$\underline{B s \rightarrow \mu+\mu-\text { in } L H C b}$

Diego Martínez Santos
Universidade de Santiago de Compostela (USC) (Spain)

Winter Meeting, Santiago de
Compostela

PROGRAMA NACIONAL DE BECAS FPU

四禺USC

- Motivation

- LHCb conditions
- Soft Bs $\rightarrow \mu \mu$ selection
- N-counting method

Backgrounds

- Exclusion/discovery potential of LHCb
- Normalization effect
- mSUGRA examples
$a \mu-a \mu(S M)$
- Accurate SM prediction: $(3.4 \pm 0.5) 100^{-9}\left(^{*}\right)$
-Could be enhanced by $\tan ^{6} \beta$ (SUSY)
-CMSSM: Relation with Muon Anomalous
Magnetic Dipole Moment $\mathrm{a}_{\mu}=(\mathrm{g}-2) / 2$
Current value of $a \mu-$ $a \mu(S M) \rightarrow$ if $\tan \beta \sim 50$ gaugino mass are in ~ 400 $-600 \mathrm{GeV} \rightarrow \mathrm{BR}(\mathrm{Bs} \rightarrow$ $\mu \mu) \sim 1-4 \times 10^{-8}$
- Sensitive to several other models
$\underline{B R}(B s \rightarrow \mu \mu)$

(*) A.Buras et. al. Phys.Lett.B.
566 (2003) 115
-b produced at low angle
$\cdot \mathrm{L} \sim 2-5 \times 10{ }^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$\bullet \sim 5 \times 10^{11} \mathrm{bb} / \mathrm{fb}^{-1}$
- Trigger dedicated to select b events ($\sim 90 \%$ for reconstructed $\mathrm{Bs} \rightarrow \mu \mu$)
-Total efficiency on $\mathrm{Bs} \rightarrow \mu \mu$ (detection + reconstruction + trigger + selection) $\sim 10 \%$

The LHCb detector: single arm forward spectrometer: $15-300 \mathrm{mrad}$ ($1.9<\eta<4.9$)

- Excellent tracking resolution
-Invariant Mass Resolution in BS peak $\sim 18 \mathrm{MeV}$
\rightarrow Reduction of search window (less background)
-LHCb muon ID variable (s) : $\operatorname{DLL}(\mu-\pi)$, $\operatorname{DLL}(\mu-\mathrm{K}) \ldots$

Combines Muon System \& Calorimeters info (\& RICH for

$$
M\left(\mu^{+} \mu^{-}\right)\left[\mathrm{GeV} / \mathrm{c}^{2}\right]
$$

kaons) $\rightarrow \mathbf{9 5}$ \% efficiency for 0.6 \% of missID pions
(hits in certain Field Of Interest (depending on p) in M.Chambers are required before use DLL)

-Very soft cuts are applied in order to keep most of the signal events, but removing an important amount of background

- $\sim 400 \mathrm{~K}$ background events/fb ${ }^{-1}$ expected after selection - and 35.4 Bs $\rightarrow \mu \mu$ for SM BR.
-But most of these 400 K are not significant,
- Mass window: 60 MeV
- Vertex Chi2 < 14
-B IPS < 6
- Z $(\mathrm{SV}-\mathrm{PV})>0$
\bullet pointing angle $<0.1 \mathrm{rad}$ - Hits in FOI's of Muon Chambers (see next slides)

Winter Meeting, Santiago de
Compostela

Counting: Take a variable (or a set of), make some cuts and look at the surviving events
N-Counting: Do not cut in your set of variables, but make a counting bin - by -bin.
$\mathrm{B}_{8} \rightarrow \mu \mu$ Analysis: N-Counting in a 3D space, composed by:
\rightarrow Geometrical likelihood: $[0,1]$
\rightarrow PID Likelihood: [0,1] (Combines DLL $(\mu \pi)$ D LL (μK) of both 'muons')
\rightarrow Invariant Mass: $[-60,+60]$
 around Bs peak

Geometrical Variables

- lifetime
- muon Impact Parameter Significant (IPS)
- DOCA: distance between tracks making the vertex
- B Impact Parameter (IP) to PV
- Isolation: Idea: muons making fake $\mathrm{Bs} \rightarrow \mu \mu$ might came from another SV's \rightarrow For each muon; remove the other μ and look at the rest of the event: How many
 good - SV's (forward, DOCA, pointing) can it make?

Winter Meeting, Santiago de Compostela

Method for variable-combination

-For constructing Geometry \& PID likelihoods, we have made some operations over the input variables. Trying to make them uncorrelated

- A very similar method is described by Dean Karlen, Computers in Physics Vol 12, N.4, Jul/Aug 1998
ninput variables

$$
(\mathbb{P}, D O C A \ldots)
$$

-The main idea:
$\rightarrow \mathrm{n}$ variables which, for signal, are independent and Gaussian (sigma 1) distributed
$\rightarrow \chi_{\mathrm{s}}{ }^{2}=\Sigma \mathrm{s}_{\mathrm{i}}{ }^{2}$
\rightarrow same, but for background
$\rightarrow \chi_{\mathrm{B}}^{2}=\Sigma \mathrm{b}_{\mathrm{i}}{ }^{2}$
$\chi^{2}=\chi_{\mathrm{S}}^{2}-\chi_{\mathrm{B}}^{2}$
And made it uniform for signal $(\rightarrow$ flat distribution $)$

N-counting Experiment (II):

Backgrounds

Winter Meeting, Santiago de
Compostela
(after selection, -but taking sidebands)
SearchWindow ($\pm 60 \mathrm{MeV}$)

\rightarrow Decays in flight degraded in mass and geometry
\rightarrow Wrong particle mass assignation causes also a mass degradation

\rightarrow Was shown that probability to missid a pion from B $\rightarrow \pi \pi$ is $\sim 0.6 \%$
\rightarrow 'Survivors' still fall in low PIDL values.

B \rightarrow hh NEGLIGIBLE (2 evts) in comparison to ~ 210 evtents/fb-1 from $b \rightarrow \mu b \rightarrow \mu$)

LHCb potential

$\operatorname{BR}\left(\times 10^{-9}\right)$

No signal observed in $2008 \rightarrow \mathrm{BR} \leq \mathrm{BR}(\mathrm{SM})$

開解USC UNIVERSIDADI
DE EANTAGO de santiago
De compostel $\operatorname{BR}\left(x 10^{-9}\right)$

~end 2009

Normalization

\cdot Using $\mathrm{B}+\rightarrow \mathrm{J} / \Psi \mathrm{K}+$ and $\mathrm{Bs} \rightarrow \mathrm{J} / \Psi Ф$
-Implies uncertainties of $\sim 14 \%$ (due to uncertainty in b quark hadronization) in $1^{\text {st }}$ case and \sim 35% in $2^{\text {nd }}$ (due to uncertainty in $\mathrm{Bs} \rightarrow \mathrm{J} / \Psi \Phi \mathrm{BR}$)

- Uncertainties in the number of events for both normalization channels are completely negligible in comparison with those above

Some mSUGRA-implications examples

CMSSM parameter values chosen:
calculations using the program
SoftSUSY from Ben Allanch (Cambridge) ; BR's computed using program from Athanasios Dedes
(Durham)

$$
\begin{aligned}
& \mathrm{m}_{1 / 2} \text { in }[0,1400 \mathrm{GeV}] \\
& \mathrm{m}_{0} \text { in }[0,1400 \mathrm{GeV}] \\
& \mathbf{A}_{\mathbf{0}}=\mathbf{0} \\
& \boldsymbol{\mu}>\mathbf{0}
\end{aligned}
$$

Other constraints:

$$
\begin{aligned}
& \mathrm{h} 0>114 \mathrm{GeV} \\
& \mathrm{~mW}=80.398 \pm 0.025 \mathrm{GeV}
\end{aligned}
$$

Winter Meeting, Santiago de
Compostela

Backup Slides

Winter Meeting, Santiago de
Compostela

Correlation for signal (very small for background)

independent Gaussian variables (for background)

examples1

signal independent Gaussian variables (for signal)
\rightarrow Same procedure making a 2D Gaussian for Background
jo de

Winter Meeting, Santiago de
Compostela

