR(B_s \rightarrow \mu\mu) = (3.35 \pm 0.32)x10^{-9} BR(B_d \rightarrow \mu\mu) = (1.03 \pm 0.09)x10^{-10}$

M.Blanke et al., JHEP 10 003,2006

Current experimental upper limit (CDF, 3.7fb⁻¹) still one order of magnitude to reach such values. @ 90% CL:

 $BR(B_s \rightarrow \mu\mu) < 3.6x10^{-8} \qquad BR(B_d \rightarrow \mu\mu) < 6.0x10^{-9}$

CDF collab., CDF Public Note 9892

6

NP can contribute to this decay rate (specially SUSY at high $\tan\beta$ ($\tan\beta = v_u/v_d$)):

PHYSICS EFFECTS

- More than one Higgs \rightarrow contributions to $\mathbb{C}_{S,\mathbb{P}}$
 - 2HDM-II : BR proportional to $\tan^4\beta$
 - SUSY (MSSM): above + extra $\tan^6\beta$ +...
- RPV SUSY: tree level diagrams
 Technicolor (TC2), Little Higgs (LHT) ... modify C₁₀.

NP can modify the BR from < SM up to current experin

 \rightarrow Whatever the actual value is, it will have an impact on NP searches

J.Ellis et. al. Phys.Rev.D76:115011, 2007[arXiv:0708.2079v4 [hep-ph]] (2008)

NUHM: best χ^2 of the fit \rightarrow BR ~2x10⁻⁸

MCPVMFV: Enhancements up to current u.l, but also < SM depending on the phases

	CMSSM	mGMSB	mAMSB	S. Heinemeyer et al.,
$BR(B_{s} \rightarrow \mu^{+}\mu^{-})$	~4.5x10 ⁻⁸	~3.2x10 ⁻⁸	~0.4x10 ⁻⁸	arXiv:0805.2359v2 [hep-ph]

LHC SENSIBIVIBY BO $B_S \rightarrow \mu^+ \mu^-$

Pythia production cross section

ATLAS/CMS

ATLAS & CMS:

- General purpose experiments
- Central detectors $|\eta| < 2.5$
- High pt physics at $L = 10^{33}$ - $10^{34} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
- B physics: high pt muon triggers

LHCb:

- B physics dedicated experiment
- Forward spectrometer $1.9 < \eta < 4.9$
- Lower pt triggers. Efficient also for purely hadronic channels (see talk of Leandro de Paula)
- Instant Luminosity 2-5 x10³² cm⁻²s⁻¹

oT of B-hadror

10²

ANALYSIS OVERVIEW

Triggered and offline reconstructed (incl. muon identification) **signal** events per fb⁻¹ (i.e., effective $B_s \rightarrow \mu\mu$ cross section)

	ATLAS	CMS	LHCb
# evts/fb ⁻¹	13.3	13.39	36.2
For trigger strategy	$L = 10^{33}$	$L > 10^{32}$	$L = 2x10^{32}$

 $\sigma_{b\bar{b}}$ assumed to be 500 µbarn, BR(B_s \rightarrow µµ) = (SM) ATLAS/LHCb: 3.35 x10⁻⁹ CMS: 3.9 x10⁻⁹

Main issues:

• Background discrimination: offline cuts/ multivariate analysis

M. Artuso et al.

Eur. Phys. J. C (2008) 57: 309–492 (see expr. 128)

- Normalization to another B channel with well known BR
 - It avoids needing the knowledge of xsections & integrated luminosity
 - Cancelation of systematic uncertainties

 ATLAS analysis:
 CERN-OPEN-2008-020 [arXiv:0901.0512] (B-physics chapter)

 CMS analysis:
 CMS PAS BPH-07-001 (2009)

 LHCb analysis:
 LHCb-PUB-2007-033 (2007) , LHCb-PUB-2008-018 (2008)

USEFUL VARIABLES

•Usual signatures of a given B decay:

•Detached Secondary Vertex: large lifetime, distance of flight (DOF), Impact Parameter (IP) of daughters...

•B coming from Primary Vertex: small B IP, small momentum-to-flight direction ("pointing")

•Good quality Secondary Vertex: small χ^2 , small DOCA (Distance Of Closest Approach)

		$\sigma_{bar{b}}$ assumed to be 500 µbar		
	ATLAS	$B_{s}\!\!\rightarrow\!\!\mu\mu \text{ efficiency}$	$bb{\rightarrow}\mu\mu X \text{ efficiency}$	
I	solation>0.9	0.24	(2.6±0.3)x10 ⁻²	
L	_{-xy} > 0.5 mm	0.26	(1⊥0 2)v10 ⁻³ *)	
0	α < 0.017 rad	0.23	(1±0.3)×10)	
M	=M _{Bs} ⁺¹⁴⁰ -70MeV	0.76	0.079	
H B	Evts/10fb ⁻¹ BR = 3.35x10 ⁻⁹	5.6	14 ⁺¹³ -10	

(Efficiencies w.r.t following preselection criteria: 4 < M < 7.3 GeV, $\chi^2 < 10$, $L_{xy} < 2$ cm. Isolation cut in signal also includes a factor 0.46 from trigger efficiency. This cuts are for analysis with $L > 10 fb^{-1}$)

ATLAS is also preparing an analysis based on a boosted decision tree

CMS	B _s →µµ	bb→µµX
4.8 <m <6="" gev<="" td=""><td>~1.</td><td>0.048</td></m>	~1.	0.048
cos(α)>0.9985	0.73	0.11
$DOF > 17 \sigma$	0.58	0.092
$\chi^{2} < 5$	0.94	0.411
Isolation > 0.85	0.47	0.018
$ \mathbf{M} - \mathbf{M}_{\mathrm{Bs}} < 100$ MeV	0.94	0.17
Evts/fb ⁻¹ BR* =3.9 x10 ⁻⁹	2.36	2.5+0.7-0.6

*M. Artuso et al. Eur. Phys. J. C (2008) 57: 309–492 (see expr. 128)

CMS estimates total bkg as ~6.53

• LHCb uses cuts just to get a reasonable rate of events to analyze

Selected signal candidates are classified in a 3D parameter space, according to:
 Invariant mass (in a window of 60 MeV around B_s peak)

•**PID likelihood** with info from different subdetectors, to get rid of possible remaining misid

•Geometry likelihood:

•Combines several variables related candidate geometry

•Best separation power

- 3D space is binned, so that **each bin is treated as an independent experiment**
- Results are combined using Modified Frequentist Approach.

How the Geometry likelihood is built:

- 1. Input variables: min Impact Parameter Significance (μ^+,μ^-) , DOCA, Impact Parameter of B, lifetime, iso μ^+ , iso- μ^-
- 2. They are transformed to Gaussian through cumulative and inverse error function
- 3. In such space correlations are more linear-like \rightarrow rotation matrix, and repeat 2
- 4. Transformations under signal hyp. $\rightarrow \chi^2_{\rm S}$, under bkg. $\rightarrow \chi^2_{\rm B}$.
- 5. Discriminating variable is $\chi^2_{\rm S}$ - $\chi^2_{\rm B}$, made flat for better visualization.

lifetime

CMS

S (BR = 3.35e-9) = 2.05B = 6.53 • 90% CL exclusion sensitivity as a function of L

•(Only bkg is observed)

S (BR = 3.35e-9) =
$$2.05$$

B = 6.53

Assuming nominal luminosities since the beginning $CMS \rightarrow L = 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ $LHCb \rightarrow L = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$

• 90% CL exclusion sensitivity as a function of time

• Signal evidence sensitivity as a function of L

•(Signal + Background observed)

S (BR = 3.35e-9) = 2.05 B = 6.53

S (BR = 3.35e-9) =
$$2.05$$

B = 6.53

• Signal evidence sensitivity as a function of time

Assuming nominal luminosities since the beginning CMS \rightarrow L = 10³³ cm⁻²s⁻¹ LHCb \rightarrow L = 2x10³² cm⁻²s⁻¹

STARGUP LHC

- LHC first data:
 - Less energy (3.5 + 3.5 TeV)Less instant luminosity
- Exclusion sensitivity for

•45% of σ_{bb} w.r.t. 14 TeV (Pythia ratio $\sigma_{bb_{-}7TeV}/\sigma_{bb_{-}14TeV}$), so 225 µb

- •First 10 months after LHC startup (assumed 300 pb⁻¹)
- This data could allow LHCb to overtake Tevatron limits and impose new constraints on SUSY models

normalization & Calibration

• Normalization is needed to convert # events into a BR w/o relying on knowledge of σ_{bb} , integrated luminosity or absolute efficiencies

$$BR = BR_n \frac{\varepsilon_n}{\varepsilon} \cdot \frac{P(b \to B_n)}{P(b \to B_s)} \cdot \frac{N}{N_n}$$

• $P(b \rightarrow B^+, B_d)/P(b \rightarrow B_s)$ implies a ~14 % systematic. Normalization to a B_s mode would introduce larger errors because of poorly known B_s BR's

• The fraction of efficiencies (acceptance, trigger, selection, PID...) needs to be computed/cancelled.

• ATLAS/CMS/LHCb : to $B^+ \rightarrow J/\Psi(\mu\mu)K^+$ • Similar trigger and muon ID • The selection can be made similar to signal • But: Extra track to be reconstructed $B_d \rightarrow J/\Psi K^*/B^+ \rightarrow J/\Psi(\mu\mu)K^+$ or

 $B_d \rightarrow J/\Psi K / B^+ \rightarrow J/\Psi(\mu\mu)K^+$ or other similar ratios allow to study this

$\underline{NORMALIZAZION} \quad (B \rightarrow k\pi)$

- **LHCb** also uses normalization to $B \rightarrow h^+h^-$ ($B_{d,s} \rightarrow K\pi, B_d \rightarrow \pi\pi, B_s \rightarrow KK...$)
- Same geometry & kinematics than signal, different trigger (hadronic) and PID
- How to get rid of the differences:
 - •Use B \rightarrow hh events **Triggered Independently of Signal**
 - •Several thousands of such events per fb⁻¹ will be available
 - •Use $b \rightarrow J/\Psi X$ to emulate muon ID and trigger on that sample as a function of p/pt

• The most suitable mode: $B_d \rightarrow K\pi$ (well known BR, largest statistics...)

• It can be separeted from the inclusive sample using the RICH (see talk of Laurence Carson)

<u>CALIBRAZION</u>

- LHCb: signal is distributed in several bins of a 3D space
- We need to know not only overall normalization, also the fraction of signal in each bin
 Invariant mass → Can be calibrated with B_s → KK
 - •GL \rightarrow (inclusive) B \rightarrow hh triggered independent of signal (TIS)
 - •**PID likelihood** \rightarrow J/ Ψ taking p, pt distributions from B \rightarrow hh TIS

• A measurement/exclusion of BR($B_s \rightarrow \mu\mu$) will have an important impact on NP searches

• LHC offers exceptional conditions for this study, scanning from current upper limit to < SM prediction

• LHCb takes advantage of its B-physics dedicated trigger, as well as good invariant mass resolution, having the best sensitivity for a given luminosity

• ATLAS/CMS benefit from their capabilities to run at higher luminosities

• The use of control channels such as $B^+ \rightarrow J/\Psi(\mu\mu)K^+$ and $B \rightarrow$ hh allows to perform a MC free analysis

- ATLAS/CMS/LHCb: amount of bkg in the signal region has to be known
- Bkg is dominated by combinatorial (bb $\rightarrow \mu\mu X$) and hence can be understood from sidebands
- Linear or exponential fit gives the bkg level in the signal region

• Specific/peaking bkg is negligible in current simulations

How the Geometry likelihood is built:

- 1. Input variables: min IPS (μ^+ , μ^-), DOCA, IP of B, lifetime, iso μ^+ , iso- μ^-
- 2. They are transformed to gaussian through cumulative and inverse error function
- 3. In such space correlations are more linear-like \rightarrow rotation matrix, and repeat 2

Supposing bb \rightarrow mumu is also the dominant bkg at the Bd window, for each luminosity you can access to 3-4 times smaller BR for Bd than for Bs.

•Signal yield $\rightarrow \sigma^{\text{eff}*L}$

•bkg under the peak scales linearly with invariant mass resolution σ_M

$$S/\sqrt{B} \propto rac{\sigma_{sig}^{eff}}{\sqrt{\sigma_{bkg}^{eff}\sigma_M}}\sqrt{L}$$

• $B_d \rightarrow K\pi$ has to be separated from the inclusive sample \rightarrow Use of the RICH system \rightarrow Extra efficiency factor to account for

 $(B \rightarrow K\pi)$

• B \rightarrow hh can self-calibrate this eff. using ratio B_d \rightarrow K π / B_d \rightarrow $\pi\pi$ (very well known ratio of xsections) and the number of inclusive B \rightarrow hh, as well as the good B_s-B_d mass separation in LHCb

normalizazion

• Alternatively, $D^* \rightarrow D^0(K\pi) \pi$ reweighting by p,pt, can be also used (see Laurence Carson talk)

 $f(Bd \rightarrow K\pi) = 0.677 - 0.039$ (MC = 0.681) $f(Bd \rightarrow \pi \pi) = 0.169 \pm 0.015$ (MC = 0.172) $f(Bs \rightarrow K\pi) = 0.0401 \pm 0.0012$ (MC = 0.0435) $f(Bs \rightarrow KK) = 0.114 \pm 0.011$ (MC = 0.102)

Output of a MC experiment using $B_d \rightarrow K\pi / B_d \rightarrow \pi \pi$ to calibrate RICH effs.

Full expression (μ_q the ratio of masses m_q/m_b)

$$BR(B_{q} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}\sin^{4}\theta_{W}} |V_{tb}^{*}V_{tq}|^{2} \tau_{Bq}M_{Bq}^{3}f_{Bq}^{2}\sqrt{1-\frac{4m_{\mu}^{2}}{M_{Bq}^{2}}} \times \left\{M_{Bq}^{2}\left(1-\frac{4m_{\mu}^{2}}{M_{Bq}^{2}}\right)\left(\frac{C_{s}-\mu_{q}C_{s}}{1+\mu_{q}}\right)^{2} + \left[M_{Bq}\left(\frac{C_{P}-\mu_{q}C_{P}}{1+\mu_{q}}\right)+\frac{2m_{\mu}}{M_{Bq}}C_{A}-C_{A}\right]^{2}\right\}$$

Figure -: Correlation in initial and Gaussian space.

Separation of $Bd \square K\pi$

Extract the **fraction** of different components of B \square hh, without relying on MC PID efficiencies:

1. Measure those fractions in a "high purity" limit (PID cuts > X):

(Example for $X = 20$):			
$KK \square N'_{kk} = 502$		$f'_{kk} = 0.109$	Not necessary the same as
$K\pi \square N'_{k\pi} = 3292$	→	$f'_{k\pi} = 0.712$	in the nonPID B 🗆 hh
$\pi\pi \square N'_{\pi\pi} = 827$		$f_{\pi\pi}^{2} = 0.179$	sample !!!

(Then the true fraction should be):

$$f_{K\pi} = \frac{f'_{K\pi}}{\mathcal{E}_{K} \mathcal{E}_{\pi}^{2}} + \frac{f'_{K\pi}}{\mathcal{E}_{K} \mathcal{E}_{\pi}} + \frac{f'_{\pi\pi}}{\mathcal{E}_{\pi} \mathcal{E}_{\pi}^{2}} = \frac{f'_{K\pi}}{f'_{K\pi} + f'_{KK} \binom{\mathcal{E}_{\pi}}{\mathcal{E}_{K}} + f'_{\pi\pi} \binom{\mathcal{E}_{K}}{\mathcal{E}_{\pi}}}$$

(Separate Bs \Box K π and Bd \Box K π is not an issue because of the mass resolution)

Separation of Bd Kπ (II)

36 36

2. The ratio $(\mathcal{E}_{\pi}/\mathcal{E}_{K})$ \Box thus the right fractions can be easily extracted from Bd modes, where the BR's are known.

$$\frac{N(B_d^0 \to K\pi)}{N(B_d^0 \to \pi\pi)} = \frac{BR(B_d^0 \to K\pi)}{BR(B_d^0 \to \pi\pi)} = 3.96 \pm 0.36 \Longrightarrow \frac{\varepsilon_{\pi}}{\varepsilon_K} = (3.96 \pm 0.36) \cdot \frac{N'_{\pi\pi}}{N'^{(d)}_{K\pi}}$$

3. To ensure the high purity limit, repeat 1 & 2 until a plateau on the results is reached

