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Abstract. We review the theory for photon-photon scattering in vacuum, and some of the proposals
for its experimental search, including the results of our recent works on the subject. We then describe
a very simple and sensitive proposal of an experiment and discuss how it can be used at the present
(HERCULES) and the future (ELI) ultrahigh power laser facilities either to find the first evidence
of photon-photon scattering in vacuum, or to significantly improve the current experimental limits.
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Among other interesting phenomena [1, 2], Quantum Electrodynamics (QED) and
non-standard theories of the electromagnetic field[3, 4] predict that the vacuum should
behave like a kind ofvirtual electron-positron plasma, thus allowing for photon-photon
(γγ) scattering. However, the latter prediction has not yet been confirmed by experiment,
not even indirectly. In fact, two possible strategies can beused for the quest ofγγ
scattering. On one hand, the cross section for the process will be maximum at a possible
future photon-photon collider[5], based on an electron laser producing two beams of
photons in theMeV range (i.e., having wavelengths in the range of a fewf m). A second
approach will be to perform experiments using ultrahigh power optical lasers, such as
those that are already in use today[6, 7] or will be availablein the near future[6, 8],
in such a way that the high density of photons will compensatethe smallness of the
cross section. In this case, the photon energies are well below the electron rest energy,
and the effect of photon-photon collisions due to the interchange of virtual electron-
positron pairs can be expressed in terms of the effective Euler-Heisenberg nonlinear
Lagrangian[9, 10]. This modifies Maxwell’s equations for the average values of the
electromagnetic quantum fields[11] and affects the properties of the QED vacuum[12].

Here, we will briefly review the theory forγγ scattering, and discuss some of the
proposals for its experimental search. We will then consider the present and future
ultrahigh power laser facilities, and show that, besides their important technological
uses, they will provide a unique opportunity for the search of γγ scattering, taking into
account the results of our recent works [13, 14]. Finally, wewill describe a very simple
and sensitive proposal of an experiment and discuss how it can be used at the present
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(HERCULES) [7] and the future (ELI) [8] ultrahigh power laser facilities either to find
γγ scattering, or to improve significantly the current experimental limits.

THE QED NONLINEAR WAVE EQUATION

Even in the absence of matter, photons can interact with eachother by interchanging
virtual electron-positron pairs in a loop. In this sense, the vacuum behaves like some
kind of virtual electron-positron plasma. We will assume that the photon energy is well
below the threshold for the production of electron-positron pairs, 2mec2 ≃ 1MeV. This
means that we will only consider radiation of wavelengthsλ ≫ 2×10−13m, which is
always the case in optical experiments. In this case, the QEDeffects can be described
by the Euler-Heisenberg effective Lagrangian density[10,1],

L = L0 +ξlL
2
0 +ξtε2

0c2(E ·B)2, (1)

being

L0 =
ε0

2

(

E2−c2B
2
)

(2)

the linear Lagrangian density andε0 andc the dielectric constant and the speed of light
in vacuum, respectively. Here,E andB are the expectation values of the electromagnetic
fields, that can be measured by the usual classical means e.g.using test charges.

The additional, nonlinear terms, that appear multiplying the parametersξl andξt in
Eq. (1), are the only two Lorentz-covariant terms that can beformed with the electro-
magnetic fields at the lowest order aboveL0. Therefore, they appear as the first correc-
tion to the linear evolution in QED in all the alternative theories, such as the Born-Infeld
theories [3, 4]. In QED,ξ QED

t = 7
4ξ QED

l ≡ 7
4ξ , being

ξ =
8α2h̄3

45m4
ec5 ≃ 6.7×10−30m3

J
. (3)

This quantity has dimensions of the inverse of an energy density. This means that
significant changes with respect to linear propagation can be expected when the elec-
tromagnetic energy density is such thatξ ρ is not very small. While such intensities
may have an astrophysical or cosmological importance, theyare not achievable in the
laboratory, as we shall discuss in the next section.

Once the electromagnetic fields are expressed in terms of thefour-component gauge
field Aµ = (A0,A) asB = ∇∧A andE =−c∇A0− ∂A

∂ t , the equations of motion are given
by the Variational Principle:

δΓ
δAµ = 0, (4)

whereΓ ≡
∫

L d4x is the QED effective action. Instead of studying the resulting equa-
tions for the fieldsE andB, that can be found in the literature[11, 15], it is more con-
venient to consider the equations for the gauge field componentsAµ . As we discussed
in Ref. [13, 14], such equations admit solutions in the form of linearly polarized waves,



e.g. in thex direction, withA0 = 0 andA = (A,0,0), provided that:i) the fieldA does not
depend on the variablex (a transversalitycondition) andii) A(t,y,z) satisfies the single
equation [13, 14]:

0 = ∂ 2
y A+∂ 2

z A−∂ 2
t A+ξlε0c2{ (5)

[ (∂tA)2−3(∂yA)2− (∂zA)2
]

∂ 2
y A+

[ (∂tA)2− (∂yA)2−3(∂zA)2
]

∂ 2
z A−

[ 3(∂tA)2− (∂yA)2− (∂zA)2
]

∂ 2
t A+

4(∂zA∂tA∂z∂tA−∂zA∂yA∂z∂yA+∂yA∂tA∂y∂tA) } ,

where∂y ≡
∂
∂y, ∂z ≡

∂
∂z and∂t ≡

∂
c∂ t .

Hereafter, we will restrict our discussion to this case of linearly-polarized solu-
tion. Note that the plane-wave solutions of the linear Maxwell equations, such as
A cos(k · r−ωt), whereA is a constant,k = (0,ky,kz) andω = c|k|, are still solu-
tions of Eq. (5). However, we expect that the non-linear terms proportional toξ , due
to the QED correction, will spoil the superposition principle. As we shall see, this will
imply a change in the propagation of crossing waves. On the other hand, no nonlinear
effect appears for a parallel beam.

Of course, this nonlinearity is not a problem for the communication system: it can
easily be seen that this vacuum effect is much smaller than that of the atmosphere. In fact,
the non trivial question is the opposite: how can we detect such a nonlinearity? In order to
have a significant effect, we need very high fields to compensate ξ = 6.7×10−30m3/J.
Which is the maximum electromagnetic energy density that can be achieved?

ULTRAHIGH POWER LASER BEAMS

Ultra intense photon sources are available thanks to the discovery of chirped pulse am-
plification (CPA)[16] in the late 80’s and optical parametric chirped pulse amplification
(OPCPA) [17] in the 90’s. Very recently, the HERCULES Laser [7] reached a peak in-
tensityI ∼ 2×1022Wcm−2, corresponding to a valueξ ρ ∼ 4×10−12 for the product
giving the importance of the nonlinear QED effects. In few years, the projected European
Extreme Light Infrastructure (ELI) [8] will achieveI ∼ 1025Wcm−2, or ξ ρ ∼ 2×10−9.
Finally, for a more distant future there is the hope to achieve I ∼ 1028Wcm−2 [6], or
ξ ρ ∼ 2×10−6.

These are the highest values for the intensities of the electromagnetic field that are
available (HERCULES) or will be available in the future. These values are enormous.
The power per pulse that has been reached at HERCULES is≃ 3×1014W, which is an
order of magnitude larger than the total power used by Mankind at present! Of course,
it is the ultrashort duration of the pulse (∆t ∼ 3×10−14s) that make it possible to reach
such intensities keeping the energy per pulse as small as∼ 10J. On the other hand, at
ELI [8] the power per pulse will be 1018W, an order of magnitude larger then the total
power that the earth receives from the sun! (In that case,∆t ∼ 10−18−10−15s, so that
the energy per pulse will still be reasonably small∼ 1−103J.)



Of course, these facilities have very important technological and scientific applica-
tions. First, it has been proved that they can be used to produce beams of high energy
charged particles after bombarding a plasma [6]. This effect is highly nonlinear, since it
can produce kinetic energies of the order of theMeVs or even theGeVs (and possibly
even higher) using the∼ eV photons of the laser bumps [6]. This will provide cheap
and reliable sources of radiation for cancer therapy and medical diagnostics, and may
also help to ignite nuclear fusion. Moreover, it can be hopedthat this surprising new
form of accelerating particles can lead to a new era in particle physics. A second class of
applications uses the small duration of the pulses, that will allow for an ultrashort time
microscopy, which can be very important e.g. in nanotechnology.

Finally, as we shall see below, these ultrahigh power laserswill provide a very
promising tool for the exploration of the nonlinearity of the vacuum, and in particular
for the search ofγγ scattering.

PREVIOUS PROPOSALS AND CURRENT LIMIT

We have seen that the QED radiative corrections imply a nonlinear wave equations for
the vector potentialAµ . On the other hand, the modified Maxwell’s equations for the av-
erage values of the electromagnetic quantum fieldsE andB were obtained long ago [11],
and they were used to show that the QED vacuum exhibits the DC Kerr effect, implying
birefringence [12]. More recently, several works have proposed different configurations
that can actually be used for experimental tests of the nonlinear optical response of
the vacuum, e.g. using harmonic generation in an inhomogeneous magnetic field[18],
QED four-wave mixing[19], resonant interactions in microwave cavities[20], or laser-
induced QED vacuum birefringence[21] which can be probed byx-ray pulses[22],
among others[23]. All these proposals are very interestingand all of them deserve to
be explored. They will provide different, independent tests for photon-photon scatter-
ing. However, all these cases will need some technological advance. For instance, x-ray
probing of QED birefringence requires an extra free electron laser, which is not yet
available. Other techniques like four-wave mixing processes[19] require the crossing of
at least three beams, with the corresponding alignment problems. As we shall see in the
next section, our proposal is considerably simpler than theprevious ones, and it only
requires a ultrahigh energy pulse.

Here, we would like to mention a very recent result obtained by the PVLAS collabora-
tion [24] that has searched for an evidence of birefringenceof the vacuum in amagnetic
field background [25]. Theirnegativeresult has been used to set thecurrent limit on
the cross section forγγ scattering at optical wavelengths. Assuming the QED effective
Lagrangian, but treatingξ as a free phenomenological parameter, their results can be
translated in the limitξexp < 3.1×10−26m3/J. We see that this constraint is 4.6×103

times higher than the QED value. Note that in Ref. [24] this result was also stated as a
limit on the photon-photon cross section,σγγ < 4.6×10−62m2, for λ = 1064nm, and
σγγ < 2.7×10−60m2, for λ = 532nm.



A NUMERICAL SOLUTION OF THE QED WAVE EQUATION

In Ref. [14] we have obtained the first numerical solution of the full nonlinear wave
equation Eq. (5) in the case of two counter-propagating plane waves that travel along the
z-axis, for simplicity having the same phase at the space-time origin. The corresponding
analytical solution of the linear wave equation (that can beobtained by settingξl = 0 in
Eq. (5)) would be

Alin(t,z) =
A

2
[cos(kz−ωt)+cos(kz+ωt)] (6)

= A cos(ωt)cos(kz),

whereA is a constant amplitude,k = (0,0,k) is the wave vector, andω = ck is the
angular frequency. It is easy to see that Eq. (6) can also be considered as the analytical
solution of the linear wave equation satisfying the boundary conditions

A(t,0) = A cos(ωt), (7)

A
(

−
π
ω

,z
)

= A
( π

ω
,z

)

,

∂zA(t,0) = 0,

where for convenience we chose as the integration interval a‘small’ cuboid of time-
dimension 2π/ω and space-dimension 2π/k.
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FIGURE 1. Numerical solutionAnum/A of Eqs. (5) and (7) forξ ρ̄ = 0.00252, as a function of the
adimensional time and space coordinatesτ ≡ ωt andζ ≡ kz(from Ref. [14]).

In Ref. [14], we have found the solution of the nonlinear Eq. (5) that satisfies the same
boundary conditions of Eq. (7), using the same small cuboid as the integration interval.
This solution is shown in Figs. 1 and 2 for a choice of parameters such thatξ ε0A

2ω2 =
0.01. The corresponding time-averaged valueρ̄ of the energy density turns out to be

approximately constant along thez-evolution, givingξ ρ̄ = ω
2π ξ

∫ π/ω
−π/ω ρdt = 0.00252.

As we have discussed above, this value of the productξ ρ is several order of magnitude
larger than what can be achieved in the laboratory in the nextdecades. Of course, we
will use realistic values ofρ when we will present our proposals of experiments in
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FIGURE 2. Zero-time plot ofAnum/A , as a function of the adimensional space coordinateζ ≡ kz(from
Ref. [14]).

the last sections. For the moment, it is interesting to note that even such an enormous
energy density is still small enough so that the effect of thenonlinear terms gives a small
correction to the linear evolution in the short distance. Infact, we see from Fig. 3 that
the relative difference between the linear and the nonlinear evolution, in our integration
interval which is of the order of the wavelength, is of the order of few percent, i.e. of
the same order than the adimensional parameterξ ε0A

2ω2 = 0.01. This result is not
surprising, and will provide a justification for the perturbatively-motivated variational
approach that we will use in the next sections.
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FIGURE 3. Relative error(Anum−Alin)/A of the linear approximation, as a function of the adimen-
sional time and space coordinatesτ ≡ ωt andζ ≡ kz(from Ref. [14]).

However, from Fig. 3 itself, we can also appreciate that the difference between the
linear and nonlinear behavior tends to increase along thez evolution, so that it can
be expected that it will eventually become large after a distance much larger than the
wavelength. In the next section, we will see an analytical argument that confirms this
expectation.

Finally, in Fig. 4 we compare thez-evolution of the solutionsAnum and Alin in a
greater detail for values ofz around the second zero of the solutions. We see thatAnum
anticipatesAlin, and the corresponding phase shift can be evaluated numerically if we
define an effective wave vector componentkz by computing the valuez0 corresponding
to Alin(0,z0) = 0, and settingkzz0 = 3π/2. The numerical determination of the zero
givesζ0 = kz0 = 4.68885, so thatkz = 1.0050k. We will provide a full explanation for
this result in the following section.
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FIGURE 4. Detail of the zero-time functionsAnum/A (upper curve) andAlin/A (lower curve), for
values of the adimensional space coordinateζ ≡ kzclose to the second zero (from Ref. [14]).

VARIATIONAL APPROXIMATION

Although it can be considered as an interesting achievementdue to its simplicity and lack
of previous approximations, in practice the numerical solution that has been discussed
above can only be obtained in the special configuration of twocounter-propagating, in-
phase waves, and for short propagation (of the order of the wavelength). In Ref. [14],
we have found a variational approximation that can be used toprovide ananalytical
solution which is valid even for a long evolution. In particular, we have considered the
same two counterpropagating waves as in the previous section, that would be described
by Eq. (6) in the linear case. Note that any of the two crossingwaves,A2 cos(kz−ωt)
and A

2 cos(kz+ωt), when taken alone, would be a solution of both the linear and non-
linear equations, provided thatω = ck. However, their superposition would only solve
the linear equations of motion. Taking into account the smallness of the productξ ρ , and
using the Variational Method, we have found the following analytical approximation

A = A cos(ωt)cos[(k+ χ)z], (8)

whereχ = ξl ε0A
2c2k3/2 ≃ 2ξl ρk is a parameter that describes the leading nonlinear

effects.
As a result, we find that after a distance∆z the phase of the wave is shifted by a term

∆φ = χ∆z≃ 2ξl ρk∆z (9)

Note also that the result of Eq. (8) can be stated equivalently by defining a wave vector
askz = k+ χ , that satisfies a modified dispersion relation,ω = c(kz−χ).

In QED (ξl = ξ ), for the same choice of parameters that was considered in the pre-
vious section,ξ ρ ≃ ξ ε0A

2ω2/4 = 0.0025, in agreement with the numerical simula-
tion. In this case, we getχ = 0.005k, which is two order of magnitude smaller than
k. Our approximations can then be expected to be reasonably good even for the ex-
tremely large ofρ that we have chosen here. Note also that this corresponds to avalue
kz = k+ χ = 1.005k, in agreement with the result that we obtained from the numerical
simulation in the previous section.

In Fig. 5 we compare the corresponding analytical solutionAvar, given in Eq. (8),
with the numerical solutionAnum of the QED wave equations that we have found in
the previous section. Comparing with Fig. 3, we see that the variational solution is an
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FIGURE 5. Relative error(Anum−Avar)/A of the variational approximation, as a function of the
adimensional time and space coordinatesτ ≡ ωt andζ ≡ kz.

order of magnitude closer to the numerical simulation than the linear evolution, Eq. (6),
that was obtained by completely neglecting the nonlinear terms. This is a significant
improvement in such a short distance. However, according tothe previous discussion, in
the perturbative regime corresponding to small values of the productξ ρ , the variational
solution is expected to be a good approximation even when a longer propagation distance
is considered along thez-axis.

On the other hand, the agreement of the variational solutionwith the numerical
simulation can be used as an additional,a posteriori justification for our analytical
approach. Therefore, in Ref. [14] we have applied the Variational Method to different
configurations, that do not allow for a direct integration ofthe full Eq. (5). The most
promising one is the case of the scattering of a relatively low power wave with a
counterpropagating high power wave, both traveling along the z axis. We have also
allowed for an arbitrary initial phase difference between the two waves, assuming for
simplicity that two waves have the same frequency. In this case, the main effect will be
the modification of the low power beam due to the crossing withthe high power one,
which would be unaffected in a first approximation. Using ourvariational approach, we
have found that the low power wave is modified, as compared to the linear behavior, as
described by the following approximated analytical solution

Al(t,z) = α0cos[(k+η)z−ωt], (10)

whereη = 2ξl ε0A
2c2k3 ≃ 4ξ ρk, andρ is the (average) energy density of the high

power wave. Therefore, after a distance∆z the low power beam accumulates a phase
shift

∆Φ = η∆z≃ 4ξl ρk∆z. (11)

We stress that this result only depends on the energy densityof the high power wave,
as far as it much larger than that of the low power wave. The initial phase difference is
found to be irrelevant.



PROPOSAL OF EXPERIMENTS AT HERCULES AND AT ELI

In Ref. [14], we have proposed an experimental setup which can provide the simplest and
most sensitive approach for the optical search of photon-photon scattering in vacuum.
We have also showed that this porposal can be used at future exawatt facilities such as
ELI [8] to detect the QED effect. Here, we will briefly review that idea, and show that it
can also be used atpresenthigh power laser facilities, such as HERCULES [7], to search
for non-QED effects, or to improve the current limit for photon-photon scattering.

The proposed experiment can be described as follows. A common laser pulse is
divided in two beams, A and B, one of which (say A) crosses at a 1800 a very high
power beam. As a result, the central part of the distributionof the beam A has acquired
a phase shift∆Φ with respect to beam B, that has propagated freely.

In an experiment corresponding to the parameters of the ELI project in its first step we
have pulses of wavelengthλ = 800nm, intensityI = 1025Wcm−2 and duration∆t = 10f s
which are focused in a spot of diameterd ≈ 10µm. From Eq. (11), using forξl the QED
value ofξ as given in Eq. (3), this results in a phase shift∆Φ ≈ 2×10−7rad for beam A,
which can be resolved comparing with the beam B which was not exposed to the effects
of QED vacuum. Current techniques like spectrally resolvedtwo-beam coupling, which
can be applied for ultrashort pulses[26], can be used to thispurpose, being sensible to
phase shifts as small as∆Φ = 10−7rad. It is interesting to note that the sensitivity of
this method for the detection of photon-photon scattering may be enhanced by a suitable
choice of the combination of the intensityI , the wavelengthλ and the time duration∆t
that enter in Eq. (11). In fact, taking into account that∆z≃ c∆t, Eq. (11) implies that the
most sensitive experimental configuration will be that having the maximum value of the
combinationI∆t/λ .

Moreover, in an experiment corresponding to the parametersof the HERCULES laser
[7], λ = 810nm, I = 2× 1022Wcm−2, τ = 30f s, d ≈ 0.8µm, the same configuration
as above would give∆Φ ≃ 10−9 (from QED), which is possibly beyond the possibility
of detection using current techniques. However, the experiment could find evidences
of non-QEDγγ scattering, or, if the result is negative, it can be used to substantially
improve the current limit. Assuming as in Ref. [24] the same form of the effective
Lagrangian than in QED, and taking∆Φ = 10−7rad as the sensitivity in the phase shift
measurement, we see that HERCULES can prove values of theξl parameter down to the
value∼ 5×10−28, which is almost two orders of magnitude lower than PVLAS current
limit. Since the scattering cross section depends quadratically on ξ , HERCULES can
improve the current limit onσγγ by a factor(3× 10−26/5× 10−28)2 ≃ 4×103. This
sensitivity may be increased by the upgrades of HERCULES that are programmed for
the next months. Again, the most sensitive configuration will be that maximizing the
productI∆t/λ .

Finally, it could be interesting to study the possibility offurther enhancing the sensi-
tivity of our proposed experiment by focalizing the high power pulse in the center of a
cavity, keeping the intensity on the mirrors below the damage threshold. In this case, the
high and low power pulse might be synchronized to cross each other several times. The
number of times they meet would then multiply the value of thephase shift.



CONCLUSIONS

We have reviewed our recent proposal [13, 14] of a very simpleexperiment for the
search of photon-photon scattering in vacuum. In this proposal, a low power laser pulse
is made to cross with an ultrahigh power laser bump.γγ scattering will then be tested by
measuring the phase shift of the low power laser beam, e.g. bycomparing with a third
low power laser beam. Even in the first step of ELI, we have found [14] that the resulting
phase shift due to the QED-inducedγγ scattering will be at least∆Φ ≈ 2×10−7rad,
which can be measured with present technology. Moreover, inthe present work we
have also discussed the possibility of performing our proposed experiment at present
ultrahigh power laser facilities, such as HERCULES. In particular, we have shown that
HERCULES is already able either to detectγγ scattering, or to improve the current limit
on the cross sectionσγγ at optical wavelengths by more than three orders of magnitude.
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