LHCb: Results and plans

Miami 2010 December 16th, 2010

Xabier Cid Vidal University of Santiago de Compostela, on behalf of the LHCb collaboration

Outline

□ Introduction to LHCb:

- Our detector, trigger and reconstruction; and how they performed in 2010
- Early physics results
 - K_s , bb production cross sections
 - J/ Ψ studies
 - Preliminary DCPV and $B^0\overline{B}{}^0$ oscillation
- Prospects for next year
 - Φ_s from $B_s \rightarrow J/\Psi \Phi$
 - Rare decays
 - Charm
- Conclusions

Introduction to LHCb

The LHCb experiment at CERN

LHCb Overview (I)

- LHCb searchs indirectly for New Physics in the b (and c) sectors. This approach can access higher energy scales and see NP effects earlier. It has happened before in the history of physics...
- NP enters through contributions from virtual heavy particles in loop-mediated processes
- □ LHCb physics divided in two main categories:
 - Study of FCNC
 - Search for Φ_s angle $(B_s \rightarrow J/\Psi \Phi)$
 - Rare Decays: $BR(B_s \rightarrow \mu \mu)$, $A_{FB}(B \rightarrow K^* \mu \mu)$
 - CP violation phase in charm mixing
 - CKM "precision" measurements
 - Compare two measurements of the same quantity sensitive and not to the NP (tree vs loop)

$$\gamma: B_{(s)} \rightarrow D_{(s)}K, B_{(s)} \rightarrow hh$$

LHCb Overview (II)

LHCb designed for b physics. Some of its strongest points are:

- Vertexing and IP
- PID
- Momentum and mass resolution
- Flexible trigger
- Forward spectrometer! Angular coverage 10-250 mrad (V) and 10-300 mrad (H)

bb are produced in the same region

□ LHCb is complementary to the other LHC experiments!

Introduction to LHCb

 \rightarrow Our detector, trigger and reconstruction; and how they performed in 2010

LHCb detector

LHCb detector

LHCb 2010 data taking

Excellent performance of the detector, trigger and reconstruction!

First LHC collisions at 3.5 TeV

30 March 2010 – around 1pm

First $B^+ \rightarrow J/\Psi K^+$ Candidate 5 April 2010 – around 1am

LHCb 2010 data taking

Excellent performance of the detector, trigger and reconstruction!

And this in spite of up to more than **2.5 interactions per crossing** on average (**nominal** ~**0.4**). Significantly harsher conditions than design:

- multiple primary vertices
- high occupancies, track multiplicities

LHCb trigger

□ LHCb trigger has two levels:

- L0 (hardware)
- HLT (software)
- The trigger has been changed continuously to cope with the different running conditions

Trigger efficiencies determined on data in good agreement with simulation

	Muon trigger (J/Ψ)	Hadron Trigger (D ⁰ , p _T >2.6 GeV/c)
Data	(94.9 ± 0.2) %	(60 ± 4) %
Simulation	(93.3 ± 0.2) %	66 %

Vertexing, tracking and PID (I)

□ Vertexing:

0.05

good vertex resolution crucial for high-level triggers and most physics analysis

1/p_ (c/GeV)

Tracking:

excellent momentum resolution for invariant mass resolution, rejection of combinatorial

Calorimeters:

- trigger on hadronic decay channels
- reconstruction of final states with e, γ , π^0

December 6th, 2010

Vertexing, tracking and PID (II)

Muon identification: RICH

 Extrapolate tracks to muon system and obtain associated hits

Muon ID efficiency vs mom.

December 6th, 2010

- K/ π identification very important for separation of B decays with identical topology, as B \rightarrow hh

Xabier Cid Vidal – Miami 2010

Early physics results

□ First measurement for LHCb with 2009 run data ($\sqrt{s}=0.9 \text{ TeV}$)

– $K_S \rightarrow \pi^+\pi^-$ selection based on tracking and impact parameters

□ First LHCb publication: Phys. Lett. B 693 (2010) 69-80

December 6th, 2010

Xabier Cid Vidal – Miami 2010

bb production cross section

Obtained with the decay

$B^0 {\rightarrow} D^0 \mu^- v X^+$

- − reconstruct $D^0 \rightarrow K^-\pi^+$ decay mode
- reconstruct $D^0\mu^-$ pairs from a common vertex, and D^0 from B by large impact parameter
- use wrong-sign D⁰µ⁺ pairs to estimate background

□ Measured $\sigma(pp \rightarrow b\overline{b}X)$

	M a	/ithin LHCb acceptance (2<η<6)	Total (estimated with Pythia to full phase space)		a	
σ (μb)	75	5 ± 5.4 ± 13	2	84 ± 20	± 49	
	~in sensi	agreement itivity studies	with (~250 ہ	MC ub).	used	ir

Second LHCb publication: Phys. Lett. B 694 (2010) 209

December 6th, 2010

Prompt J/ Ψ and b \rightarrow J/ Ψ X

- Use distribution of "pseudo proper time", t_z, to identify J/Ψ from b
 - Can measure prompt and "from b" production cross sections!
- For prompt production, measurement uncertainties dominated by unknown J/Ψ polarization, will eventually be measured.
 - Prompt J/Ψ differential cross section:

December 6th, 2010

Xabier Cid Vidal – Miami 2010

Prompt J/ Ψ and b \rightarrow J/ Ψ X

- Use distribution of "pseudo proper time", t_z, to identify J/Ψ from b
 - Can measure prompt and "from b" production cross sections!
- For J/Ψ from b, measurement can be use to obtain the bb production cross section.
 - σ(pp→bbX):

 \Box Separate into B⁰ and \overline{B}^0 using particle identification

- Raw asymmetry shows CP Violation at 3σ
- Preliminary! Small corrections from production and detector asymmetry still to be corrected!

B⁰B⁰ oscillation

□ First oscillation signal seen in: $B^{0} \rightarrow D^{*-}(D^{0}\pi^{-})\mu^{+}\nu_{\mu}$

- lepton tag and opposite-side Kaon tags used to tag initial flavour of B meson
- performance currently at ~50 % of expectation, calibration on data ongoing

Prospects for next year

Φ_s from $B_s \rightarrow J/\Psi \Phi$

- $\square B_{s}-\overline{B}_{s} \text{ mixing phase } \Phi_{s}: \text{ small in the Standard Model, can be enhanced by New Physics. Some hints from CDF/D0 but not significant$
- Golden channel for Φ_s: time dependent CP asymmetry in

 $B_s \rightarrow J/\Psi \Phi$.

- requires large statistics for angular analysis to separate CP even and CP odd final states. Fit to B_s differential decays rates with 9 physics and 15 detectors parameters
- requires **flavour tagging** to tag initial B_s
- requires **excellent proper-time** resolution to resolve fast $B_s - \overline{B}_s$ oscillation ($\Delta m_s = 17.8 \text{ ps}^{-1}$). Currently ~60 fs where 38 fs expected (we are trying to understand why)

35k selected events expected per fb⁻¹

(CDF: 7k events with 5.2 fb⁻¹)

$\mathsf{BR}(\mathsf{B}_{\mathsf{s}} \to \mu^+ \mu^-)$

- □ FCNC very suppresed in the SM:
 - BR($B_s \rightarrow \mu\mu$) = (3.35 ± 0.32)·10⁻⁹
- Current experimental upper limit (CDF) ~10 times higher!
- □ NP can modify the BR from smaller SM up to current experimental upper limit → Any measured value will constraint NP searches!
- Analysis with 3-dimensions binned likelihood:
 - Invariant mass of muon pair
 - Muon identification
 - Geometrical Likelihood or GL (combines lifetime, IP, DOCA...)
- □ Use control channels to calibrate likelihoods from data and normalize: $B^+ \rightarrow J/\Psi K^+$, $B \rightarrow hh$, $B_s \rightarrow J/\Psi \Phi$

$A_{FB}~in~B^{0} \rightarrow K^{*}\mu^{+}\mu^{-}$

- The γ/Z penguin diagram of B⁰ → K^{*}µ⁺µ⁻ introduces a forward-backward asymmetry in the B rest frame. This asymmetry can be affected by NP!
 - Study the forward-backward asymmetry vs the q² of the muons
 - Yields:

LHCb (expected per fb ⁻¹)	1.4 k
Belle (85% of data)	250
Babar (75% of data)	100
CDF (4.4 fb ⁻¹)	100

Most critical part of the analysis: understand biases from acceptance, trigger, selection, PID.

December 6th, 2010

Prospects in the charm sector

The charm sector has high sensitivity to New Physics. LHCb is ideal for charm physics: we have already overtaken B factories yields!

Physics example: CP violation in D⁰-D⁰ lifetime assymetries:

$$A_{\Gamma} \equiv \frac{\tau(\overline{D}^{0} \longrightarrow K^{+}K^{-}) - \tau(D^{0} \longrightarrow K^{+}K^{-})}{\tau(\overline{D}^{0} \longrightarrow K^{+}K^{-}) + \tau(D^{0} \longrightarrow K^{+}K^{-})}$$

- Use slow pion from D^{*+} → $D^0 \pi^+$ to tag D^0 flavour
- Competitive measurement expected very soon!

Xabier Cid Vidal – Miami 2010

and the best is yet to come...

Conclusions

Conclusions

- □ LHCb designed to search for new physics through the loops → access higher energy scales and do it earlier!
- □ The experiment is working really fine. Data approaching MC in tracking, vertexing and PID.
- First physics results obtained in 2010 showing the potential of LHCb (e.g. bb cross section measurement, observation of direct CP violation).
- 2011 will be (hopefully) our year. We have a very nice chance of seeing new physics (if it is there!)
 - $-\Phi_{\rm s}$ from $B_{\rm s} \rightarrow J/\Psi\Phi$
 - BR(B_s $\rightarrow \mu^+\mu^-)$

Backup

Open charm cross sections

- Measure differential cross sections in bins of pseudo-rapidity up to η=4.5 and transverse momentum down to p_T=0
 - large uncertainties on theory predictions
 - use impact parameter to reject "D from B"
 - separate measurements for D⁰, D^{*+}, D⁺ , D_{s}^{+}
- □ Use published fragmentation fractions to calculate also open charm crosssection for each analysis and take leastsquares fit, **measured** $\sigma(pp \rightarrow c\bar{c})$

	Within LHCb acceptance (2<η<6)	Total (estimated with Pythia to full phase space)		
σ (mb)	1.23 ± 0.19	6.10 ± 0.93		
~in agreement with expected $\sigma(pp\rightarrow c\overline{c}) \sim 20 \times \sigma(pp\rightarrow b\overline{b})$				

Example: $D^+ \rightarrow K^- \pi^+ \pi^+$

γ angle

Direct measurement of γ has large errors $(70^{+21}_{-25})^{\circ}$ compared with indirect measurements

LHCb expected sensitivities:

	From trees	From loops
σ (γ) (1 fb ⁻¹)	80	-
σ (γ) (2 fb ⁻¹)	-	70
σ (γ) (~10 fb ⁻¹)	1.20 - 2.70	

$$\gamma$$
 from loops: $B^0_s \rightarrow K^+K^-$

γ from trees: $B^{\pm} \rightarrow D^{0}(K\pi)K^{\pm}$

December 6th, 2010

a_{fs} in LHCb

- Inclusive method (similar to the one of D0) is difficult at LHCb due to the ~10⁻² production asymmetry in pp collisions and control of detector asymmetry
- Subtraction method in semi-leptonic modes used instead
 - B^0 → $D^-\mu^+\nu$ and B^0_s → $D_s^-\mu^+\nu$ (same final state K⁺K⁻π⁻µ⁺)
 - Measure the difference between ${\sf B0}_{\rm s}$ and ${\sf B0}_{\rm s}$ substract non time dependent part of ${\sf Ad}_{\rm fs}$ and ${\sf As}_{\rm fs}$:

$$\Delta A^{s,d}_{\mathit{fs}} \sim rac{a^s_{\mathit{fs}} - a^d_{\mathit{fs}}}{2}$$

- → difference suppresses production asymmetry
- → same final state suppresses detector biases

