Pionium Lifetime Measurement by DIRAC

Antonio Romero on behalf of DIRAC collaboration

University of Santiago de Compostela, Spain

XXXV INTERNATIONAL MEETING ON FUNDAMENTAL PHYSICS

28 May - 1 June 2007, Santiago de Compostela, Spain

DIRAC

DImeson Relativistic Atomic Complexes

Lifetime Measurement of $\pi^+\pi^-$ atoms to test low energy QCD predictions www.cern.ch/DIRAC

Basel Univ., Bern Univ., Bucharest IAP, CERN, Dubna JINR, Frascati LNF-INFN, Ioannina Univ., Kyoto-Sangyo Univ., Kyushu Univ. Fukuoka, Moscow NPI, Paris VI Univ., Prague TU, Prague FZU-IP ASCR, Protvino IHEP, Santiago de Compostela Univ., Tokyo Metropolitan Univ., Trieste Univ./INFN, Tsukuba KEK.

90 Physicists from 18 Institutes

Pionium lifetime

Pionium is a hydrogen-like atom consisting of π^+ and π^- mesons E_B=-1.86 keV, r_B=387 fm, p_B \approx 0.5 MeV

The lifetime of $\pi^+\pi^-$ atoms is dominated by charge exchange process into $\pi^0\pi^0$:

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I=0 and I=2.

Pionium lifetime in QCD

At next-to-leading order in α and $(m_d - m_u)^2$:

$$\Gamma_{1s} = \frac{1}{\tau_{1s}} = \frac{2}{9} \alpha^{3} p |a_{0} - a_{2}|^{2} (1 + \delta) M_{\pi^{+}}^{2} \quad p = \sqrt{M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2} - \frac{1}{4} \alpha^{2} M_{\pi^{+}}^{2}}$$

J. Gasser et al , Phys. Rev. D62 (2001) 016008

• $\delta = (5.8 \pm 1.2) \times 10^{-2}$ significant correction

Measurement of
$$\tau$$
 (10%) \leftrightarrow $|a_0-a_2|$ (5%)

Pionium lifetime in QCD

The $\pi\pi$ scattering lengths have been calculated in the framework of Chiral Perturbation Theory (ChPT):

G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B603 (2001) 125.

 $a_0 = 0.220 \pm 0.005$ $a_2 = -0.0444 \pm 0.0010$ $a_0 - a_2 = 0.265 \pm 0.004$

$$\tau_{1s} = 2.9 \pm 0.1 \, fs$$

Experimental results

$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ (K	K _{e4}) decay
$a_0 = 0.26 \pm 0.05$	L. Rosselet et al., Phys. Rev. D 15 (1977) 574
$a_0 = 0.216 \pm 0.013$	New measurement at BNL (E865)
±0.003 (syst)	S.Pislak et al., Phys.Rev. D 67 (2003) 072004
a_2 =-0.0454±0.0031	
±0.0013 (syst)	
$\pi N \rightarrow \pi \pi N$ near	threshold
$a_0 = 0.26 \pm 0.05$	C.D. Froggatt, J.L. Petersen, Nucl. Phys. B 129 (1977) 89
$a_0 = 0.204 \pm 0.014$	M. Kermani et al., Phys. Rev. C 58 (1998) 3431
±0.008 (syst)	
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$ and	d K _L $\rightarrow 3\pi^0$ NA48/2
$ a_0 - a_2 = 0.261$	N.Cabibbo, Phys. Rev. Lett. 93, 121801 (2004)
	N.Cabibbo, G.Isidori, hep-ph/0502130
\pm 0.006 (stat.)	
$\pm 0.003 (syst.)$	
±0.0013 (<i>ext</i>)	
±0.013 (<i>theor</i>)	

Production of pionium

The pionium is a Coulomb bound state:

$$E_B = -1.858$$
 keV $J^{PC} = 0^{++}$
 $R(A_{2\pi}) = 387$ fm $P_B \approx 1$ MeV

 $2 \text{ GeV/c} < \frac{P}{A} < 6 \text{ GeV/c}$

 π^+ and π^- originating from short lived sources (ρ , K*, ω ,...) and resonance decays may form a pionium atom. The differential cross section is:

Method of pionium detection

L.Nemenov, Sov.J.Nucl.Phys. 41 (1985) 629

Pionium is created in nS states then it interacts with target material:

Annihilation: $A_{2\pi} \rightarrow \pi^0 \pi^0$

$$\lambda_{\text{decay}} = \gamma c \tau \approx 15 \mu m \text{ for } \gamma \approx 17$$

Excitation: transitions between atomic levels

 $\lambda_{int}^{1S} \approx 20 \mu m$ for Ni

Break-up(ionisation): characteristic "atomic" pairs n_A

- Q_{cms}<3MeV/c
- \rightarrow in laboratory system $E_+ \approx E_-$, small opening angle $\theta < 3$ mrad

Coulomb and atomic pairs are detected simultaneously:

$$P_{Br} = \frac{n_A}{N_A} = \frac{1}{K^{th}} \frac{n_A}{N_C}$$

Production of pionium

Atoms are Coulomb bound state of two pions produced in one proton-nucleus collision

 $\frac{d\sigma_n^A}{d\vec{p}_A} = (2\pi)^3 \frac{E_A}{M_A} |\Psi_n(0)|^2 \left(\frac{d\sigma_s^0}{d\vec{p}d\vec{q}}\right)_{p=q=p_A/2}$

Background processes:

Coulomb pairs. They are produced in one proton nucleus collision from fragmentation or short lived resonances (ρ , K^{*}, ω ,...) and exhibit Coulomb interaction in the final state:

$$\frac{d^2 \sigma_{\rm C}}{dp_+ dp_-} = A_{\rm C}(q) \frac{d^2 \sigma_{\rm S}^0}{dp_+ dp_-} \qquad A_{\rm C}(q) = \frac{2 \pi M_{\pi} \alpha / q}{1 - \exp(-2 \pi M_{\pi} \alpha / q)}$$

Non-Coulomb pairs. They are produced in one proton nucleus collision. At least one pion originates from a long lived resonance. No Coulomb interaction in the final state Accidental pairs. They are produced in two

independent proton nucleus collision. They do not exhibit Coulomb interaction in the final state

DIRAC Spectrometer

•Precison time-of-flight to reduce accidental and proton background

- •Strong e+e- rejection by Čerenkov counters
- •Unambiguous transverse momentum Q_T by **upstream tracking** (MSGC+SFD)
- •Longitudinal momentum Q_L measured by **fast drift chambers** and upstream tracks

DIRAC Spectrometer

Nucl. Inst. Meth. A515 (2003) 467.

Downstream detectors: Drift chambers Cherenkov Time-of-Flight

Pre-Shower and Muon Counters unseen

Trigger performance

Time-of-Flight spectrum

Analysis based on MC

Atoms are generated in **nS states** using measured momentum distribution for **short-lived** sources. The atomic pairs are generated according to the evolution of the atom while propagating through the target

Background processes:

Coulomb pairs are generated according to $A_C(Q)Q^2$ using measured momentum distribution for **short-lived** sources.

Non-Coulomb pairs are generated according to **Q**² using measured momentum distribution for **long-lived** sources.

Monte Carlo simulation is restricted to detector response only, without relying on specific asumptions from proton-nucleus collision models

2D χ^2 **FIT TO (Q**_T, **Q**_L) **SPECTRUM**

$$\frac{dn_p}{d^2Q} = \alpha_1 \frac{dn_{CC}}{d^2Q} + \alpha_2 \frac{dn_{NC}}{d^2Q} + \alpha_3 \frac{dn_{AC}}{d^2Q} + \gamma \frac{dn_{AT}}{d^2Q}$$

$$\frac{dn_i}{d^2Q} = \frac{1}{N_i} \frac{dn_i}{d^2Q} \qquad d^2Q = dQ_T dQ_L \qquad \alpha_1 + \alpha_2 + \alpha_3 + \gamma = 1$$

 α_3 (accidentals fraction) measured from TOF

 α_1 and γ free parameters in 10 independent 600 MeV/c π + π - momentum bins

Atom signal defined as difference between prompt data and Monte Carlo with $\gamma = 0$

Pionium signal in Qt vs Ql

PIONIUM BREAK-UP SIGNAL IN $\pi^+\pi^-$ **SPECTRUM**

Pionium signal in $Q = \sqrt{Q_L^2 + Q_T^2}$

PIONIUM TRANSVERSE SIGNAL

Pionium Longitudinal Signal

DETERMINATION OF BREAK-UP PROBABILITY

Coulomb-pair background N_{CC} determined from fit α_1 parameter:

$$P_{Br} = \frac{n_A}{N_A} = \frac{1}{K^{th}} \frac{n_A}{N_C} \quad P_{Br} = \frac{N_{AT}(\Omega)}{N_{CC}(\Omega)} \frac{1}{K^{exp}(\Omega)} \quad K^{exp} = \frac{\varepsilon_{CC}(\Omega)}{\varepsilon_{AT}(\Omega)} K^{th}(\Omega)$$

QM analytical factor:
$$K^{\text{th}}(\Omega) = \frac{(2\pi\alpha M_{\pi})^3}{\pi} \frac{\sum 1/n^3}{\int_{\Omega} A_C(Q) d^2Q}$$

Acceptance factors ε_i determined by Monte Carlo simulation

Different extrapolation domains: $\Omega = (0, Q_T^C) \times (0, Q_L^C)$

Standard choice is $Q_L^C = 2$ MeV/c and $Q_T^C = 5$ MeV/c

Break-up probability as function of pionium momentum

P_{Br} as function of Q_L upper cut

Fraction of Coulomb pairs as function of momentum

Breakup probability

 P_{Br} =0.435±0.016 (stat) ± 0.008 (syst) = 0.435 ± 0.018

Summary of systematic uncertainties:

Source	σ	
Q _L trigger acceptance	± 0.004	
MSGC+SFD background	± 0.006	
Double Ionization cut	± 0.003	
Double-track resolution	± 0.003	
Target Impurity	± 0.003	
KK contamination	± 0.003	
	Total $+0.008$	

Results from DIRAC

- DIRAC collaboration has built up a double arm spectrometer which provides a pair relative momentum (Q) resolution of 0.4 MeV/c for Q<30MeV/c
- More than 6000 of π + π pairs from pionium break-up were observed
- The analysis of Ni 2001 data provides a lifetime measurement which translates into an S-wave amplitude measurement at rest :

$$\tau_{1S} = 2.63^{+0.266}_{-0.255} (stat)^{+0.117}_{-0.111} (syst) fs$$

$$\tau_{1S} = 2.63^{+0.290}_{-0.278} fs$$

$$|a_2 - a_0| = 0.277_{-0.0146}^{+0.0153} M_{\pi}^{-1} = (0.277 \pm 0.015) M_{\pi}^{-1}$$
$$a_0 - a_2 = 0.265 \pm 0.004 \quad \text{(ChPT)}$$