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Chapter 1

Introduction

Nuclear physics investigations began in 1911 when Ernest Rutherford
discovered that each atom contains a positively charged nucleus [1]. Each
nucleus is characterized by its number of protons (Z) and its number of neu-
trons (N). An element can have more than one isotope (same Z but different
N). Since the initial discovery of the nucleus, more than 2800 isotopes have
been identified and it is predicted that more than 7000 live long enough to be
observed [2]. Figure 1.1 shows the experimentally known nuclei, representing
the number of protons vs. the number of neutrons. In this image, the stable
isotopes are shown as black cells, while the other square cells represent the
radioactive isotopes, the color relating to their half-lives.

The first section of this chapter is a brief overview about the models
which have tried to describe the nucleus throughout history, predominantly:
the “liquid-drop model” and the “shell model”. The first tries to explain
the macroscopic properties of the nuclei, while the second focuses on the
microscopic ones. Technological advances since the 80’s have allowed the ex-
ploration of the nuclei far from β-stability where new phenomena appear and
modifications of these models are needed to explain these new observations.
Later, some aspects concerning how the structure of the nuclei are studied
through nuclear reactions will be outlined, to focus in the next section on
the reaction mechanism used in this work; namely quasi-free scattering.

The last section of this chapter is dedicated to explain the aim of this
work and to summarize the structure of the dissertation.

1.1 Nuclear structure

The first model trying to describe the general properties of the nucleus
(binding energies, sizes, shapes, etc.) used the similarity of the nucleus with
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Figure 1.1: The chart of nuclides, showing the number of protons (Z) against
the number of neutrons (N). The stable isotopes are indicated by black cells.
The other cells represent the radioactive isotopes that have been observed.
The color of the cells indicate the half-life of the isotopes. Image taken
from National Nuclear Data Center, information extracted from the Chart
of Nuclides database, http://www.nndc.bnl.gov/chart/.

a drop of liquid leading to its name “liquid-drop model” [3]. In this context,
the nucleus is described as an incompressible liquid drop, made by nucleons
which stay together because of the nuclear force. But this model was not
able to reproduce the properties of the lighter nuclei and also showed strong
deviations at certain neutron and proton numbers. The existence of some
nucleon numbers which exhibit high abundance and are very stable was ob-
served by M. Goeppert Mayer [4] and also in an independent work by J. H.
Jensen et al. [5]. These nucleon numbers 2, 8, 20, 28, 50, 82 and 126 (only
for neutrons) are known as magic numbers. Among the above mentioned
properties, the magic nuclei also present a high first excited state energy and
a weak electrical quadrupole momentum. This evidence suggested that the
nuclei, like the atoms, have a shell structure. A new model called “the shell
model” was postulated, where the nucleons, which are fermions, may occupy
the shells in pairs, allowing to explain even/odd Z and N effects known from
experimental results. Magic nuclei have a full outer shell and are character-
ized by a large energy gap to the next available shell. To reproduce all the
magic numbers, the model includes an strong spin-orbit interaction [6].
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Figure 1.2: Schematic view of the energy levels in a single-particle shell model
with harmonic oscillator and spin-orbit coupling terms. For each level are
indicated the quantum numbers: n, l and j. Inside the parenthesis are given
the maximum occupancies for each shell. Above the levels, (in a circle) are
indicated the magic numbers. This figure is based on one from [2].

The single-particle energies in a shell model with a harmonic oscillator
potential and spin-orbit interaction are shown in figure 1.2. For each level are
indicated the principal quantum number n, the orbital angular momentum l
and the total angular momentum j (j = l + s); inside parenthesis the number
of nucleons which can occupy each shell, given by (2j+1); above the levels
(in a circle), are indicated as well the magic numbers (circled).

In general, the shell model explains very well the nuclear structure of
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nuclei close to the stability line. In those stable nuclei, the magic numbers
predicted by Mayer and Jensen are valid, but when we move to exotic nuclei,
which are nuclei close to the drip-lines, the large energy gaps characterizing
magic nuclei are not that pronounced or even disappear. As a result, some
exotic nuclei that were expected to be magic are not and others, which were
not expected, are.

In the recent decades, new facilities were able to produce fast radioac-
tive beams, allowing the investigation of regions far from the β-stability val-
ley. The experimental research with this type of beams started at Lawrence
Berkeley National Laboratory in California in 1979 [7]. From those days to
the present date, important discoveries have been made in nuclear structure.

In 1985 an experiment performed by Tanihata and collaborators [8] showed
for the first time the experimental evidence for a type of nuclei that would
be called later “halo nuclei”. The first observed nucleus with halo was 11Li.
Halo nuclei have a larger radii compared with their expected values, indi-
cating an extended wave function of the valence nucleons [9]. Years later,
knockout experiments performed at MSU allowed to extract spectroscopic
information on exotic nuclei [10]. In these type of reactions, a fast projectile
impinges in a target at rest. If the impact parameter is large enough, the
projectile would breakup into one or more nucleons that will be emitted at
large angles, and a core (spectator) that will not be affected by the reaction
and will continue its trajectory with almost the same energy than the pro-
jectile. These type of reactions allow to study the external part of the wave
function. Later, other laboratories like GSI [11], GANIL [12] and RIKEN
[13] have been using exotic beams to study the nuclear shell properties.

All these works have shown that the magic numbers are not as universal as
it was thought; they evolve when we move far from the stability. According to
the shell model, 11Li would be a magic nucleus, with the two valence neutrons
in the orbital 0p1/2. But this is not in agreement with the experimental
observation of its large radius. It was found that this nucleus has a mixture
of the 0p1/2 and the 1s1/2 shells, making disappear the magicity of the N
= 8. Another example of an expected magic number which can not be
confirmed by experiments occurs at N = 20 for the oxygen isotopes. There
is no evidence for the 28O to be bound. The isotopic chain of the oxygens
finishes with the 24O which was found to be a doubly-magic nucleus, and
N = 16 a new magic number. Experimentally it was observed for the 24O
that the valence neutrons mainly populate the 1s1/2 orbital, creating a large
gap between the 1s1/2 and 0d3/2 orbits making this nucleus doubly magic
[14, 15, 16]. It has been observed [17] that the first excited state energy for
the 22O is relatively high making the N=14 to be a sub-shell closure for the
oxygen isotopes. This behaviour seen in N = 14 is not observed with the
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same strengh for the 21N [18, 19] and it is vanished for the 20C [20].
Quasi-free scattering is a technique that was used in the past, and is being

used nowadays to explore the nuclear structure. This reaction mechanism
offers the possibility to study not only the outer part of the wave function, but
allows the exploration of deeper regions inside the nucleus. In the following
sections the quasi-free scattering mechanism will be explained in more detail.

1.2 Direct reactions for nuclear spectroscopy

There are three types of direct reactions which are particular suitable to
study the single-particle properties of the nuclei: transfer reactions, nucleon
removal and quasi-free scattering. These reactions have shown along history
a great success in disentangling the structure of nuclei.

Transfer reactions occur when a projectile and a target exchange one or
more nucleons. They are useful to study the outer shells of the nuclei [9].

One-neutron knockout reactions study the external part of the wave func-
tion. They will be discussed here in more detail than the transfer reactions
(due to their similarity with the quasi-free scattering) are . As it was men-
tioned in the previous section, these reactions have been used to study the
“halo” nuclei and the single-particle properties of exotic nuclei. The infor-
mation obtained in experiments, combined with theoretical models of the
reaction mechanism, allow the determination of the single-particle occupan-
cies (exclusive cross sections) and the orbital angular momentum of the states
(momentum distributions).

The one-neutron knockout reactions have three contributions to their
cross sections: Coulomb breakup, diffractive breakup and neutron stripping.
The first contribution includes Coulomb dissociation and can be neglected
as long as light targets as Be or C are used. The second term accounts for
the dissociation of a nucleon from the projectile via a two-body process with
the target. The last contribution is neutron stripping and includes events
where a nucleon of the projectile reacts with the target being excited from
its ground state.

The stripping and diffractive cross sections are calculated using eikonal
or Glauber theory, where two approximations are assumed. The first one
is that the projectile has a relatively high velocity, so the reaction is very
fast and we can neglect the no internal motion of the nucleons inside the
nucleus during their interaction time with the target (they are considered as
spectators). The other approximation is called eikonal and assumes that the
survival nucleus follows a straight line.

The single-particle cross section is given by (once the Coulomb part is
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taken out)

σs−p = σdiffs−p + σstrs−p (1.1)

where σdiffs−p and σstrs−p are the single-particle cross-sections corresponding
to the diffraction and stripping processes. The two components are calculated
as integrals on the impact parameter [21].

The occupancies of the single-particle states are calculated by measuring
the absolute spectroscopic factors. If γ rays stemming from the deexcita-
tion of the fragment were measured, their coincidence with the fragment
allows the determination of the contributions to the single-particle states.
The spectroscopic factors C2S (Iπ, nlj), which are proportional to the cross
sections and measure the overlap between the initial and final state Iπ, can
be determined as follows,

σ(Iπ) =
∑
j

C2S (Iπ, nlj)σs−p (Iπ, nlj) (1.2)

To conclude, the use of one-neutron removal reactions allows to deter-
mine the cross sections for each state, their spectroscopic factors and the
angular momentum of the removed nucleon from the fragment momentum
distribution.

The third type of reactions of interest on the study of the single-particle
properties will be the quasi-free scattering described in the next section.

1.3 Quasi-free scattering

A quasi-free scattering reaction is a direct reaction where a bound nucleon
(proton or neutron) or a cluster (2H, 4He, 8Be) in a nucleus AZ, is knocked-
out by a high energy particle (100-1000 MeV) (proton (p,2p) or electron (e,
e′p)) and without interaction between the nucleus and the projectile or the
two outgoing particles [22, 23]. The description of this type of reactions was
given in 1952 at the Berkeley laboratory by O. Chamberlain and E. Segrè
and J. B. Cladis, W. N. Hess, and B . J. Moyer [24, 25].

These experiments shown that when light targets (lithium [24] or deu-
terium, carbon and oxygen [25]) are bombarded with a proton beam with
an energy of 350 MeV, proton pairs emerge from the collision sharing an
opening angle of approximately 90o. This is explained by the assumption
of the incoming protons impinging upon a proton in the nucleus as if both
particles were free. The opening angle of both particles is not exactly 90o

(free scattering) because the collision takes place in the presence of nuclear
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matter where the proton in the target is not at rest and it has a momen-
tum distribution. Later in 1957, an experiment performed by Tyren, Maris
and Hillman [26] not only proved the validity of the quasi-free interaction
between protons, but also demonstrated that it is a very interesting tool to
study the inner nuclear shell structure. Other experiments performed later
have confirmed the previous results and also that the removed particle in the
nucleus could be a deuteron, an alpha, etc.

(k0,E0)

(k1,E1)

(k2,E2)

MA MA-1

M

M
θ1

θ2

M

Figure 1.3: Schematic view of a quasi-free scattering reaction. The incoming
fast proton M collides with a target of mass MA leaving a hole in the residual
nucleus and removing a nucleon (or a cluster). The two outgoing particles
share an opening angle of about 90o.

To discuss about the kinematics, the projectile will have a subscript 0:
its energy and momentum will be E0 and ~k0, respectively. It collides with
a bound nucleon (or cluster) as if both particles were free, leaving a hole in
the residual nucleus. The separation energy of a nucleon or a cluster inside
a nucleus can be written as follows,

B = T0 − (T1 + T2 + TA−1) (1.3)

where T indicates the kinetic energy of the particles. The indices A and
A-1 denote the initial and residual nucleus. The indices 0, 1 and 2 denote
the incident proton and the two outgoing nucleons.

From energy-momentum conservation:

E0 +MAc
2 = E1 + E2 + EA−1 (1.4)

~k0 = ~k1 + ~k2 + ~kA−1 (1.5)

with

EA−1 = MA−1 + Eexc + TA−1 (1.6)
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Eexc being the excitation energy of the residual nucleus. The recoil mo-
mentum of the MA−1 fragment is the same opposite in sign as the momentum
of the knocked-out nucleon (~k3) when it was bound in the nucleus before the
collision.

~kA−1 = ~k0 − ~k1 − ~k2 = −~k3 (1.7)

Using quasi-free scattering reactions it is possible to study not only the
surface of the nuclei, like in knockout reactions but also the inner regions of
the nuclei.

In recent experiments performed at GSI Helmholtzzentrum für Schwerio-
nenforschung, in Darmstadt, Germany [11] within the R3B collaboration [27],
inclusive and exclusive measurements of (p,2p) in inverse kinematics using
the LAND-R3B setup have been carried out. In these experiments with rare
beams in inverse kinematics, the nucleus of interest is the projectile due to
the difficulty to have stationary targets made of unstable isotopes. The use of
inverse kinematics present some advantages. A difference with the reactions
in direct kinematics, the fragments produced here in the reaction escape from
the target due to their high velocities making possible to measure their ener-
gies and angles after the reaction. Reactions such 12C(p,2p)11B [28, 29] and
17Ne(p,2p)16F→15O+2p [30] have already been studied, probing the validity
of this technique.

In the first example, a 12C beam at 400 AMeV was guided to the experi-
mental area. The setup was very similar to the one used in the experiment
analyzed in this work, so it will only be outlined. The beam impinges upon
a CH2 target, which was surrounded by silicon detectors allowing for identi-
fication of the two protons from the reaction and the measurement of their
angular distributions and energies. The target and the silicon detectors were
inside a vacuum chamber surrounded by a 4π calorimeter to obtain exclusive
observables by measuring the γ rays. The outgoing fragments were deflected
by a large acceptance magnet and identified in the three branches located
behind it, one for neutrons, one for heavy fragments and one for protons.
The energy differential cross section obtained for 11B is shown in figure 1.4.
In this plot the different breakup channels studied are included together with
the γ rays. The results are found to be in very good agreement with previous
experiments studying the same reaction in direct kinematics (see references
[28, 29] for more information).

For the second example, a 17Ne beam at 500 AMeV has been used to study
this borromean nucleus. Borromean nuclei are formed by three components;
if one of them is separated from the others, the other two become unbound
(15O+p+p). When a proton is removed from the 17Ne, the 16F decays into
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Figure 1.4: Excitation energy spectrum for the 11B. The different decay
channels are shown in different colors. Figure taken from [28].

15O+p. This nucleus was investigated in inverse kinematics via electromag-
netic dissociation, one-proton removal and quasi-free scattering. Using this
reaction mechanism, the excitation energy spectrum for the 16F (15O+p), the
inclusive two-proton removal cross sections for 17Ne→15O+X and transverse
momentum distributions of 16F were extracted. From the comparison of the
momentum distributions with theoretical calculations the spectroscopic fac-
tors were also obtained, finding good agreement with previous experiments
(see [30] for more details).

These two experiments have demonstrated that this reaction type is a
very good tool to study the nuclear structure of exotic nuclei. The future
FAIR [31] facility will open new investigations with exotic beams, where the
R3B setup will be located. This also includes important improvements with
respect to the actual LAND-R3B setup [32].
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1.4 This work

Quasi-free scattering reactions have been used in this work to study the
nuclear structure of light neutron-rich nuclei around N = 14 for charges 7 and
8. The same projectiles, 23O, 22O and 21N have been investigated through
(p,pn) and (p,2p) reactions in complete and inverse kinematics, allowing the
investigation at the same time of both valence nucleons and also deep-hole
states. Thus, a complete study of the whole wave function would be in
principle possible.

The experiment [33] was performed in the LAND/R3B reaction setup in
August-September, 2010, at GSI Helmholtzzentrum für Schwerionenforschung,
in Darmstadt, Germany [11]. The studied physics topics are very diverse
including the measurement of astrophysical reaction rates relevant for r-
process nucleosynthesis using heavy-ion induced electromagnetic excitation
and quasi-free knockout reactions to study the evolution of shell and cluster
structures close to and beyond the dripline. Unbound (ground and excited)
states could be populated and identified in (p,2p) reactions. The quench-
ing of single-particle strength in neutron-proton asymmetric nuclei will be
addressed by knocking out deeply bound protons and neutrons in (p,2p)
and (p,pn) reactions for nuclei with varying neutron-proton asymmetry. The
analysis of the complete set of data is still in progress, but the first results
have already been presented in dissertations [34] and conferences, like for
example [35, 36, 37, 38].

The details about the experimental setup, including a description of each
detector, will be given in Chapter 2. The following chapter will explain the
calibration procedures used for the different detectors. Chapter 4 will be
devoted to the procedures used to identify and study the different reaction
channels. The fifth chapter will be dedicated to explain and show the results
obtained in simulation. The sixth and seventh chapters will show and discuss
the results obtained for the studied reactions which are mainly: inclusive
momentum distributions of the (p,pn) and (p,2p) channels, inclusive cross
sections of the (p,pn) and (p,2p) channels, the deexcitation γ rays spectra
measured in coincidence with the outgoung fragments and the excitation
energy distributions for the one neutron breakup channels.



Chapter 2

Experimental Setup

In August 2010, the S393 [33] experiment was performed at the laboratory
GSI Helmholtzzentrum für Schwerionenforschung, in Darmstadt, Germany.
The main goal of this experiment was to study light neutron-rich nuclei
using inverse and complete kinematic measurements via quasi-free scattering
reactions at relativistic energies. In about twenty days, data for six different
settings centred at different A/Q ratios, were collected in the LAND-R3B
experimental area at Cave C. Within this chapter the main features of the
beam production and the experimental setup will be described in detail.

2.1 GSI Helmholtzzentrum für Schwerionen-

forschung GmbH

GSI1 is a laboratory located near Darmstadt, in Germany. A schematic
view of the facility at 2010, when the experiment was performed, is shown
in Fig. 2.1.

A primary beam is produced in an ion source and injected in the lin-
ear accelerator UNILAC (UNIversal Linear ACcelerator). In our case the
primary beam was 40Ar. This 40Ar+11 beam is then inserted in the Schw-
erIonenSynchrotron (SIS-18) where it is accelerated to the desired energy.
In our case the primary beam leaves the SIS with an energy of about 490
AMeV and goes to the FRagment Separator area (FRS), a high resolution
forward spectrometer [39]. At its entrance there is a production target of Be,
4.011 g/cm2. When the primary beam impinges upon this target, a range of
ions are produced by nuclear fragmentation. The FRS separates the species
of interest depending on their mass-to-charge ratio (A/Q): when a particle

1http://gsi.de/portrait/index.html
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Figure 2.1: Schematic view of the GSI facility in 2010. The LAND-R3B
experimental area is located in the Experimental Hall II.

with charge Q and mass A travels through a magnetic field of strength B it
experiences the Lorentz force. Also, if the initial particle velocity β is perpen-
dicular to the uniform magnetic field into which it is moving, the magnetic
force will have the characteristics of a centripetal force, and the particle will
move in a circle of radius ρ, with

Bρ =
p

Q
∝ A

Z
· βγ (2.1)

where p is the momentum of the particle, Q was replaced by Z due to the
non existence of charge states and γ is the Lorentz factor. The formula shows
that only ions with a given A/Z ratio will follow the trajectory determined
by the beam line.

The selection of the ions of interest is made in two stages (see figure 2.2).
In the first one, where two dipoles and a plastic scintillator (S2) are involved,
the magnetic rigidity of the fragments produced in the target is determined.
Only fragments with an appropriate combination of mass, charge and velocity
are transmitted. At the intermediate focal plane a degrader is placed to
slow down the beam in order to enable a finer selection. In the second
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Figure 2.2: Schematic drawing of the FRS. The beam coming from the SIS
arrives to the target area (TA). The fragment selection is performed in two
stages. Every stage contains two dipoles (indicated in green). The last
detector of the FRS is the scintillator paddle S8.

stage, formed by other two dipoles and an additional plastic scintillator (S8),
the fragments are selected according to their A/Z ratio by their velocities
(determined from time-of-flight) and their magnetic rigidities. After the last
scintillator (S8) the secondary beam (also called “cocktail beam” because of
the presence of different species) is identified in mass, atomic number and
velocity.

2.2 ALADIN-LAND setup

After the last scintillator of the FRS area, the beam travels around 55m
to Cave C where the LAND - R3B setup is placed. In figure 2.3 a schematic
layout of the setup is shown. The velocity of the beam is measured by
using the last scintillator of FRS and the first detector of Cave C, which is
another scintillator read-out by two photomultipliers. An active collimator
called ROLU is used to center the beam. After ROLU, for tracking and
energy loss measurements, a position sensitive silicon detector, PSP, is placed.
The beam, then, enters a vacuum chamber where the target, surrounded by
eight silicon detectors is located. The chamber is embeded in the Crystal
Ball, a 4π calorimeter. After the reaction, the products travelling in forward
directions are deflected by the ALADIN magnet and, according to their mass
and charge, are going to one of three branches: neutrons are not deflected
and are detected by LAND; heavy fragments are tracked via two scintillating
fibre detectors GFIs, and a time-of-flight wall TFW; protons are bent further
and detected via two proton drift chambers PDCs and a time-of-flight wall
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DTF.

Figure 2.3: Schematic draft of the experimental setup for the S393 experi-
ment in Cave C (not to scale). The beam comes from the left and finds the
following detectors: POS: together with a plastic scintillator detector from
the FRS measure time-of-flight which allows to determine the velocity of the
fragments, it can also be used to determine the position of the particles;
ROLU: 4 movable plastic scintillators, define the accepted beam spot size;
PSP: provides energy loss information of the incoming beam from which the
charge is obtained; SSDs: used to track and identify the fragments and the
quasi-free scattering nucleons; Crystal Ball: array of NaI detectors, γ rays
and quasi-free scattering nucleons detection in ∼ 4π; ALADIN: large accep-
tance dipole magnet to bend the particles depending on their A/Q; LAND:
tracking and determination of the momentum of the neutrons; GFI’s: used
to track the heavy fragments; TFW: tracking, energy loss and time-of-flight
measurements of the heavy fragments; PDCs: used for the tracking of the
protons; DTF: tracking, energy loss and time-of-flight measurements of the
protons.
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2.2.1 Incoming beam detectors

The secondary beam needs to be identified in charge and mass. In order
to do that, four incoming detectors were used. The names of these detectors
are S8, POS, ROLU and PSP.

• S8 is a scintillator formed by one paddle and used for the time-of-flight
(ToF) measurements. The time signals are provided by two photomul-
tipliers located at both ends of the paddle.

• POS (see Fig. 2.4) is a scintillator with square shape, 5.5x5.5 cm2,
used as start for the time-of-flight measurements. The scintillation
light produced in the detector is read-out by four photomultipliers,
which deliver time and amplitude signals.

Figure 2.4: Schematic view of POS detector with the direction of the beam
indicated. The four photomultiplier outputs provide time and amplitude
information, used to calculate time-of-flight, position and energy loss.

• ROLU (“Rechts”, “Oben”, “Links”, and “Unten”) (see Fig. 2.5) is
a detector comprising four movable plastic scintillators used to define
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the beam spot size. Each scintillator is read-out by a photomultiplier
and can be moved in order to define the size and position of the beam,
acting as a veto for all the particles hitting the scintillators.

Figure 2.5: Schematic layout of ROLU, with the beam direction indicated,
which is formed by four movable plastic scintillators which define the beam
size on the target.

• PSP (the figure 2.6) is a Position Sensitive silicon Pin diode with square
shape and an active area of 4.5x4.5 cm2. The detector has four anodes
that provide position information (x,y) and one cathode providing the
energy loss of the ion which is related to its charge Z via the Bethe-
Bloch formula

−dE
dx

=
4πZ2

mec2β2

NaZρ

Mu

(
e2

4πε0

)2 [
ln

2mev
2

I
− ln

(
1− v2

c2

)
− v2

c2

]
(2.2)

where E is the energy of the particle, x the distance travelled by the
particle, me the electron rest mass, c the speed of light, v the velocity
of the particle, Na the Avogadro’s number, e the electron charge, ε0
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Figure 2.6: Schematic view of PSP detector. The detector has four anodes
to reconstruct the position of the ions (Q1, Q2, Q3 and Q4), and one cathode
(Q) which is used to identify the ions in charge.

the vacuum permitivity, β = v
c

and I, Z, A, Mu and ρ are the mean
excitation potential, the atomic number, the mass number, the molar
mass and the density of the target respectively. The energy resolution
of the PSP is around 1%. The position is calibrated using a mask
attached to the detector with 21x21 square pixels made of scintillator
material that can be moved by remote control. For this experiment
the pixel mask did not work, so the position information could not be
used.

The flight time of the particle is measured between S8 and POS. This infor-
mation is used together with the energy loss in the PSP detector for incoming
particle identification.
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2.3 Detectors surrounding the target

There was a ∼4π spherical calorimeter made of 159 NaI (Tl) crystals (∼20
cm long) surrounding the target, used for detection of γ rays, protons and
neutrons (energies, angular distributions and multiplicities). Inside a vacuum
reaction chamber, there was eight Silicon Strip Detectors, four of them setting
up a box around the target and dedicated to angular measurements. The
other four are located in the beam axis in pairs, before and after the target.
They are used to track the incoming beam and fragments and also for charge
identification. Both detectors are defined in the following subsections.

2.3.1 Silicon Strip Detectors

The configuration of the SSDs used in this experiment is shown in Fig.
2.7. These detectors were developed for tracking in the X and Y direction,
(transversal to the beam), for charged particles as protons and heavy ions.
But they also deliver energy loss information allowing charge identification
[40]. The detectors were originally designed with the purpose of tracking
high-energy cosmic rays (protons up to Fe nuclei) at the Alpha Magnetic
Spectrometer (AMS) to be mounted at the International Space Station (ISS).

Figure 2.7: Silicon Strip Detectors configuration in the S393 experimental
setup. The red dots mark the origin, i.e. where the first strip is located.

Each SSD (see figure 2.8) has an area of 72x40 mm2 and a width of 300
µm. As the main purpose is to measure coordinates in the silicon plane, each
detector has two sides (S and K), perpendicular to each other. The S-side
(p-side, using the semiconductor nomenclature labelling the dopant content)
has the largest dimension. It has an implantation pitch of 27.5 µm and a
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Figure 2.8: Picture of one of the SSDs detectors. From left is shown the
sensor, the capton cable, the coupling capacitors, the read-out VA chips, the
front-end electronics board, and the 26-pin S-side connector.

read-out pitch of 110 µm. The number of strips in this side is 2560, being
every fourth strip connected to a read-out channel (640), while the others
are left floating. The other side is called K (or n-side), corresponding to the
shortest dimension (40 mm length). For this side the implantation pitch is
104 µm and all the strips are read-out (384). The number of strips being
read-out in every SSD is 1024.

2.3.2 Crystal Ball (XB)

The target was surrounded by a ∼4π calorimeter called Crystal Ball [41].
The main aim of this detector is to study the γ’s, protons and neutrons
coming from excited nuclei (see figure 2.9). The total energy, the multiplicity
and the angular distributions of the γ radiation emitted by the nucleus are
used together with other observables to study the internal structure of the
nuclei.

This detector is formed by 162 crystals of NaI (Tl) of 20 cm length, each
inside an aluminum shell of 600 µm. Only 159 crystals were used, leaving
space to let the beam pass through and to hold the full structure. The crystals
have four different shapes: 12 regular pentagons and 150 irregular hexagons
(with three different types divided into 60, 60 and 30). Every crystal is
covering the same solid angle of approximately 77 msr. The whole detector
is mounted on a structure which allows to move the two hemispheres of
the detector individually using rails. Correction of the Doppler broadening
is possible because of the relatively high granularity of the detector. The



20 Experimental Setup
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Figure 2.9: Nuclear reaction products travelling to the Crystal Ball detector.
The beam entering left impinges on the target.

substantial length of the crystals provides a high detection efficiency. In
figure 2.10 is shown a picture of the Crystall Ball detector taken during the
S393 experiment.

New electronics for the Crystal Ball were used in this experiment for the
first time. The signal from each photomultiplier is divided into two parts:
one is for high energy particles, i.e. protons and neutrons, which is extracted
in a previous stage of amplification and is delivered to a QDC; the other is for
the γ rays. This signal is going to a Mesytec MSCF-16 (16-fold Spectroscopy
Amplifier with CFD’s and Multiplicity trigger) and after this to a VUPROM
(VME Universal PROcesing Module) [42].

2.4 ALADIN

Downstream from the target area a dipole called ALADIN (A Large Ac-
ceptance DIpole magNet) deflects the charged fragments to their correspond-
ing paths depending on their magnetic rigidities. These were separated into
three different branches for neutrons, heavy fragments and protons. The
angular acceptance of ALADIN is ±60 mrad. The maximum current under-
taken by the magnet is 2500 A, but above 1900 A, saturation effects become
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Figure 2.10: Photograph of the Crystal Ball detector opened at Cave C
during the preparation of the S393 experiment in 2010. The reaction chamber
and some of the incoming detectors are also visible.

not negligible, being the relation between magnetic field and current not
linear.

2.5 Heavy ion branch detectors

Following the magnet, and covering a region centered at a deflection of
approximately 15o, there is a region where the ions pass through, called the
heavy ion branch, formed by three detectors selected for their capability of
measuring position, energy loss and time-of-flight. These detectors are the
two GFI’s and the TFW.

2.5.1 GFIs

The GFI (Große FIber Detektor) detectors are used to reconstruct the
trajectories of the heavy fragments. The position resolution of this detector
is ∼1 mm with a geometrical efficiency of 89 % for Z≥3. For lower charges
the detection efficiency becomes very low [43].
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The GFI detectors have a large active area of 50 x 50 cm2 with almost
500 parallel fibres of 1 x 1 x 500 mm3. A schematic view of this detectors is
shown in figure 2.11. Each fibre has an optical coat to guide the light and
to avoid cross talk. One end of each fibre is coupled to a position-sensitive
photomultiplier (PSPM) using a mask (see figure 2.11). The other end of
the fibre is usually coupled to a common photomultiplier, not used in this
experiment.

Figure 2.11: Left: schematic view of the GFI. Right: mask used to connect
one end of the fibre to the PSPM photomultiplier for the position mea-
surements. The dark squares indicate the non used holes. The dotted line
indicates the ordering of the fibres.

The PSPM has a rectangular photocathode with an area of 64 x 58 mm2,
16 mesh-type dynodes and a rectangular anode grid with 18 wires in the X
(u) direction and 16 in the Y (v) direction. The distance between the anode
wires is approximately 3.7 mm. The fibres are organized in a 20 x 25 matrix
(see figure 2.11). The distance from row to row is 2.2 mm and the distance
from column to column is 3 mm. In next chapter we will see that the charge
distribution on the anode is related to the position of the light spot on the
photocathode.

When the ions hit the GFIs, scintillation light proportional to their energy
loss in the detector is produced. This light is guided on the mask producing
energy signals in a few wires, which are read-out and used to reconstruct the
(u,v) coordinates of the photocathode. Via a coordinate system transforma-
tion the horizontal position is obtained.



2.6 Proton branch detectors 23

2.5.2 TFW (Time of Flight Wall)

The Time of Flight Wall (TFW) is used to determine the charge, via
energy loss, and to reconstruct the β, via time-of-flight measurements, of the
heavy fragments.

The TFW (see figure 2.12) is formed by 32 scintillator modules (pad-
dles). The modules are arranged in two layers perpendicular to the beam
direction. There are 18 paddles in the vertical direction, 147 cm long each,
and 14 paddles in the horizontal direction, 189 cm long. The paddle thick-
ness is 0.5 cm and the width is 10.4 cm. All the paddles are read-out by two
photomultipliers, one on each side.

Figure 2.12: Schematic layout of the Time of Flight Wall used in the exper-
iment.

2.6 Proton branch detectors

After the magnet and covering a region centred at a deflection of 30o, the
proton branch detectors were placed, to measure the momenta of the protons
coming from the reactions at the target via time-of-flight. The detectors used
for this purpose are two Particle Drift CHambers (PDCs) for tracking and a
Time of Flight Wall (DFT) to determine the velocity of the protons.
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2.6.1 PDCs (Proton Drift chambers)

In order to track the protons coming from breakup reactions, two proton
drift chambers (PDCs) were placed 2 and 3 m behind the magnet. They
are counting gas detectors filled with a gas mixture (20% CO2 and 80% Ar).
The active area of these detectors is 100x80 cm2. In the widest direction
(X) there are 144 sense wires, while in the Y direction there are 112 sense
wires. In total this detector has 256 read out channels. Each detector has two
layers, each one formed by eight planes, six of field wires defining hexagonal
drift cells with a diameter of 16 mm and two of sense wires (see Fig. 2.13).
When a charged particle passes through the gas, it produces ionization. The
resulting electrons induce a current in the sense wire, causing a localized
cascade of ionization which is collected on the wire and results in an electric
current proportional to the energy of the detected particle. This allows the
determination of the proton trajectory.

Field wires

Sense wires

16 m
m

Figure 2.13: Detail of the hexagonal drift cells. The black circles represent
the sense wires and the red ones the field wires.

2.6.2 DTF (Dicke ToFwand)

The DTF is a Time of Flight Wall formed by scintillator paddles used to
measure the time-of-flight and the energy of the protons (see Fig. 2.14). It
has 6 vertical paddles of 20 cm width, 120 cm length and 1.5 cm thickness and
3 horizontal paddles of 10.4 cm width, 140 cm length and 0.5 cm thickness,
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Figure 2.14: DTF detector front view.

which are separated around 44 cm. All the paddles are read-out by two
photomultipliers, one at each end. The detection principles are the same as
for the other detectors based on scintillator paddles.

2.7 Neutron branch detector (LAND)

The Large Area Neutron Detector (LAND) is used for the detection of
neutrons produced in reactions at the target. It was designed to measure neu-
trons with energies from 100-1000 MeV [44]. The detector measures the ToF,
the position and the energy loss of the neutrons, allowing the determination
of the velocity and the position (in X,Y,Z) of the neutrons. The detector
is placed at 0o and approximately 13 m behind the target. It consists of 10
planes, with 20 scintillator paddles each. In total it has 200 paddles. Each
paddle covers an area of 200 x 10 cm and 10 cm depth and is formed by 11
iron sheets and 10 scintillator sheets. Two of the iron sheets are covering the
outer parts of the detector and have a thickness of 2.5 mm, the inner ones
are 5 mm thick. The 10 scintillator sheets are 5 mm thick. The paddles of
each layer and the next are perpendicular to each other in order to measure
the horizontal and vertical positions of the hits (see Fig. 2.15). When a neu-
tron impinges in LAND interacts with the iron producing charged particles
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Figure 2.15: Top: Schematic view of the layer structure of a LAND paddle.
Bottom: Picture of a LAND real paddle.

(mainly protons) which induce light in the plastic scintillators. Each LAND
paddle is read-out by two photomultipliers, one at each end. Using some
specific algorithms it is possible to reconstruct the hits in the paddles, and
from them to obtain their time, energy and position.



Chapter 3

Detector calibrations

This chapter describes the procedures followed to calibrate the detectors
used in the experiment, as well as some details needed for the study of specific
reaction channels. The text will focus on the detector calibrations where the
author of this thesis was more involved.

The first parts are focused on the incoming beam detectors which provide
a good identification in mass-over-charge (A/Z) of the incident cocktail beam.
Later on, we examine the detectors in the heavy fragment branch (GFIs,
TFW) and finally the γ energy branch of the Crystal Ball detector and the
SSD calibration.

The text will also describe very briefly some calibrations performed by
other collaborators, e.g. the calibration of the high energy branch and time
of the Crystal Ball detector.

3.1 Calibration levels

The data of all the detector channels used in the experiment are collected
by the Data Adquisition Sysstem, and the event portions were collected to-
gether in an event builder and written into LMD-format files (List Mode
Files) [45]. The information contained in the lmd files is extracted using
the software package land02, originally written by H. Johansson [46]. This
program converts the LMD files into rootfiles (via a process called unpack-
ing) and also contains some calibration routines. The calibration procedure
is performed in different steps unpacking the data into the following levels
[46, 45]:

• RAW: conversion from the binary format to an analysis friendly format.
The information is ordered by detector, module and channel. The
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values of the different signals coming from the detectors are given in
TDC, QDC or ADC channels.

• TCAL: TDC channels are converted to time units and the QDC pedestal
is subtracted. The parameters applied to the RAW level data are cal-
culated by routines included in land02, tcal and clock.

• SYNC: the detectors are not usually composed by one piece. In the case
of the time-of-flight walls (LAND, TFW), these are formed by several
paddles. In the previous levels, each paddle was treated individually.
To combine the information from all the paddles and handle the detec-
tors as a unit, the channels are synchronized with respect to each other.
The calibration routine for this step is detector dependent. A routine
called phase1 calculates the parameters for the synchronization.

• DHIT: contains energy loss, position and time values in detector specific
coordinates describing the interaction of the particle in the material
(what is usually know as a hit).

• HIT: contains data in laboratory coordinates describing hits. The po-
sitions are given in cm, the times are given in ns and the energy in
MeV.

• TRACK: the mass and the atomic number together with the velocity
of the ions is calculated.

Sometimes the detector information suffers variations along the time.
Taken this into account, a time validity function (LT RANGE) allows to
specify different calibration parameters for different ranges of the data set.

3.2 Triggers

A trigger is a system that uses simple criteria to select the signals from
the detectors, when it is only possible to store a maximum set of events. In
order to identify the reaction channels of interest, the signals from different
detectors are combined to create triggers. In Table. 3.1 the triggers for the
S393 experiment are listed. In the first column the trigger bit running from
1 to 16 is listed. Triggers 1 - 8 are the on-spill triggers, used for the analysis
of the reaction channels and 9 - 15 the off-spill triggers used for calibration
purposes. The second column indicates the trigger pattern (Tpat) which tells
us which bits are set to 1. In the third column there is a short description
about the physical meaning of each trigger. The final columns, with ones or
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1 1 Minimum bias

(Good beam (GB)) 1 1

2 2 Fragment

(GB + fragment at TFW) 1 1 1

3 4 FRS S8

(plastic scintillator hit) 1 1

4 8 CB SUM 1 1

(Crystal Ball energy threshold) 1 1 1 1

5 16 Proton 1

(hit in the DTF) 1 1 1 1

6 32 GB-pileup 1

(identification of pile-up) 1 1

7 64 Pix

(hit in the pixel detector) 1 1 1

8 128 Neutron 1

(hit in LAND) 1 1 1 1

9 256 CB muon 1 1

(offspill trigger) 1

10 512 Land Cosm 1 1

(offspill trigger) 1

11 1024 TFW Cosm 1 1

(offspill trigger) 1

12 2048 CB gamma 1 1

(offspill trigger) 1

13 4096 DTF Cosm 1 1

(offspill trigger) 1

14 8192 NTF Cosm 1 1

(offspill trigger) 1

15 16384 CB L+R-muon 1 1

(offspill trigger) 1

Table 3.1: Trigger matrix used in the experiment. The first column indicates
the trigger bit for a certain trigger. The second indicates the trigger pattern
(2n−1). The third column is a brief description of the trigger and the other
columns are the coincidences or anticoincidences between certain detector
signals.
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blanks, indicate the active inputs. The first row per trigger bit represents an
anticoincidence and the second one a coincidence. For example requesting the
“Minimum bias” trigger, has nothing in the first row (no anticoincidence is
requested). While the other row means POS and not ROLU, a signal in POS
is required and nothing in ROLU is also required, i.e. an anticoincidence.

There are some triggers which fire very often during the experiment, but
only a fraction of the events associated to them is saved. The ratio between
the real number of events triggered and the ones stored is called downscale
factor.

One of the frequent triggers for experimental running trigger is the 2,
called “Fragment”, meaning that there is an event with “Minimum bias” that
also hits the last detector in the heavy fragment branch, the TFW. Another
very common trigger is the number 4 “CB SUM” which indicates deposited
energy above a certain threshold in the Crystal Ball detector, indicating a
high energy event. The last on-spill trigger used is the neutron detection
trigger with number 8 and called “Neutron” that selects a possible neutron
hit in the LAND detector.

3.3 Pedestal subtraction

The QDC reads-out a small quantity of charge called pedestal, even when
no input signal is present. Since the pedestal is always there, it has to be
subtracted from the data in order to avoid the usage of signals compatible
with noise. The pedestal calculation is done by the land02 routine clock and
is subtracted on the TCAL calibration level.

3.4 Time calibration

The TDC modules have a nominal gain value, which can fluctuate through-
out the experiment (e.g. temperature). In order to correct this effect and
to achieve a good time resolution, a time calibrator module was used during
the whole experiment to monitor the TDC gain. This module generates two
pulses with known delay. One is sent to all electronic channels and the other
to the DAQ as a trigger allowing the monitoring of the TDC gain for the
entire experiment (explanation about the working principles in Ref. [47]).
After this calibration, the time is represented in ns, but the time difference
between detectors is not representing the actual time of flight between them,
a synchronization between them is needed.
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3.5 Incoming charge calibration

The charge identification of the incoming ions is performed with the PSP
detector. It is obtained directly from the energy loss measured by the detec-
tor’s cathode.

Using the Bethe-Bloch formula it is possible to relate the energy loss of the
ions to the charge (equation 2.2). To obtain the calibration parameters, a run
with A/Z=2 was used. 8Be has a half life very short making its observation
impossible. So, it does not appear in the identification matrix. This helps
with the identification of the other nuclei (see Fig. 3.1).

Figure 3.1: Identification plot for a run with A/Z=2. The 8Be does not
appear in the matrix making easier the identification of the other nuclei.
The Tpat two (minimum bias + fragment at TFW) was selected in this plot.

For the selected nuclei, the signal in the PSP cathode is shown in figure
3.2. The charge assigments are possible because of the missing 8Be. The
peaks have the approximate shape of a Gaussian function. Every peak is
fitted to a Gaussian function and the mean value is used for the charge
calibration. The results of a linear fit of the representation of the mean value
vs. the calculated energy loss for each species in the PSP, provides the slope
and offset that relates the energy-loss measurement in the cathode with a
certain charge (see figure 3.3).

3.6 Incoming velocity calibration

In order to identify the incoming ions in mass and charge, we need to
know their velocities. With this purpose S8 and POS detectors are used
to determine the ToF and the path of the ions. The velocity calibration is



32 Detector calibrations

PSP cathode signal (ch)
0 500 1000 1500 2000 2500 3000 3500 4000

C
o

u
n

ts

210

310

410

Figure 3.2: PSP energy loss measured in the cathode which is correlated to
the charge. The mean value of a Gaussian function fit over the peaks relates
the energy loss with a certain charge.
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Figure 3.3: Energy loss in the PSP calculated by Bethe-Bloch equation vs.
the mean value of the Gaussian fits to the signal in the PSP cathode.

usually performed using runs with primary beam data at different energies
(see for instance reference [48]). This procedure could not be performed in
this experiment because the TDC module for S2 and S8 was changed during
the calibration runs. The dependence of the variables on the electronic setup
do us to persist in the use of this calibration runs.

To perform this calibration, the same data set (A/Z=2) used for the
velocity calibration are employed. The time signal from S8 and POS is also
known. All this information can be used to calculate a time offset and a flight
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path. The flight path will be included as an experiment-specific geometrical
parameter and the time offset should be provided as a calibration parameter
in the land02 programme.

The velocity of the ions β is related to their time-of-flight (ToF ) and their
flight path as follows

β =
S

ToF · c
(3.1)

where c is the speed of light, S is the flight path and β is the velocity of the
ions.

The time difference δt between two detectors is

δt = ToF + Toffset (3.2)

Combining equations 3.1 and 3.2 we get

δt · β = Toffset · β +
S

c
(3.3)

A fit of this ToF for a few ions can be performed. Figure 3.4 shows
the linear fit. The δt is distributed approximately according to a Gaussian
distribution, being the mean value of the Gaussian the time of flight. As
the magnetic rigidity Bρ (from FRS), the mass number and the charge are
known, it is possible to calculate the energy and from that, the velocity of
the ions.

A linear fit of δt · β vs. β allows to determine the flight path (from the
offset) and the time offset (from the slope) (see figure 3.4).
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Figure 3.4: Linear fit of β · ToF versus β for ions with N = Z = 2.
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3.7 Silicon Strip Detectors, SSDs

The Silicon Strip Detectors (SSDs) are used for charge identification and
position measurement [49]. There were four in-beam SSDs used for tracking
and charge identification of the heavy fragments, and other four surround-
ing the target to track and identify the quasi-free scattering nucleons. The
surrounding four ultimately could not be used in this analysis because they
did not work properly.

The RAW level contains one energy value for each of the 1024 strips. A
pedestal calculation is performed using the clock program. The pedestal is
characterized by a mean and a sigma value from their Gaussian function fit.
A large pedestal sigma indicates a broken strip.

To find all the noisy/dead strips, the energy in TCAL level versus the
strip number had to be studied. Once all the unusable strips have been
identified, a negative pedestal value of -1 needs to be assigned in the clock
output to the “dead” ones, disabling their later use [28]. TCAL contains the
pedestal-subtracted energy values for all the strips present in the previous
level. Up to SYNC level (included) the pedestals are subtracted, a common
noise correction is performed, a gain-adjustment is done and also a zero-
suppression.

When an ion passes through a SSD, the number of fired strips depends,
among other things (e.g. angle of incidence), on the ion charge traversing
the material. So, in order to get the energy loss of an ion, the energy of all
the fired strips must be added up. The group of strips fired forms a cluster
and every cluster has a center of gravity CoG (hit position) defined as:

CoG =

N∑
k=1

niqi

N∑
k=1

qi

(3.4)

where i is the strip index and N is the number of strips in a cluster. A
strip is added to a cluster if its energy is bigger than 1σped of the pedestal.
In order to have a cluster, at least one of the strips needs to have an energy
above 4σped. At DHIT level, a cluster is characterized by its position (position
of the hit in units of cm where the origin is at the first strip), energy (energy
of the hit), area (sum of all energies of a cluster), basewidth (number of
strips belonging to the cluster excluding dead strips) and η (measure for the
exact location of the hit on strip level). The hit position in units of the strip
number is shown in Eq. 3.5. The position in the S and K sides is caculated
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by multiplying the CoG (center of gravity) by the strip pitch (104 µm for
the K side and 110 µm for the S side),

position = CoG ∗ pitch (3.5)

The η distribution is charge dependent, that is, an individual calibration
is needed for each charge [50]. In the HIT level the origin of coordinates is
moved to the center of the detector. The figure 3.5 shows a comparison for
the energy loss seen in two detectors before (left) and after (right) calibration.
In this figure the calibration was performed for charge 7, which is the last
blob on the plot.
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Figure 3.5: Energy loss in the second silicon vs. energy loss in the third
silicon for the k-sides and for an empty target run. In the left figure the plot
before the calibration parameters were applied is shown; in the right one all
the calibration parameters have been applied. The Fragment trigger (Tpat
2) has been selected.

3.8 Crystal Ball: γ and proton readout

The Crystal Ball (XB) detector is used to measure the de-excitation γ ray
energies and to measure and identify the nucleons coming from the quasi-
free scattering reactions. Different procedure has been employed for the
calibration of each detection mode.

3.8.1 γ energy calibration

The calibration of this branch consisted of subtracting the pedestals and
converting the QDC channels into energy expressed in MeV (using the cal-
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ibration parameters to go from RAW to SYNC level). In order to do that,
different sources of known energies were used, allowing to correlate the chan-
nel number with the γ energy. In our experimental conditions, the γ energies
are well below 10 MeV. The sources used were 22Na (γ’s with 511 keV and
1274.54 keV [51]) and 60Co (γ’s with 1173.23 keV and 1332.49 keV [51]).
There were different calibration runs along the experiment, where the source
was placed in the left or in the right side of the detector. Right and left side
refers to standing upstream of the XB and looking downstream, towards AL-
ADIN and LAND. The right side has crystals 1-81, and the left side crystals
82-162. When the XB is opened, the source is attached with tape to the
centre of its respective hemispheres. The two XB halves/hemispheres are
about 1 m apart from each other then, so only one half can be irradiated at
a time.
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Figure 3.6: 22Na energy spectrum fits for crystal 1. To perform the calibra-
tion, the photopeaks at 511 keV and 1275 keV are fitted as the superposition
(red line) of a Gaussian distribution (green dashed line) and a linear function
(blue dashed line).

RAW level data is fitted [52, 53, 54] with the superposition of a Gaussian
function and a linear background in the vicinity of the peak. Figure 3.6
shows the performed fits for the 22Na source. Then, the energy in MeV is
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plotted vs. the energy in channels and fitted to a straight line. The slope of
the linear fit is related to the gain of the whole electronic chain as follows:

E(MeV ) = slope× (E(channels)− offset) (3.6)

with the slope expressed in MeV/channel and the offset in channels.

In figure 3.7 the slope versus the crystal number is shown for the whole
XB. The slopes have this distribution due to the ordering of the crystals. The
gain is lower on the PMT’s in the forward direction because of the Lorentz
boost which affects the γ energies, increasing the energy of those travelling
in a more forward direction. The crystal 1 is on the right hand side at 90
degrees from the beam direction and, then, the crystal number increases,
going out from this crystal in a spiral until crystal 81. The other half has the
crystal 162 in front of the crystal 1, left at 90 degrees from beam direction,
and here the crystal number decreases to 82 in spirals also.
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Figure 3.7: Slopes of the linear fit performed to the plot energy (MeV) vs.
energy (channels) for the runs 336 (source in the right hemisphere) and 337
(source in the left hemisphere).

It has been observed along the experiment that the slopes and offsets
are not constant. They vary depending on run number and crystal number,
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meaning than the same calibration parameters can not be used over the entire
experiment.

When a γ impinges in a scintillator crystal, usually the energy is not
deposited in only one crystal. It is distributed over a certain area around
the first interaction point. In order to reconstruct the total γ energy, the
depositions in the neighbourhood are added to the main crystal energy. These
set of crystals form a cluster (this will be explained in more detail in the next
chapters). To get an accurate cluster energy, it is very important that every
crystal has a good energy calibration throughout the whole experiment, i.e.
the crystals must be aligned in energy.

In order to correct the drifts (variations of the peaks positions for the
same crystal with the time) and to have a good energy alignment (variations
in the peak positions for different crystals during the same run), the natural
background (in combination with the available sources) has been used to
monitor the energy peaks along the experiment. In figure 3.8 the background
energy spectra for the crystals 1 and 9 is shown. The 40K peak at 1.46 MeV
it is clearly observed, but it is shifted, showing the misalignment between
the different crystals in the same run.

Figure 3.8: Example of the observed shift in the crystals 1 and 9 for the
background peak of the 40K.

In Fig. 3.9 the improvement of the peak resolution is clearly visible
comparing the same run before and after correcting the drifts gain of the
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crystals.

Figure 3.9: Comparison between the energy deposited in all the crystals
for the same run: before the crystals alignment (left) and after the crystal
alignment (right). The 40K peak at 1460 keV is observed.

3.8.2 High energy branch calibration

The ideal way to calibrate the proton branch is with proton beams at
different energies in the range where the quasi-free protons are expected (10
- 300 MeV) and also covering the expected angular range. Unfortunately for
this experiment there were not available beams to calibrate the high energy
branch. Instead, the proton branch was calibrated using cosmic muons. For
that purpose the program gamma2, inside the land02 package, and a simula-
tion (Geant3) were used. There are two procedures used by the collaboration
to perform the calibration and can be outlined as follows:

• the muon energy is plotted for both branches (high-energy branch vs.
low-energy branch). The resultant curve can be fitted to a straight line
obtaining an offset and slope. This slope multiplied by the γ energy
gain calculated in the previous section, corresponds to the proton gain.

• only muons that traverse the XB centrally are used (two opposite crys-
tals are hit). The energy loss of the muons is displayed versus the crys-
tal number. The energy loss for each crystal has a Gaussian shape. The
mean value corresponds to the mean energy loss of a muon traversing
the crystal and can be calculated from a simulation. From the compar-
ison of the simulated value with the experimental, the gain factors are
obtained.

More detailed information can be found in previous works [30, 55].
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3.8.3 Time calibration and synchronization

The time signals from the Crystal Ball detector are used to clean-up the
events from background contributions. The measured energies are requested
to be inside a certain time window. The conversion from channels to time in
ns is done in the same way as it was explained before for the POS detector,
using the time calibrator. To synchronize the times the gamma2 program was
used. The algorithm uses a run where a source emitts two γ’s in coincidence.
The two expected γ’s could deposit their full energies in two different crystals.
If this condition is fullfilled, the time difference between those γ’s is saved in
a histogram. As the γ’s are in coincidence, the peak mean value should be
centered in zero. For each combination of two crystals it is possibe to define
a histogram, which can be fitted to a Gaussian function. The final equation
system can be solved to determine the time offsets.

3.9 GFIs

The GFIs detectors provide horizontal position measurements of the heavy
fragments after the dipole. When an ion hits the GFIs produces light which
is guided through the fibres creating a well-defined light spot on the pho-
tocathode of the PSPM. Depending on the position of the light spot in the
photocathode, an electrical signal is generated in some anode wires. From the
combination of these signals, the position of the light spot is reconstructed,
making possible the identification of the hit fibre. To extract the X position,
the internal coordinates of the detector (u,v) need to be transformed.

The first step of the GFIs calibration is the pedestal subtraction, that is
performed as for other detectors using the clock routine. From RAW level
data to TCAL data, the pedestals are subtracted.

The amplitude of the signals is not the same for all the wires. It depends
on its position on the photocathode and on its amplification. So, a proper
gainmatch of all the anode wires on the photocathode is needed before re-
construct the hit position. It has been observed that the charge distribution
of a hit produces energy in about seven neighbouring wires in each (u,v) di-
rection, and their amplitudes are expected in a Gaussian distribution. This
fact is used to perform the gain matching of the wires, taking all the signals
from neighbouring wires (cluster) into the distribution. The calibration is
done in a run called “sweep run” using the phase1 gfi routine. The calibra-
tion parameters are then applied in the DHIT level. In this run the whole
detector is illuminated by varying the magnetic field of the dipole. In figure
3.10 an example of the charge distribution before (top) and after the gain
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matching (bottom) is shown. After gain matching the clusters, their posi-
tions become more regular and well defined. The divided clusters also merge
and the extension of the clusters is reduced. Also the distortion observed at
the edges decreases. The dots in between the clusters are ions that hit in the
non scintillating part of the fibre, depositing low energy.

In order to finalize the calibration, the positions of the clusters must be
determined. This is done by projecting all the hits onto a two dimensional
histogram (u,v). For each cluster the mean positions (ū,v̄) and the standard
deviations (σu,σv) are obtained by fitting the clusters to Gaussians. The
cluster neighbours are determined by using the lengths and angles of the
vectors connecting them. In figure 3.11 positions of all the clusters and the
vectors that connect neighbours for one of the fibres are shown.

An index pair (k,l) can be assigned to each cluster, where k and l are
the indices for the columns and rows of the matrix k x l. Every (k,l) has
a corresponding internal mean position (ū,v̄) on the PSPM, which is also
associated to the horizontal position in the detector (x).

To convert the internal coordinates (u,v) to the corresponding x positions
a transformation has to be applied. If the position of a hit is inside a cluster
(within its width), the fibre assignment is straightforward. Instead, if the hit
is between two clusters, there is more than one candidate fibre to assign the
hit. In this case, a weighted average of the candidate fibres is used [56].

The reconstructed position is given in cm in the HIT level. The horizontal
position for two different fibre detectors, which are approximately 150 cm
apart, is shown in Fig. 3.11 for the “sweep run” used for the calibration. The
good correlation shown between the position measured by the two detectors
proves the good position resolution after calibration.
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Figure 3.10: Reconstructed image of the fibre mask before (top) and after
(bottom) gain matching. The clusters have a better-defined shape and the
large distortion observed at the edges of the photocathode (upper plot) is
improved after the gainmatching procedure (bottom plot).
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Figure 3.11: Top: Mean position of the clusters. Neighbours are indicated
by arrows. Bottom: Correlation between the reconstructed position between
two fibre detectors 150 cm apart.
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3.10 Time of Flight Wall (TFW)

L
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Figure 3.12: Position of a hit in a scintillator paddle (x). The time (t1,t2)
and energy (E1,E2) signals measured by each PMT are used to calculate the
position of the hit (x), its energy (E0) and its time (t0).

The TFW is a detector made of plastic scintillator paddles. Each paddle
is read-out by two photomultipliers, one at each end, which provide time and
energy signals (see Fig. 3.12). The position information [47] can be obtained
by time differences or energy ratios between the measured times and energies,
repectively.

• Calculation of position and time of a hit using the time signals:

The measured times are:

t1 = t0 +
x+ L/2

vscint
(3.7)

t2 = t0 +
L/2− x
vscint

(3.8)

where t1 and t2 are the times measured by the two photomultipliers, t0
is the interaction time, vscint is the effective light velocity in the scintilla-
tor, L is the paddle length and x is the position of the hit in the paddle.
The position of a hit in a paddle is calculated as a time difference be-
tween the two photomultipliers times.

t1 − t2 = t0 +
x+ L/2

vscint
− t0 −

L/2− x
vscint

(3.9)

x =
vscint (t1 − t2)

2
(3.10)

The interaction time is calculated by adding up both photomultiplier
times.
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t1 + t2 = t0 +
x+ L/2

vscint
+ t0 +

L/2− x
vscint

(3.11)

t0 =
t1 + t2

2
− L

2vscint
(3.12)

• Calculation of energy and position of a hit by using the energies pro-
vided by the photomultipliers:

The distance from the hit position to the photomultipliers is bigger than
the paddle width. So, the measured energies can be approximated as
it follows:

E1 = E0 · exp
[
−(x+ L/2)

λ

]
(3.13)

E2 = E0 · exp
[
−(L/2− x)

λ

]
(3.14)

(3.15)

being λ the attenuation length in a paddle. The interaction energy is
calculated by multiplying both photomultiplier energies,

E1 · E2 = E2
0 · exp

[
−L
λ

]
(3.16)

E0 =
√
E1 · E2 · exp

[
L

2λ

]
(3.17)

The interaction position is the ratio between the photomultipliers en-
ergies,

E1

E2

= exp

[
−(x+ L/2)

λ

]
· exp

[
−(L/2− x)

λ

]
(3.18)

x = −λ
2
ln
E1

E2

(3.19)

In all these equations the cable lengths, signal losses and proccesing times
were not taking into account, but they are included in the calibration proce-
dure.

In the first land02 level (RAW), an energy and a time for each paddle
and for each PMT is available. In the TCAL level the same variables are
present but the pedestal is subtracted and the time is converted in ns. The
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calibration parameters are calculated with the routines clock and tcal. In the
SYNC level, the data structure is the same as in TCAL level (energy from
paddles with two PMT tubes), but the four parameters calculated using
phase1 are applied. The first one provides the gain needed to synchronize
the paddles to each other; the second one performs gain-matching over the
two energy signals; the third one is the relative offset in time between a
pair of horizontal and vertical paddles which synchronizes the mean time
calculated by the two paddles; the last one makes the differences between
the times provided from Y paddles and X paddles to be zero. In the DHIT
level the information about the photomultipliers is lost; all the observables
are described in the internal coordinates of the detector. The final level is
the HIT: at this stage of the calibration the information about the whole
detector is in cm and the energy in arbitrary units.

The last step, is the detector synchronization between runs [57]. When
a channel is studied, several runs are joined and a synchronization between
their energies and times is needed. For this purpose the energy loss vs. event
number will be studied by fitting to Gaussian distributions different groups
of events. The ATIMA code [58] was used to calculate the energy loss in the
TFW after the beam went through all the previous detectors, and also the
time of flight between the target and the TFW. These values were used to
match the mean value from the previous fits. In the top plot of figure 3.13
the energy loss vs. the event number is presented, showing that the energy is
not well synchronized between event groups. In the bottom plot of the same
figure, the result after applying the corresponding corrections to synchronize
the runs is shown. At the end of the calibration procedure, the energy is in
MeV and the ToF in ns.
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Figure 3.13: Top: Energy loss in the TFW before synchronization. Bottom:
Energy loss in the TFW after synchronization and energy calibration using
ATIMA [58]. In both plots the “Fragment” trigger was selected.
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Chapter 4

Analysis procedures

In this chapter the procedures that have been used to identify the reaction
channels and to calculate the physical quantities of interest will be described.

First, the incoming projectile needs to be unambiguously identified. Then,
the products of the reaction are identified helped by their deflection in AL-
ADIN using the two SSDs after the target, the two GFIs and the TFW. Once
the incoming and the outgoing species are identified, the text will focus on
the calculation of two physical observables: cross sections and momentum
distributions. The calculation of the angular distributions of the two emerg-
ing nucleons from the quasi-free scattering reactions will be described as well.
The last part of the chapter will focus on the de-excitation γ rays measured
with the Crystal Ball detector.

The analysis procedures herein described will be followed for all the dif-
ferent studied channels. In order to avoid repetitions, all the figures and
exemplifications will be shown for one incoming projectile, the 21N.

4.1 Identification of the outgoing fragments

The reaction channels were selected via unambiguous identification of
the nuclei of interest both before and after the target. The pre-target nuclei
identification, as explained in Chapter 3, was achieved via separating charge
and mass values of the nuclei derived from energy loss and ToF measure-
ments. This enabled the tagging of each incoming nucleus to observe the
corresponding reaction fragments post-target. The selection of the incoming
was performed via a two dimensional elliptical cut. The contamination from
neighbouring isotopes in Z and A/Q was evaluated to be negligible, so the
incoming beam can be considered as free of contamination. Figure 4.1 shows
an identification plot, representing Z vs. A/Z for setting 6, centred on 24O.
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Figure 4.1: Incoming identification plot for the setting 6 centered in 24O.
Nuclei from Z=2 to Z=10 were produced in the experiment.
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Figure 4.2: Energy loss in the first SSD after the target vs. energy loss in
the TFW. Charges from 2 to 9 are shown from left to right. The calibration
of this plot was performed for charge Z = 6.
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Once the incoming cocktail beam is completely identified, the outgoing
fragments after the reaction target must be also identified. For the outgoing
charge, the first SSD after the target and the TFW are used. Figure 4.2
shows the distribution of the charge measured in the third SSD (first after
the target) vs. the charge in the TFW. The charges go from 2 (first blob
in the left) to 9 (last blob in the right). This information is given to the
tracker to make possible the charge identification. As previously explained
in Chapter 3, the calibration of the SSDs is charge dependent. In figure 4.2,
it was performed for charge Z = 6.

The mass of the outgoing particles is determined using a tracking pro-
gram1. This program reconstructs the trajectories through the magnetic field
for the outgoing fragments and protons (not used in this work) using as an
input the laboratory positions of the detectors, the charge of the fragment
being tracked and the ALADIN current determining the magnetic field that
was applied to the tracked events. The detectors involved in the trajectory
determination for the fragments are the two SSDs after the target, the two
GFIs, and the TFW.

The mass-over-charge ratio is determined using the equation 4.1

Bρ =
A

Z

m0c

e
βγ (4.1)

Depending on its A
Z

, β and B, the particles will follow a different trajec-

tory through the magnet. The dipole field ~B(~r, I) had been measured and
parametrized into a map, making possible the determination of Bρ for a
given trajectory and current. The β is given by the flight path of the particle
and its time-of-flight between the target and the TFW. The track after the
magnet is determined by the two GFIs and the TFW; the main contribution
comes from the GFIs because of its good position resolution. The tracking
program is calibrated by varying the positions of the detectors for a suitable
track sample until the reconstructed track minimize the distance between
the positions of the fragments in the detectors given by the tracker and the
real positions measured by the detectors. The tracking can run using three
different modes: forward, backward and mixed. In the first one the tracks go
exactly through the SSDs measured positions. The laboratory positions of
the detectors after the magnet are slightly varied until finding the best cal-
ibration. The second mode fixes the track through the positions measured
by the detectors downstream from the magnet (GFIs, TFW), then the SSDs
laboratory coordinates are varied until the best minimization is determined.
The third mode is a combination of the other two. In this work the forward

1developed by Ralf Plag for the R3B collaboration [59]
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Figure 4.3: Atomic number versus isotope mass of the outgoing fragments
in coincidence with the Crystal Ball trigger for the three different targets.
From top to bottom: plastic, carbon and empty target. The tracker needs a
two dimensional cut on the SSDs and TFW charge in order to identify the
charges. For this reason there is no background events between charges in
the plots.
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mode was chosen because the four silicons in the beam line were aligned
for angular measurements of the fragments (see Section 4.5). The tracker
starts with a track candidate before the magnet which is given by the po-
sitions of the particles in the SSDs. An assumed mass and β are used to
calculate the track throughout and after the magnet. Then, the mass is var-
ied until the trajectory matches the GFI measured hit positions and the β is
corrected according to the difference in ToF.

Figure 4.3 shows the identification plot in reconstructed mass and charge
of the reaction products in coincidence with the Crystal Ball trigger for the
projectile 21N, obtained after running the tracking program for the three
available targets. The charge was obtained using the Bethe-Bloch formula
from the energy loss of the particles in the TFW, and is only used for the
events selection. For physical calculations as, for example, the momentum,
the nominal values for A and Z are always used.

The runs corresponding to different targets were not measured the same
amount of time. Every mass distribution for each target needs to be normal-
ized by the number of incoming projectiles (right plot in figure 4.4). The left
plot of the figure 4.4 shows a comparison between the outgoing fragments
masses produced for all the targets. Figure 4.5 shows the same information
with a gate in the outgoing charge 7 (nitrogen).
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Figure 4.4: Mass spectrum (left) and normalized mass spectrum (right) for
the outgoing fragments measured in coincidence with the Crystal Ball trigger
for the three different targets.

The mass resolution is defined as the ability to distinguish between two
different masses in the mass spectrum. It is calculated as the percentage of
the full width at half maximum (FWHM), divided by the mean position of
the peak. A study of the mass resolution was performed fitting the whole
distribution with a multi-Gaussian (table 4.1). In figure 4.6 the Gaussian
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Figure 4.5: Left: Mass spectrum of all the outgoing fragments measured in
coincidence with the Crystal Ball trigger for the three different targets and
for the charge 7. Same as before, normalized.

fits performed to obtain the mass resolution are shown. In the left plot are
shown the fits for the nitrogen isotopes. Their resolution varies between 3.27
% and 2.59 % for the highest and lowest masses respectively. In the right
plot are shown the carbon isotopes; in this case the resolution varies between
3.33 % and 2.57 % for the highest and lowest masses respectively.
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Figure 4.6: Mass spectrum of the outgoing fragments with charges 7 (left
plot) and 6 (right plot). The fit parameters are shown in table 4.1.

The left and right neighbours of each peak produce a contribution in the
central one. To evaluate the contamination, the number of events in the
left and right gaussian neighbours that contribute to the central gaussian is
calculated. The 21N produces a contamination in the 20N peak estimated to
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Charge 7

Mean (u.m.a.) 20.98 19.98 18.97 18.00 17.01 16.03 15.06

Sigma (u.m.a.) 0.29 0.26 0.23 0.23 0.20 0.19 0.17

Charge 6

Mean (u.m.a.) 20.20 19.16 18.05 17.02 15.99 15.01 14.03

Sigma (u.m.a.) 0.29 0.29 0.24 0.24 0.19 0.18 0.17

Table 4.1: Mean and sigma values obtained from the combined gaussian fits
in the mass spectra of figure 4.6 for charges 6 and 7.

2.74 %. The contamination of the 19N over the 20N was also evaluated to be
1.07 %.

4.2 Identifying the quasi-free scattering chan-

nels

The quasi-free scattering channels are selected by measuring the energies
and angular distributions of the two outgoing nucleons from the reaction in
the Crystal Ball detector.

To aid the identification an addback algorithm is used. The addback
algorithm searches for the maximum energy deposition in a crystal per event.
Following this, any energy above threshold in the nearest neighbours is added
to the main crystal energy to form a cluster. The central angle of the crystal
with highest energy is used to determine the angle of the nucleon emerging
from the reaction. To reproduce a more realistic angular distribution, the
angles of the central crystals are randomized within the solid angle of the
crystal, taking into account the non-uniform crystal shape by the use of a
randomization algorithm2. As commented previously, the SSDs which are
surrounding the target did not work properly. Their sides were either half
or completely broken; the angular resolution of the emitted nucleons was
determined by the Crystal Ball angular resolution. Another consequence of
the malfunctioning of the SSDs is the impossibility to distinguish between
neutron and proton in the (p,pn) reactions.

In the simulations chapter, it will be shown the angular signature of the
quasi-free scattering: the opening angle of the two nucleons emerging from

2created by F. Wamers (more detailed information in the reference [30])
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the collision it is expected at around ∼ 80o. They are travelling back to
back in azimuthal angle, being the difference between their azimuthal angles
∼ 180o.

In order to remove contributions due to non-physical signals, the energy
deposited in a crystal has to be above a certain energy threshold. Studies
for energy thresholds between 10 - 25 MeV were performed. For the low-
est thresholds has been observed contributions at opening angles below 60o,
which do not correspond with the quasi-free scattering angular signature. In
order to have a cleaner data distribution and avoid contributions at lower
opening angles, the threshold required within this work will be 20 MeV. To
consider an event to arise from quasi-free scattering it is also required that
the events have cluster multiplicity two (only two clusters per event).

4.3 Cross section calculation and background

subtraction

The cross section is a physical observable that reflects the probability
that a nuclear reaction will occur. It is defined by the equation 4.2,

σ =
1

α
· Preac (4.2)

where α is a factor that depends on the target:

α =
ρm
M

(4.3)

with ρm the target’s mass thickness and M the molar mass. The features
of the targets used in the experiment are shown in Table. 4.2.

ρm (g/cm2) M (g/mol) α (1/barn)

CH2 0.922 14.026 0.0397

C 0.935 12.011 0.0469

Table 4.2: Characteristics of the reaction targets used in the S393 experi-
ment.

Preac is the reaction probability defined as follows:

Preac =
Nr

Na

(4.4)
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where Nr stands for the number of reactions that happen for a certain
target and Na stands for the number of attempts (incoming nuclei). The
number of attempts will be approximated by the number of survivals after
the reaction target and they will be counted at the end of the fragment arm
in the TFW detector. This approximation is valid because the target is thin
enough and the speed of the particles is very high, so the probability to react
in the target is low (10−2-10−3). The number of reactions and the number
of incoming will be counted at the last detector. In this way, the efficiencies
of the different detectors, the acceptance and other effects are cancelled out
because the same detectors and similar conditions are used to perform the
counting.

We are interested in the calculation of the cross section with a proton
target. The polyethylene (CH2) is formed by carbon and hydrogen atoms.
So, we must subtract the carbon contribution using runs with a carbon target.
The contribution of other elements in the setup that could cause additional
reactions are taken into account by using the so-called empty runs (without
target), both of them properly normalized.

The cross section with the hydrogen target is defined as follows:

σH =
1

2
σH2 (4.5)

being σH2

σH2 =
1

αCH2

· (PCH2 − Pempty)−
1

αC
· (PC − Pempty) =

=
1

αCH2

· PCH2 −
1

αC
· PC +

(
1

αC
− 1

αCH2

)
· Pempty (4.6)

where αCH2 and αC are the target factors and PCH2 , PC and Pempty the
reaction probabilities for CH2, C and the empty targets, respectively.

4.4 Angular correlations

The quasi-free scattering events have a very strong angular correlation as
has also been shown in previous works [23]. The opening angle between the
two outgoing nucleons is given by the dot product of the unit vectors which
describe the particle direction, ~n1 = ~n1(θ1, φ1) and ~n2 = ~n2(θ2, φ2) (spherical
coordinates). This unit vectors are expressed as follows:

~n1 = (sinθ1cosφ1, sinθ1sinφ1, cosθ1) (4.7)
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Figure 4.7: Schematic view of a quasi-free event. The laboratory angles of
the two outgoing nucleons emerging from a quasi-free reaction are shown in
spherical coordinates. The beam comes from the left and impinges in the
target.

~n2 = (sinθ2cosφ2, sinθ2sinφ2, cosθ2) (4.8)

The opening angle of the nucleons will be

Θ = sinθ1sinθ2cos(φ2 − φ1) + cosθ1cosθ2 (4.9)

The difference between the azimuthal angles of the two particles is given
by

∆φ = φ2 − φ1 , φ2 − φ1 ∈ (0, 180)

∆φ = 360− (φ2 − φ1) , φ2 − φ1 ∈ (180, 360)
(4.10)

4.5 Transverse and longitudinal momentum

distributions

One of the physical observables obtained in this experiment is the momen-
tum distribution of the fragment produced in a quasi-free scattering reaction.
The momentum distributions contain information about the orbital angular
momentum of the removed nucleon in the reaction, i.e. its wavefunction.
The total momentum distributions of the fragments are obtained from the
tracking procedure and can be divided in two components: the longitudinal
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component, that goes in the same direction as the beam and the transversal
component perpendicular to it.

~p = ~p‖ + ~p⊥ (4.11)

The tracker provides the momentum module (from the fragment mass and β).
To determine the momentum module, the tracker approximates the measured
mass to an integer and then assign the corresponding nuclear mass.

The longitudinal momentum (from now on it will be called PZ) will be
determined in the laboratory frame and in the rest frame of the projectile.
In the rest frame of the projectile it is expressed as follows

PZ = γin · (Pout − βinEout) (4.12)

where γin and βin are the Lorentz factor and the velocity for the incoming
fragment, respectively. Pout and Eout are the longitudinal momentum in the
laboratory frame and the total energy of the outgoing fragment, respectively.

The transverse component can be as well calculated along the X and Y
axes as follows:

PX = P · sin(αX,out − αX,in) (4.13)

PY = P · sin(αY,out − αY,in) (4.14)

where P is the momentum module, αX,out (αY,out) and αX,in (αY,in) are
the angles relative to the Z axis in the XZ (YZ) plane for the outgoing and
incoming fragments, respectively.

The angular distributions of the fragments after the reactions are re-
constructed from the positions obtained with the four in-beam Silicon Strip
Detectors (SSDs). In addition to having a good calibration for these detec-
tors, a fine relative alignment between them is needed. A way of testing if
the alignment is good lies in calculating the difference between the outgo-
ing and the incoming angle for an empty run. As there is no target, this
difference should be around zero. Figure 4.8 shows the angles reconstructed
with the different detectors for an empty run when the nominal positions
of the detectors were used in the reconstruction. A clear misalignment is
observed between the detectors. In order to obtain a reliable transversal
momentum distributions a better relative alignment is required. To find the
right positions of the detectors, a linear least squares fit has been performed.

The linear least squares fitting technique provides a solution to the prob-
lem of finding the best straight line through a set of points. Assuming that
the trajectories of our particles are straight lines, the method to find the
best-fitting curve to a given set of points consists in minimizing the sum of
the squares of the residuals in each detector, defining the residuals as the
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Figure 4.8: Reconstructed angles for the measured hits in the SSDs detectors
before and after the target for an empty target run, in the X direction (left)
and Y direction (right) for the SSDs. The black dashed lines indicate the
angles before the target reconstructed using the first and second SSDs, the
solid black lines represent the angles after the target measured by the SSD
3 and 4.

difference between the position of the hits in the detector and the position
given by the straight line in the detector plane. The functional to minimize
will be

f =
∑

i=x,y;j=1,2,3,4

[
((pij + δij)− (mi × (pzj + δzj) + ni)

]2
(4.15)

where pij (i = x, y, z and j = 1, 2, 3, 4) stand for the positions of the
particles in the detectors and δij are the offsets, which are varied until the
minimization of the functional converges. mi and ni, are the slope and the
offset of the straight line.

The minimization was performed fixing one of the detectors (the third
SSD) and obtaining the relative alignment of the others for unreacted beam
in a run without target. To perform a complete study of the convergence and
correlations between the parameters, two and three dimensional plots for all
the variations have been built. The plots for every combination of each two
parameters are shown in the appendix A for the X and Y coordinates. The
offsets needed in order to align the SSDs are shown in table 4.3. In the Z
direction the corrections are negligible.

Figure 4.9 shows the difference in angle in the X and Y components
for the 21N after the relative alignment. The distributions are fitted to
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offset X (cm) offset Y (cm)

SSD 1 0.0522 0.0018

SSD 2 -0.0357 0.0045

SSD 3 0.0 0.0

SSD 4 0.071 0.044

Table 4.3: Obtained offsets for the X and Y coordinates for the SDDs by the
minimization.

Gaussians and characterized by its σ, σX = (1.373± 0.013)mrad and σY =
(1.126± 0.010)mrad. The resolution is slightly better in the Y direction.
The obtained values are perfectly compatible with previous results using the
same detectors [30].
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Figure 4.9: Left: distribution of the outgoing angle minus the incoming
angle in the X direction. Right: outgoing angle minus incoming angle in the
Y direction. The results of a Gaussian fit (thick line) are shown in the inset.

4.5.1 Angular straggling

The charged particles do not follow exactly straight lines. When they
traverse matter, they suffer small deviations in their trajectories known as
angular straggling. The straggling caused in the different targets is calculated
by subtracting quadratically the standard deviations from the Gaussian fits
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of the angular differences (outgoing angle minus incoming angle) with and
without target.

σ2
straggling = σ2

target − σ2
empty (4.16)

The standard deviation for the unreacted beam in a run without target
gives the intrinsic angular resolution of the setup for a given nucleus at a
given energy. In figure 4.10 are shown the σstraggling for different targets and
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Figure 4.10: Top: results for the σ from a Gaussian fit to the angular differ-
ences in X and Y direction and the ATIMA simulation, for the nucleus 21N
and for two different kind of fitting. Left: the whole distribution is fitted to
a gaussian; right: only the central part is fitted to a gaussian. Bottom: the
same information but for the nucleus 18C.

different nuclei. In the top plots the calculations for 21N are shown, on the
right when the whole distribution is fitted to a gaussian and on the left when
only the central part of the distribution is assumed to be be a Gaussian.
These two fits are done because the distributions are not perfectly gaussian.
Their tails modify the fit parameters. From these plots it is observed that
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the σ values are different in X and Y. If the Gaussian fit is made only the
central part, they agree within the error bars and they are also consistent
with the calculations performed using the ATIMA [58] code. Big deviations
in the results are observed when the whole distribution is fitted to a Gaussian,
because of the tails present in the distributions. The biggest deviation is in
the sigma of the X component, which is ∼18 % larger than the sigma for the
Y component. In the bottom figure the same is shown for a different nucleus,
in this case 18C, where the same behaviour is observed.

4.6 The addback algorithms for γ’s

The energy that a γ deposits in the Crystal Ball detector might not be
completely deposited in one crystal, as it was mentioned in Chapter 5. To
recover the total energy of the γ emitted by the nucleus, an addback routine
is used. In this section different algorithms used to study the γ ray spectra
will be explained and discussed.

A difference between γ’s emitted by calibration sources and those emitted
by reacting nuclei is that, when a particle moves with relativistic energy and
emits γ’s, these suffer the Doppler effect. In order to calculate the energy of
the γ in the rest frame of the particle, the velocity of the excited fragment
and the γ emission angle must be known. The correction applied to the
energy is shown in equation 4.17, where Ed is the corrected energy, Elab is
the energy of the γ measured in the laboratory, γ is the Lorentz constant,
β is the velocity of the projectile and θ is the emission angle of the γ with
respect to the outgoing fragment direction (which is going to be taken as the
angle of the first interaction crystal).

Ed = Elab · γ · (1− β · cosθ) (4.17)

For all the algorithms used and in order to eliminate noise events, the
energy deposited in any crystal has to be above an energy threshold, which
has been tested in the range between 100 and 400 keV. Next, a description
of the algorithms is presented:

• Method 1 (spectroscopic): looks for the crystal with the maximum
energy deposited and adds up the neighbour’s energies. This set of
crystals is defined as a cluster. The cluster energy corresponds to the
sum of the component crystal energies and the angle to that of the
crystal with the maximum energy. Once a cluster is built, looks for the
next maximum energy and adds up the energy of the neighbours until
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all the hits in each event are evaluated. The crystals belonging to a
cluster are not used in next searchs.

• Method 2 (maximum energy cluster): looks for the crystal with the
maximum energy deposited and adds up the neighbour’s energies. In
this method only one cluster per event is built.

• Method 3 (maximum energy crystal): in each event only the maximum
energy crystal is used, all the others are ignored.

• Method 4 (calorimetric): sums the energy of all the clusters found in
the first method in one event.

Figure 4.11: Level scheme of 19N proposed in [18]. The vertical numbers
indicate the energies and branching ratios calculated by D. Sholer et al. The
uncertanties are indicated inside the parenthesis.

Each algorithm has its own purpose. The first one, spectroscopic, is suit-
able to study γ ray spectra where the nuclei decay by any via, is useful to
make coincidences. The second one, maximum energy cluster, is very useful
in situations when only a γ ray is expected to be emitted per event. The
third one, maximum energy crystal, is very similar to the second, but it is
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Figure 4.12: γ ray spectra for the four addback algorithm methods described.
Top Left: spectroscopic. Top right: maximum energy cluster. Bottom left:
maximum energy crystal. Bottom right: calorimetric.

more appropriate for low energy γ rays which deposit their full energy in a
single crystal. The fourth method, calorimetric, could be used in nucleus
decaying via a cascade, where we would like to study the sum peak of the γ
rays.

The nucleus 19N was chosen to perform this study because it has a simple
level scheme very suitable for the comparison of the different methods. The
most intense transitions are at 532 keV and 1141 keV according to [18],
which are in coincidence. It also has many γ rays weaker which in principle
are impossible to identify because of their low intensity.

In figure 4.12 are shown the four γ ray spectra obtained for each al-
gorithm. The top left plot, which presents the result for the spectroscopic
method, shows a clear peak at about 1141 keV and an increment of the statis-
tics around 532 keV, being this last one mixed with the 511 keV that comes
from annihilation, both within the detector resolution at low energies. In
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the top right plot is shown the γ ray spectra for the maximum energy cluster
method. This spectrum is much cleaner at lower energies and the peaks at
532 keV and at 1141 keV are clearly seen. The fact that only uses the maxi-
mum energy per event removes background contributions at lower energies in
particular, reducing the 522 keV γ. For γ energies below 1000 keV, the most
probable effect is the photoelectric, where the energy is mainly deposited in
the first crystal hit. When the energy increases the Compton effect begins
to become more probable and with some probability energy escapes from the
first interaction crystal to its neighbours. Some γ’s of 1141 keV or higher
will not deposit their full energy in one crystal. This explains why in the
bottom left plot, maximum energy crystal method, the peak above 1000 keV
has more background events than in the second method making impossible
to distinguish the 532 keV peak. The bottom right plot shows in black the
result for the calorimetric method. The red line gives the same result than
the second method, showing only the first cluster for comparison. The 532
keV energy peak appears with very low statistics because in most of the cases
it will be accompanied by other γ’s, showing in the spectra the sum peak.
As the more intense transitions are at around 1141 keV and 532 keV, the
coincidence peak will be at around 1673 keV.

The figure 4.13 shows the γ energy of one cluster against the γ energy of
others, where it is observed the coincidence between the region around 1141
keV and 532 keV. Other coincidence assigments were not possible because of
the detector resolution (∼ 20 % at 1 MeV).
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Figure 4.13: Energy of one cluster is represented against the energy of the
other clusters.
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4.7 The invariant mass

When a nucleon is removed from a projectile via (p,pn) or (p,2p), the
excitation energy of the hole could be above the separation energy of a par-
ticle (neutron, proton, alpha ...). In this case the system will decay emitting
particles and, in some cases, also γ’s. In order to reconstruct the excitation
energy of the hole left by the nucleon, the invariant mass is used [60, 61].

The invariant mass is a Lorentz invariant and can be expressed in terms
of the energy and momentum of the particles

M2
inv = P2 =

(
N∑
i=1

Ei

)2

−

(
N∑
i=1

−→p i

)2

(4.18)

where P is the total four-momentum, Ei and −→p i denote the total energy
and momenta of all the fragments and the index i sums over all the fragments
(N). The invariant masses of the excited nucleus after the reaction (noted with
the subscript ε) and the outgoing (noted with the subscript O) are given by

(Minv)ε = mproj + E∗ (4.19)

(Minv)O =

√√√√( N∑
i=1

Ei

)2

−

(
N∑
i=1

−→p i

)2

(4.20)

where mproj is the mass of the excited fragment and E∗ is the excitation
energy of the hole.

As a first approximation one can assume that the outgoing fragments
are produced in their ground states. Using the expressions Ei = γimi and
pi = γiβimi, the energy and momentum can be expressed as follows(

N∑
i=1

Ei

)2

=
N∑
i=1

(γimi)
2 +

N∑
i 6=j

(γiγjmimj)
2 (4.21)

(
N∑
i=1

−→p i

)2

=
N∑
i=1

(γiβimi)
2 +

N∑
i 6=j

(γiγjβiβjmimjcosθij)
2 (4.22)

Using that γ2 (1− β2) the formula for the outgoing fragments invariant
mass is
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(Minv)O =

√√√√ N∑
i=1

m2
i +

N∑
i 6=j

γiγjmimj (1− βiβjcosθij) (4.23)

In case that the outgoing fragments are produced in an excited state,
the γ energies need to be taken into account and the invariant mass for the
outgoing fragments will be

(Minv)O =

√√√√ N∑
i=1

m2
i +

N∑
i 6=j

γiγjmimj (1− βiβjcosθij) + Eγ (4.24)

Using the fact that the invariant mass has to be the same before and after
the decay, the excitation energy is

E∗ =

√√√√ N∑
i

m2
i +

N∑
i 6=j

γiγjmimj (1− βiβjcosθij)−Mo (4.25)

if γ’s are considered

E∗ =

√√√√ N∑
i

m2
i +

N∑
i 6=j

γiγjmimj (1− βiβjcosθij)−Mo + Eγ (4.26)

It is required a complete identification and tracking of all the outgoing
particles (fragments, neutrons, protons and γ’s) in an event by event basis for
the reconstruction of the excitation energy, according to the equation 4.26.



Chapter 5

Crystal Ball simulations

To obtain the physical quantities of interest at a final stage of the analysis,
the response of the detectors to different particle interactions needs to be
known. In this chapter the Crystal Ball detector simulation results obtained
using R3BRoot1 will be presented.

In the first section, the main features of the simulation program will
be outlined. The next ones will be dedicated to the Crystal Ball detector
response to γ rays. In these sections the number of particles registered by
the detector with their full-energy deposited (photopeak efficiency) will be
studied for the individual crystals and for the whole detector. Also the effect
of performing an add back will be discussed in terms of total photopeak
efficiency. The intrinsic efficiency, which relates the number of counts in a
crystal to the number of particles that hit that crystal will also be studied
within these sections. The last one will be devoted to the investigation of
the detector response to protons and neutrons.

5.1 R3BRoot

R3BRoot [62] is an analysis and simulation framework, specifically inici-
ated for the future R3B setup at FAIR [31] by H. Alvarez Pol and D. Bertini
(originally), based on a previous simulation code called R3BSim. The pro-
gram receives most of its features from the FairRoot framework [63], which
is based on ROOT [64]. The framework allows the users to implement their
detectors or to modify the existent ones, in order to perform simulation and
analysis tasks in a simple way. It also contains some general functionality
like track visualization, event structure, etc. The analysis is performed in
an event-by-event basis, that goes from the unpacking of the data and the

1http://fairroot.gsi.de/
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detector calibrations until the final stage of the analysis, where the different
detectors signals are combined in order to obtain the physical quantities of
interest. Geant3 and Geant4 transport engines are supported by R3BRoot
[65, 66]. The R3B/LAND setup detectors are included in R3BRoot. All the
detectors contain a realistic response to particle interaction. Event genera-
tors to simulate quasi-free scattering reactions, γ-ray deexcitation, etc. have
already been implemented. The program is being used in the design phase
of FAIR to optimize the detectors, like for example CALIFA and NeuLAND
detectors [67].

5.2 Crystal Ball γ response

One of the purposes of the Crystal Ball detector is to measure the energy
deposited by the γ rays detected in coincidence with the outgoing fragment.
When the projectile impinges into the target, the outgoing fragments could
be produced in an excited state depending on their excitation energy. In-
formation about the structure of the projectile is obtained by studying the
populated states. In this section the efficiency for the individual crystals
and the whole detector will be calculated in simulation, and compared with
experimental data from sources.

5.2.1 Description of the simulation

The detector consists of 159 NaI crystals distributed in a 25 cm ra-
dius and 20 cm thickness sphere. There are four different types of crystals.
Their shapes are regular pentagons (12 crystals) and three kinds of irregular
hexagons (divided in 60 + 60 + 30) (see Chapter 2). Each crystal is inside
an aluminum shell of 600 µm, which was also included in the simulation [68].

The particles were generated according to realistic decay schemes im-
plemented for the 22Na and 60Co sources. The simulated sources used, are
considered as point sources because the real radiating substance is a little
drop of about 0.5 mm in diameter, enclosed in a small rectangular plastic
slab of about 2 x 1 x 0.1 cm. The sources were placed in the center of the
detector, in the target position. The 22Na source decays via β+, in 90.326 %
of cases emitting a positron. A γ of 1275 keV is emitted because of the 22Ne
de-excitation to the ground state. The positron annhilation with one electron
of the media produces two γ rays of 511 keV in opposite directions. In 9.615
% of the cases, an electron capture is produced and only a 1275 kev γ ray
is emitted. This source was implemented by emitting a γ ray with 1275 keV
and two γ rays of 511 keV with opposite directions, all isotropically emitted
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Source γ energies (keV) decay mechanism

22Na 511, 1275 β+ (90.326%), EC (9.615%)

60Co 1173, 1332 β− (100%)

Table 5.1: Calibration sources used in the S393 experiment.

and with the corresponding probabilities. A 60Co source was simulated as
well. The 60Co decays to an excited state (2505 keV) of 60Ni via β−, this
de-excites through the 1.332 MeV state. Since the lifetime of this state is
very short, the γ ray of 1.173 MeV is emitted in coincidence. In table 5.1 are
summarized the sources used.

The crystal resolution has been included assuming a square root depen-
dence with the energy. For each crystal, the fit σ(E) = p1 ∗

√
E + p0 was

performed and the resulting energy resolution was introduced in the simu-
lation. The figure 5.1 represents the σ from the Gaussian fits to the 22Na
peaks vs. the crystal number. It is observed from this plot that depends on
the crystal number and also deteriorates when the energy is increased.

Crystal number
10 20 30 40 50 60 70 80

 (
M

e
V

)
σ

0.02

0.04

0.06

  0.511 MeV

  1.275 MeV

Figure 5.1: Distribution of σ from the Gaussian fits to the individual 22Na
peaks vs. the crystal number. The figure show the dependence both on the
crystal and energy.
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Figure 5.2 shows the simulated energy of the primary γ rays from 22Na
impinging upon the crystals (left), and their deposited energy in all the
crystals (right). The total amount of primary simulated events was 1·106.
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Figure 5.2: Left: energy of the primary γ rays. Right: simulated energy
deposition in all the crystals, taking into account the detector response.

5.2.2 Photopeak efficiency for the individual crystals

When a γ ray hits a scintillator crystal, the energy is deposited via three
processes: photoelectric, Compton scattering and pair production. The oc-
currence of any of these processes depends on the energy of the incident γ
ray and on the atomic number of the crystal. In figure 5.3 is shown the total
absorption coefficient for NaI, together with the contributions of the different
processes, as a function of the γ-ray energy. The figure illustrates the impor-
tance of each process over a range of γ-ray energy. The photoelectric process
dominates in the region up to a few hundred keV. If the photoelectric effect
occurs, practically all the photon energy is absorbed in one step. As the
energy of the γ rays increases so does the Compton effect probability and
if the energy is well above 1.02 MeV pair production rises in significance.
At higher γ-ray energies multiple interactions will occur, rendering highly
probable that the energy is not deposited only in a single crystal [69].

The photopeak efficiency of the individual crystals is defined as the num-
ber of particles registered by the detector with their full-energy deposited,
divided by the number of particles emitted by the source. This observable is
calculated by counting the number of events within two σ of a Gaussian fit
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Figure 5.3: Total absorption coefficient of NaI and the contribution of the
photoelectric, Compton and pair processes is shown as a function of the γ
energy. The figure indicates the importance of each process dependent on
the γ energy.

and background (as it was done in figure 3.6) around the centroid of the peak
and dividing them by the total number of emitted γ rays. The photopeak
efficiency depends on the detector geometry and on the probability of interac-
tion of the particle in the detector. Figure 5.4 shows the photopeak efficiency
fitting at two σ for the two γ-ray energies of the 22Na respectively. For the
511 keV γ, the crystal photopeak efficiency mean value is and 0.474±0.097
% while for the 1275 keV γ is 0.297±0.005 % . As it is expected, the more
energetic γ, the lower the efficiency. The 511 γ deposits its energy mainly
via the photoelectric effect. The Compton scattering probability increases
for the most energetic γ, which means that more energy can escape from the
crystal without being detected (see more details in [69]).

The total photopeak efficiency, i.e., the photopeak efficiency of the whole
detector, can be calculated as the sum of the efficiencies of the individual
crystals. The obtained results are shown in table 5.2.
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Figure 5.4: Left: photopeak efficiency for each crystal and for the photopeak
of 511 keV, integrating the peak at 2 σ’s. Right: the same but for the
1275 keV peak. The red dashed lines are the mean values of the photopeak
efficiency for each plot.

Peak (keV) Effiency at 2 σ (%)

511 72.03±0.06

1275 45.17±0.07

Table 5.2: Total photopeak efficiency for the calorimeter at 2 σ’s for both
energies of the γ source.

5.2.3 Photopeak efficiency for the addback routine

The γ rays will deposit their energy in one or more crystals depending on
their initial energy and the interaction process occurred. In order to recover
the energy deposited in other crystals in the vicinity of the crystal where the
first interaction happened, a routine called addback is applied.

The addback procedure is performed in the same way as for the experi-
mental data: the algorithm searches for the crystal with the maximum en-
ergy deposition above an energy threshold and add up the energy of the next
neighbors fired. The crystals used are marked as non usable for other clus-
ters in the same event. This is done until all the energies above an energy
threshold are employed.

Figure 5.5 shows the fits performed in order to calculate the photopeak
efficiency after the addback procedure. Each peak is fitted with a superposi-
tion of a gaussian function and a linear function representing the background.
The resultant function is used to calculate the integral of the peaks, needed
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Figure 5.5: Fits performed over the energy deposited in the whole detector
after running an addback routine for the total photopeak efficiency calcula-
tion.

Peak (keV) Effiency at 2 σ (%)

511 73.23±0.08

1275 63.64±0.10

Table 5.3: Total photopeak efficiency for the addback calculated for 2 σ’s for
both energies of the γ source.

for the efficiency determination. Table 5.3 shows the efficiency calculated as
the number of counts in the photopeak divided by the number of initial γ’s
with that energy. The photopeak efficiency at 2σ after addback increases
about a 1% for the lowest energetic peak. The increment is bigger for the
highest energetic peak where the efficiency increases an 18%. As it was ex-
pected, for lower energies the dominant effect is the photoelectric, so the
addback routine do not produce a huge improvement. The result of adding
the neighbours energies is more notorious for the highest energy γ because
of the Compton and the pair production effects.
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5.2.4 Intrinsic efficiency using the “Coincidence method”

The intrinsic efficiency relates the number of counts in a crystal to the
number of particles that hit that crystal. It is obtained by dividing the total
efficiency (number of counts registered by a crystal divided by the number
of particles emitted by the source) by its solid angle, for isotropic emission.

In order to compare the results for simulated data with those for real
data, the same method must be applied under the same conditions. With
this purpose, data with radioactive sources was simulated and taken with the
Crystal Ball detector. In this experiment, all the available runs with radioac-
tive sources where measured with the detector separated in two hemispheres.
Sources were located at the center of each Crystal Ball hemisphere. The
method presented for calculating the intrinsic efficiency is the “coincidence
method”, which requires a γ source emitting two γ’s in cascade and consists
in [30, 55]:

• For each event, search for a γ with full-energy deposited E1 (E2) in any
crystal. The total number of events with one γ (E1, E2) is counted. If
more than one E1 or E2 are found in the same event, this is discarded
in order to avoid random coincidences

• If a γ E1 (or E2) with the full-energy deposited was found in the previ-
ous step, the coincident γ E2 (or E1) of the cascade is searched for. The
number of γ’s which deposited their full energy found in coincidence is
counted

• The number of γ’s found in coincidence is divided by the total initial
γ 1 (or 2) and is corrected by the geometrical efficiency εg = 4π/162

4π

• In real data, a time condition for the coincidences was also required,
the detection time difference between the γ’s being less than 15 ns to
be considered a real coincidence

It is considered that a γ deposits its full-energy if it is inside the energy
window defined by mean ± 2σ, with σ being the width of the peak for the
crystal.

In the simulations performed the first source tested was the 60Co which
has two γ’s in coincidence with energies of 1.173 and 1.333 MeV. The results
for the intrinsic efficiency of each crystal are shown in figure 5.6. The two
γ’s have a similar efficiency because their energies are very close. The mean
value for the efficiency of the 1.173 MeV peak is 52.24 % with a standard
deviation of 8.01% and the one for the 1.333 MeV is 44.17% with a standard
deviation of 6.25%.
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Figure 5.6: Intrinsic efficiency calculation for the γ energies of the 60Co in
simulation using the coincidence method. The red dashed lines are the mean
values for each plot.

Figure 5.7 shows the efficiency for a 60Co source placed in the left hemi-
sphere of the Crystal Ball detector. The mean value of the efficiency for
the 1.173 MeV photon the mean value obtained is 39.31 % with a standard
deviation of 8.61 %, while for the 1.333 MeV γ is 26.86 % with a standard
deviation of 6.10 %.

The photo peak efficiencies for the two peaks can be compared. In both
cases the simulation overestimates the experimental result. There is a clear
systematic behaviour in the data, that can be attributed to geometrical fac-
tors (positioning of the source inside the detector). A non symmetrical po-
sitioning of the source will be reflected in the observed pattern due to the
number scheme of the crystals, increasing in spiral.

As in the S393 experiment all radioactive sources data were taken with
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Figure 5.7: Intrinsic efficiency calculation for the γ energies of the 60Co using
experimental data. In the top plot is shown the intrinsic efficiency for the
most energetic γ (1.333 keV) and in the bottom plot the efficiency for the γ
with the lowest energy (1.173 MeV).

the Crystal Ball opened and the source placed in the middle of one of the
hemispheres, it would be interesting to have a measurement with the detector
closed, together with all the materials inside that are supposed to be there
when an experiment is running. After the S393 experiment, and with the
same setup, the S3892 experiment was performed. In that experiment, there
were also calibration runs for the “closed” Crystal Ball for comparison. Fig-
ure 5.8 shows the comparison between the simulation and the experimental
data from S389. In order to well replicate the experimental conditions, the
target wheel, its holder, the SSDs and some other materials present in the

2http://www-w2k.gsi.de/frs/experiments/new/S389.asp
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experiment were also included in the simulation. A mean value for each effi-
ciency has been calculated, yielding for the experimental data a mean value
of 18.84 % with a standard deviation of 8.05 % for the highest energy peak
while in simulation those values are 41.81 % and 7.14 % for the same peak.
For the lowest energy peak the mean value is 28.90 % with standard devia-
tion of 18.86 % in real data, and a 44.40 % with standard deviation of 8.92
% for simulation. For both peaks there are some crystals which present large
values for the efficiency, due too large values of their resolution taking more
events in ±2σ. In the reference [30] it is also shown a comparison between
the simulation and the experimental data for the 88Y; it is observed as well
a discrepancy between the experimental and the simulated data.

Figure 5.8: Comparison simulation/experiment for the whole detector and
for the 60Co source.

A comparison for all the available runs with 60Co source for the S393 and
S389 is shown in figure 5.9. In runs 710 and 644 (S389) the source was placed
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in the centre and the detector was closed. In the runs 506 and 488 from the
S393 the source was placed in the left and right hemisphere respectively.
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Figure 5.9: Comparison simulation/experiment for all the available runs with
the 60Co source (S389).

A comparison between all the available runs with 22Na sources for the
S393, including also one run from the experiment S389 is shown in figure
5.10. There are runs where the source was placed only in one half of the
detector, for example the 336, the 483 and the 487 covering the right part,
the 337, 481, 482 for the left part, while the 730 belonging to the other
experiment was recorded with the detector closed. A bigger discrepancy
between the simulated and real data is observed for the highest energy peak,
while for the lowest energy peak almost all the runs with real data seem to
agree better with the simulation. Except the run 730, which belongs to the
S389 the others are within three times the standard deviation (6.76 %).

It was observed that in general for all crystals, the simulated response is
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Figure 5.10: Comparison between simulation and experiment for all the avail-
able runs with the 22Na source.

larger that the experimental one. In other works [30] they claimed that this
could be explained by the fact that there are some materials that are still
not included in the simulation. Our results indicate that the experimental
source was not placed at the centre of the detector in some of the cases as
it was in the simulation. We have performed a set of additional simulations
consisting in moving the source a few cm, they revealed a high dependency of
the efficiency on the distance from the source to the crystals. One cm cause
big deviations in the geometrical acceptance of the detector. The figures 5.9
and 5.10 shown that we can not conclude anything from the experimental
intrinsic efficiency, because the same crystal in different runs with different
sources presents a very different efficiency, being the simulated values an
upper limit for the efficiency distributions.
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5.3 Pure kinematical simulations for protons

Quasi-free scattering is used in this work to study the nuclear structure of
the projectile. As it was mentioned in previous chapters, when the projectile
impinges into the plastic target, among other possible reactions, one proton
from the target scatters with one nucleon from the projectile as if both par-
ticles were free. In order to simulate the kinematics of the (p,pn) and (p,2p)
processes, a code written by L.Chulkov [70] based on the Goldhaber model
has been used. From now the code will be referred as “quasi-free event gener-
ator”. The program was written only for experiment planning, but it is very
useful to have information about the angular correlations that we will see in
the experimental data. The Goldhaber model [71, 72] is used to calculate
the momentum width σ of the fragments.

5.3.1 Description of the code

The program simulates the kinematics of quasi elastic scattering of high-
energy protons (or neutrons) on a cluster inside a nucleus. The width of the
momentum distributions is calculated as follows,

σ = σ0

√
Af · (Ap − Af )

Ap − 1
(5.1)

where Ap is the projectile, Af is the spectator and σ0 is a constant related
with the binding energy of a nucleon in the nucleus. The inputs of the pro-
gram are the kinetic energy of the projectile and the masses of the projectile,
the spectator and the two outgoing nucleons.

In the code some approximations are used. It assumes isotropic p-p
scattering cross sections, as the beam energy is below 500 AMeV. This ap-
proximation is acceptable for pp in our energy range. The term Ap − 1
can be approximated by Ap, because Ap � 1. Finally, a simple model re-
lates the widths of the momentum distributions with the separation energies
σ0 =

√
2 · Sp [73].

As an example, the results obtained for one of the reactions of interest
21N(p,pn)20N are shown in figure 5.11. The opening angle between the two
nucleons appears at ∼82o and the azimuthal angle shows that the neutron
and the proton are emitted back to back. There are a few factors that
affect the angular distributions of the scattered nucleons. One of them is the
separation energy of the nucleon in the incoming nucleus. The increasing of
the separation energy makes the opening angle and ∆φ distributions become
wider (see [28]). Another factor is the shell where the removed nucleon
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is coming from, because the distance travelled by the particles inside the
nucleus depends on the shell from which it was removed, which could affect
the angular distributions.
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Figure 5.11: Kinematical simulation for the angular correlations of the neu-
tron and the proton emerging from the reaction 21N(p,pn)20N. Top left: shows
the polar angle of one of the nucleons versus the polar angle of the other.
Top right: shows the opening angle for the neutron and the proton. Bottom
left: shows the azimuthal angle of one nucleon versus the azimuthal angle of
the other. Bottom right: shows the difference between the azimuthal angles
of both nucleons.

5.4 Crystal Ball proton and neutron response

In order to count the number of quasi-free scattering reactions produced,
the condition of the detection of two high energy particles in the Crystal
Ball is used. To correct the number of reactions counted by the detector
efficiency, a simulation was performed. The output from the “quasi-free event
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generator” (see Section 5.3) has been used as a realistic event generator, and
the corresponding input was given to the simulation framework. The output
of the simulation has been analyzed with the same algorithms as those used
in the analysis of the experimental data.

5.4.1 Geometrical acceptance of the detector

An investigation about the angular coverage of our detector due to accep-
tance and losses due to the matter between the target and the detectors, as
well the crystals wrappings has been undertaken. For this purpose, the polar
angle distribution of the protons emitted by a source measured in Crystal
Ball after a randomization3 is studied. In order to obtain a more realistic
angular distribution, a randomized angle within the solid angle of the crystal
is used, taken into account the different crystal shapes. As it was commented
previously the SSDs “in the box” did not work properly, so the angular res-
olution of the nucleons is given by the Crystal Ball detector. This detector
does not have a high granularity and consequently the angular resolution is
poor.

The black line on figure 5.12 shows the polar angle θ of the crystal hit
by the nucleon after randomization, while the red dashed line shows the
reconstucted distribution obtained via simulation. Polar angles below 9o

are empty because the crystal along the beam axis is missing. At angles
above 72o, it is observed that the statistics decreases sustantially; this can
be attributed to the fact that some high polar angle protons are not able to
reach the detector as they have very low energies. Thus, one can establish
that the polar angle acceptance for protons is in a range from 9o to 72o.

5.4.2 Efficiency calculations

The main goal of these simulations is to calculate the efficiency of de-
tecting two protons above a certain energy threshold for each crystal in the
(p,2p) reactions for different targets, and the neutron and the proton in the
same event in the (p,pn) reactions above an energy threshold. The efficiency
is defined as the number of events with two detections above the given energy
threshold divided by the total number of events.

Table 5.4 shows the efficiencies obtained for both reactions using differ-
ent targets. As it is expected the efficiency for the empty target is larger
because there are no losses produced by the materials. In order to evalu-

3using a randomization algorithm created by F. Wamers (for a more detailed informa-
tion [44])
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Figure 5.12: Black solid line: Polar angle distribution obtained using the
“quasi-free event generator”. Red dashed line: polar angle distribution mea-
sured by the Crystal Ball in simulation. At lower and higher angles there are
acceptance losses, due to the detector geometry and to the energy range of
the quasi-free scattered nucleons.

ate the uncertainty for the efficiency, different physics list have been tested4

(LHEP, QGSP BERT, QGSP BERT HP, QGSP BERT BIC, etc.), as well
as variations in the target thickness and other interposed matter within the
expected tolerances. As a value for the efficiency, the mean value between
the largest and the smallest efficiency have been taken, being the estimated
uncertainty the deviation of the mean to the largest value. These values are
very similar to those obtained by other previous works [74].

CH2 C empty

efficiency p, 2p (%) 63.6 ± 1.5 64.0 ± 1.4 67.3 ± 1.5

efficiency p, pn (%) 17.1 ± 1.8 17.3 ± 1.9 17.4 ± 2.0

Table 5.4: Efficiency calculated for the different targets.

4See physics lists in
http://geant4.cern.ch/support/proc mod catalog/physics lists/referencePL.shtml
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Chapter 6

Results

Based on the reconstruction and analysis methods described in the previ-
ous chapter, here we present the results. The complete procedure to extract
the physical quantities of interest will be shown in detail only for one of the
projectiles, the 21N. In order to reduce innecessary repetitions, the results for
other projectiles analyzed using the same methods will be presented in the
following chapter with their corresponding plots included in the Appendix
C.

6.1 The reaction channel 21N(p,pn)20N

Figure 6.1 shows a schematic layout of the different reactions that could be
observed for the 21N. The sketch includes the corresponding energy thresholds
for the proton and neutron removal. Starting with the incoming projectile
21N, first the bound channels from 21N(p,pn)20N and 21N(p,2p)20C will be
studied via their inclusive cross sections, angular correlations and momentum
distributions. Then, the unbound states of 20N will be investigated via the
reaction 21N(p,pn)20N*→19N+n, the inclusive cross sections and excitation
energy spectra for this channel will be presented. The lack of statistics for the
proton breakup channel channel 21N(p,2p)20C*→19B+p made the analysis for
this reaction impossible.

The 21N projectile was selected from the incoming cocktail beam in the
analysis by applying a gate in the charge vs. mass-over-charge ratio (A/Z)
plot. The outgoing fragments produced by the 21N in the CH2, carbon and
empty targets, were identified by the tracking after the target. The quasi-
free scattering channel 21N(p,pn)20N was selected first, by choosing 20N in
the outgoing fragments and second, by requiring the events that fullfill the
quasi-free scattering condition. This condition requires the detection of a
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Figure 6.1: Layout of the different decay channels for the incoming projectile
21N, including the proton and neutron separation energies for some of the
possible reaction channels.

proton in coincidence with a neutron in the Crystal Ball detector with a
given energy threshold, selected to be 20 MeV.

6.1.1 Inclusive cross sections

In this section the results for the inclusive cross sections are presented.
Inclusive indicates that the final states of the fragments were not distin-
guished.

Inclusive cross sections were calculated for the channel 21N(p,pn)20N us-
ing two different methods. As shown in equations 4.5 and 4.6, the cross
section depends on the number of incoming particles, the number of reac-
tions and the target characteristics. The first two quantities can be estimated
by selecting the entries inside a two-dimensional elliptical cut in the identifi-
cation plot charge vs. mass, or can be obtained from one dimensional mass
identification plots, via a multi-Gaussian fit (calculating the area of Gaussian
distributions).

In the first method, the two-dimensional cut, the number of attempts
(projectiles), which is approximated by the number of unreacted nuclei (see
4.3), is obtained from the number of events inside the geometrical cut in the
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outgoing identification plot, charge vs. mass (see figure 6.2). This number
is corrected by the corresponding downscale factor for the trigger. The con-
tamination from other nuclei in the unreacted is negligible. The number of
reacted nuclei is counted in two steps. First, a two-dimensional elliptical cut
selects the 20N, in the same manner as for the incoming. Then the quasi-free
scattering events are selected. In order to identify them, the addback algo-
rithm is used and the number of reactions is corrected for the efficiency of
detecting a proton, in coincidence with a neutron above the threshold in the
Crystal Ball.
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Figure 6.2: Selection cut in the outgoing identification plot atomic number
vs. mass. Inside the ellipse the selected events representing the unreacted
21N.

In the second method, the so-called one-dimensional, the number of at-
tempts is determined as the integral of a Gaussian fit to the unreacted 21N
tracked mass distribution, as shown in figure 6.3. A selection of fragments
with charge 7 and the good beam trigger, was also taken. The number of
attempts was corrected by the corresponding downscale factor. The number
of reactions was measured by fitting the whole mass distribution to various
Gaussians (multi-Gaussian fit). Then, the area of the Gaussian curve cor-
responding to the 20N peak in the mass identification plot was calculated
(figure 6.4). In order to do this, only the outgoing fragments with charge
7 and which fulfill the quasi-free scattering conditions were included. The
reacted events are corrected by the corresponding Crystal Ball detection ef-
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Figure 6.3: Mass identification plot for the non-reacted nuclei with charge
7. The Gaussian fit used o the counting of the number of attempts is also
shown.
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Figure 6.4: Mass identification plot for the quasi free scattering outgoing
nuclei with charge 7. A Gaussian fit on the isotope of interest is shown.
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ficiency.

2-dimensional σ(mb) 1-dimensional σ(mb)

CH2 129±16 130±15

C 43.8±8.0 43.8±7.8

H 42.4±8.9 43.7±8.6

Table 6.1: Inclusive 21N(p,pn)20N channel cross sections for the CH2, C and
reconstructed H for the 1- and 2-dimensional methods, corrected by the Crys-
tal Ball efficiency for the detection of a proton and a neutron above an energy
threshold of 20 MeV in the Crystal Ball detector.

The number of attempts and the number of reactions is measured using
both methods for the CH2, carbon and empty targets. Table 6.1 shows
the results for the inclusive cross sections using the two explained methods,
according to equations 4.5 and 4.6. The uncertainties in the table include
statistical and systematical terms (efficiency of Crystal Ball detecting two
nucleons in coincidence with the outgoing fragment). Both results are in
good agreement within the error bars, proving that the results are robust.

In order to have a unique value for the inclusive cross section on the recon-
structed H target, a weighted average x with its corresponding uncertainty
δx will be calculated as follows:

x± δx =

N∑
i

wixi

N∑
i

wi

±

(
N∑
i

wi

)−1/2
(6.1)

where the weights are given by wi = 1/(δxi)
2, xi and δxi being the value

and the error calculated via each method [75].
The uncertainty obtained from the weighted average reduces the individ-

ual uncertainties of each method, based on the independency of both analysis
approaches. But, in this case, the data used for the new two analysis meth-
ods is not independent. The procedure has threw light on the evaluation of
the systematic uncertainty associated with the methods. Therefore, the sta-
tistical uncertainty is incremented by adding an additional evaluation of the
dispersion of the results, the variance of the results distribution. The result
obtained for the reconstructed proton target using the weighted average is:
(43.1 ± 9.0) mb.
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6.1.2 Angular correlations
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Figure 6.5: Angular correlations of the neutron and the proton emerging
from the reaction 21N(p,pn)20N observed in the Crystal Ball detector for a
CH2 target. Top left: shows the polar angle of one of the nucleons vs. the
polar angle of the other. Top right: shows the opening angle for the neutron
and the proton, the peak at ∼80o originating from the hydrogen present in
the CH2. Bottom left: shows the azimuthal angle of one nucleon vs. the
azimuthal angle of the other. Bottom right: shows the difference between
the azimuthal angles of both nucleons, the anticorrelation in azimuthal angle
being clearly apparent.

The two outgoing nucleons in a quasi-free reaction, in this case a neutron
and a proton, share an opening angle of about ∼ 80o and they are emitted
back to back in azimuthal angle.

In figures 6.5, 6.6, 6.7 are shown the angular correlations for the three
different targets, CH2, carbon and empty respectively, used to analyze the
reaction of interest. A clear correlation is observed for the CH2. The peak
at around ∼ 80o shown for the opening angle distribution in figure 6.5 is
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Figure 6.6: Angular correlations of the neutron and the proton emerging
from the reaction 21N(p,pn)20N observed in Crystal Ball for a C target.

produced by the reactions in the hydrogen present in the CH2 target, which
corresponds with quasi-free scattering events.

The opening angle distribution for the hydrogen target is reconstructed
performing the background subtraction (explained in the Section 4.3). The
results for the opening angle and the difference between the azimuthal angles
is shown in figure 6.8.

The experimental distributions can be compared with the results from
a kinematical simulation (described in the Section 5.3). The opening angle
distribution in the simulation has a mean value of 82o±4o (the uncertainty
corresponds to the RMS), while the experimental mean value for a Gaussian
fit performed at the quasi-free scattering peak is 82o and the width 12o. The
two values are in good agreement. In the case of the azimuthal difference,
the distributions can be characterized by their mean values and their RMS,
obtaining 165o and 18o for the mean and width in the simulation and a mean
value of 149o and a width of 27o for the experimental data, respectively. The
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Figure 6.7: Angular correlations of the neutron and the proton emerging
from the reaction 21N(p,pn)20N observed in Crystal Ball for an empty target.

two results agree within the distributions mean uncertainties. The deviation
from 180o is a consequence of the width of the distribution for the real data,
which is highly dependent on the detector resolution and also because of the
angle definition itself.

6.1.3 Momentum distributions

The momentum distribution widths and shape contains information about
the nuclear structure of the projectiles. In order to study the momentum
width, the contribution from the setup must be subtracted. The intrinsic
resolution of the setup is contained in the momentum distribution of the un-
reacted beam (21N→21N) when there is no target present. The full width at
half maximum (FWHM) of the unreacted distribution will be used to obtain
the real FWHM of the momentum distribution for the nucleus of interest. In
order to obtain the FWHM corrected, FWHMcorr the next formula will be
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Figure 6.8: Opening angle (left) and difference between the φ angles (right)
of the neutron and the proton emerging from the reaction 21N(p,pn)20N ob-
served in Crystal Ball for the reconstructed proton target.

used:

FWHMcorr =
√
FWHM2

tot − FWHM2
u (6.2)

where FWHMtot is the total measured FWHM and FWHMu is the non-
reacted projectile FWHM.

Figure 6.9 shows the unreacted longitudinal momentum distributions for
the incoming 21N in the laboratory frame for the different targets. The
influence of each target is observed in these distributions. Gaussian fits were
performed to extract the mean values for the different distributions, which are
very similar, being the differences derived from the energy loss in the inserted
targets. The Gaussian widths (σ’s) are also very similar. As expected, the
empty target run has the highest momentum.

The longitudinal (also transversal) momentum contains the signature of
the orbital angular momentum of the shell(s) from which the nucleon was
removed [76]. In order to obtain the longitudinal momentum distribution
corresponding to the reaction mechanism, we have to subtract the contribu-
tion from the incoming nuclei, calculated in the rest frame of the projectile.
In figure 6.10 are shown the longitudinal momentum distributions for the dif-
ferent targets in the rest frame of the projectile for the unreacted beam 21N.
Each distribution was fitted to a Gaussian and are centred around zero (hav-
ing mean values of: -2.20±0.38, 1.75±0.68 and -2.63±0.73 MeV/c, for CH2,
carbon and empty, respectively). The σ’s of the distributions are smaller
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Figure 6.9: Unreacted longitudinal momentum distributions for the incoming
21N in the laboratory frame for the different targets.
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Figure 6.10: Unreacted longitudinal momentum distributions for the incom-
ing 21N in the rest frame of the projectile for the different targets.
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than in the laboratory frame because the contribution of the incoming beam
is removed when the momentum is expressed in the rest frame of the pro-
jectile. The values for the σ’s are: 88.92±0.30, 91.23±0.53 and 95.93±0.57
MeV/c for CH2, carbon and empty, respectively.

The transversal component of the momentum distributions will be studied
through the analysis of the Y component of the momentum, due to the
malfunctioning of the first SSD, preventing to obtain the X coordinates (see
Section 3.7). Figure 6.11 presents the transversal momentum distributions
of the unreacted 21N for the CH2, carbon and empty targets. A Gaussian
fit was used to obtain the mean and sigma values. It was found that all
the distributions are well centred around zero (mean values -0.66±0.15, -
0.65±0.26 and -1.35±0.21 MeV/c). Regarding the momentum widths, the
empty distribution is the one with the smallest sigma 23.50±0.19 MeV/c.
The other two targets have a very similar width: 30.31±0.13 MeV/c for the
CH2 and 30.45±0.23 MeV/c for the carbon.
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Figure 6.11: Unreacted transversal momentum distribution in Y for the in-
coming 21N for the different targets.

The longitudinal momentum distributions in the laboratory frame for the
outgoing fragment 20N coming from the reaction 21N(p,pn)20N are shown in
figure 6.12. In the left plot are presented the distributions for the different
targets and in the right plot the result after subtracting from CH2 target
the carbon and empty contributions according to equation 4.5. The RMS of
the distribution for the reconstructed proton target is 223.6 MeV/c and is
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centred at 19380 MeV/c.
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Figure 6.12: In the left plot are shown the longitudinal momentum distribu-
tions in the laboratory frame for the CH2, carbon and empty targets for the
reacted 20N. In the right plot is shown the longitudinal momentum distribu-
tion in the laboratory frame for the reconstructed proton target.

The longitudinal momentum distributions for the 20N in the rest frame
are shown in figure 6.13. The left plot shows the distribution for each target,
while in the right plot is the distribution for the CH2 target after subtracting
the C contribution (reconstructed hydrogen target). This has a negative
mean value of -98.01 MeV/c and an RMS of 149.6 MeV/c. The mean and
RMS values can be compared with the ones obtained for the unreacted beam,
where the RMS was around 90 MeV/c and the distribution was well centred
around zero, probing that our transformation into the rest frame is correct.
The widening in the width of the quasi-free scattering distribution and the
observed deviation from zero, are both caused by the reaction mechanism.

Figure 6.14 shows the transversal momentum distribution for all the tar-
gets in the left plot and for the reconstructed proton target in the right plot.
The RMS is 122.753 MeV/c and the mean value of the distribution is -11.02
MeV/c.

6.2 The reaction channel 21N(p,2p)20C

In this section the results for the angular distributions, inclusive cross
sections and momentum distributions will be shown and discussed for the
reaction 21N(p,2p)20C.
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Figure 6.13: In the left plot are shown the longitudinal momentum distri-
butions in the rest frame of the projectile for the CH2, carbon and empty
targets for the reacted 20N. In the right plot is shown the longitudinal mo-
mentum distribution in the rest frame of the projectile for the reconstructed
proton target.
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Figure 6.14: In the left plot are shown the transversal momentum distri-
butions in the laboratory frame for the CH2, carbon and empty targets for
the 20N fragment. In the right plot is shown the transversal momentum
distribution in the laboratory frame for the reconstructed proton target.

The reaction was selected identifying the 20C after the reaction target in
coincidence with two high energy protons in the Crystal Ball detector.
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6.2.1 Inclusive cross sections

The inclusive cross sections were calculated via the two analysis meth-
ods explained for the (p,pn) channel in Section 6.1.1 and exemplified for the
(p,pn) channel. The results obtained are shown in table 6.2. Both meth-
ods agree within the error bars. The total inclusive cross section using the
weighted average and considering the different uncertainty contribution is:
(2.08±0.49) mb.

2-dimensional σ(mb) 1-dimensional σ(mb)

CH2 5.70±0.56 5.76±0.55

C 1.69±0.49 1.46±0.45

H 2.00±0.37 2.15±0.35

Table 6.2: Inclusive 21N(p,2p)20C channel cross sections for the 1- and 2-
dimensional methods, corrected by the Crystal Ball efficiency.

6.2.2 Angular correlations

The opening angle and the difference in the azimuthal for the two protons
are presented in figure 6.15 for the reconstructed proton target. The opening
angle distribution was fitted to a Gaussian, yielding a mean value 79o and a
sigma of 9o. A simulation was performed in the same way as it was done for
the (p,pn) channel, obtaining a mean value of 72o and an RMS of 10o. Both
results are in reasonable agreement. The difference between the azimuthal
angles was found to have a mean value of 157o with an RMS of 20o being
in reasonable agreement to 146o and 33o obtained for the mean and RMS
values in simulation.

6.2.3 Momentum distributions

The longitudinal momentum distribution in the laboratory frame was
found to be centred at 19300 MeV/c with an RMS of 146.1 MeV/c (see
figure 6.16). Figure 6.17 shows the longitudinal momentum in the rest frame
of the projectile. The distribution is centred around -122.4 MeV/c and has
an RMS value of 103.3 MeV/c. It exist a considerable deviation from zero,
which is caused by the reaction. The transversal momentum distribution is
shown in figure 6.18, and is centred at -13.83 MeV/c with an RMS of 108
MeV/c.
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Figure 6.15: Opening angle (left) and difference between the azimuthal angles
(right) for the two protons emerging from the reaction 21N(p,2p)20C observed
in Crystal Ball for the reconstructed proton target.
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Figure 6.16: In the left plot are shown the longitudinal momentum distribu-
tions in the laboratory frame for the CH2, carbon and empty targets for the
reacted 20C. In the right plot is shown the longitudinal momentum distribu-
tion in the laboratory frame for the reconstructed proton target.

6.3 The breakup channel 21N(p,pn)20N∗ →19N+n

After the knockout of a neutron from the 21N nucleus, a hole is created in
a given neutron shell and, depending on the excitation energy of this residual
hole state in the 20N, a particle could be emitted. In this case, the reactions
with enough excitation energy to evaporate a neutron (2.161 keV) will be



102 Results

 (MeV/c)
Z

P
600 400 200 0 200 400 600

) 
(m

b
/(

M
e
V

/c
))

Z
/d

(P
σ

d

0

0.005

0.01

0.015

0.02

0.025

2CH

Carbon
Empty

 (MeV/c)
Z

P
600 400 200 0 200 400 600

) 
(m

b
/(

M
e
V

/c
))

Z
/d

(P
σ

d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 6.17: In the left plot are shown the longitudinal momentum distri-
butions in the rest frame of the projectile for the CH2, carbon and empty
targets for the reacted 20C. In the right plot is shown the longitudinal mo-
mentum distribution in the rest frame of the projectile for the reconstructed
proton target.
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Figure 6.18: In the left plot are shown the transversal momentum distribu-
tions in the laboratory frame for the CH2, carbon and empty targets for the
reacted 20C. In the right plot is shown the transversal momentum distribution
in the laboratory frame for the reconstructed proton target.

studied. This channel was investigated by measuring in coincidence the out-
going fragment 19N and a neutron in the LAND detector in coincidence.
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The neutron multiplicity distribution measured with the 19N fragment after
selecting an incoming 21N and quasi-free scattering conditions is shown in
figure 6.19. In most of the cases only one neutron is observed.
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Figure 6.19: Neutron multiplicity in LAND for coincidences with (p,pn)
reactions in QFS regime in the CH2 target.

The time of flight between the target and LAND was used together with
the position information obtained from the neutron detector to calculate the
neutron velocity [47]. To calibrate the time of flight, γ rays produced in the
target are used. These γ’s present a narrower distribution than the neutrons
and appear at earlier times because γ’s travel with the speed of light. The
LAND time offset is set by moving this γ peak to zero. The land02 package
includes an algorithm which reconstructs the spherical coordinates [47] of
the neutron hits in LAND. The information needed from the fragment is
obtained via the tracking program and the two SSDs after the target. In the
left plot of figure 6.20 is shown the neutron velocity distribution, which has
a mean value of (22.02±0.94) cm/ns. The angle between the fragment and
the neutron is shown in the right plot of figure 6.20 and has a mean value of
42.37 mrad (∼2.86o) and an RMS of 20.5 mrad.

The neutrons arising from an evaporation reaction reach LAND with a
velocity very similar to the beam. The background events coming from reac-
tions which occur after the target are slower than the evaporated neutrons
and could be identified by plotting the neutron energy vs. the fragment mass.
In figure 6.21 is shown an example of the neutron velocity distribution as a
function of the fragment mass for a CH2 target for the incoming projectile
21N. The events inside the window at (20, 25) cm/ns are neutrons which
came from evaporation. The tail for lower velocities observed at mass A =
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Figure 6.20: Neutron velocity distribution in LAND (left) and their angles
with the 19N fragments (right) measured in coincidence with the (p,pn) re-
actions for the CH2 target (see text for further explanation).

21 is due to the beam. Only events inside the mentioned window are used
for the calculation of the excitation energy and the cross section.
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Figure 6.21: Neutron velocity vs. fragment mass for the incoming ion 21N.
The LAND trigger was selected. The band between the two black lines shows
the neutron events from evaporation.

The probability of detecting one neutron in LAND for a given channel has
a strong dependence on the neutron kinetic energy. The number of detected
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neutrons has to be corrected for the detector efficiency. An efficiency distri-
bution was provided by D.Rossi [77] using the simulation code LEG1. Figure
6.22 shows the efficiency distribution of detecting one neutron in LAND. The
drop in the reconstructed efficiency above 3.3 MeV is due to the acceptance
of LAND. Up to that neutron energy, LAND has almost a 100 % acceptance.
Beyond that energy, a portion of the neutrons pass through LAND, and that
portion increases with the increasing of the neutron energy.
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Figure 6.22: Detection efficiency as a function of the neutron kinetic energy
for the detection of one neutron in LAND calculated via simulation using the
LEG code (see text for details).

To correct for the efficiency, the neutron kinetic energy must be deter-
mined. For that purpose the Lorentz-transformation of momentum-energy is
used: ERF

pRF‖

 =

 γf −βfγf
−βfγf γf

E
p‖

 (6.3)

where ERF and pRF‖ are the energy and the longitudinal momentum in
the rest frame, βf and γf are the velocity and the Lorentz factor and E and
p‖ are the energy and longitudinal momentum in the laboratory frame. With

1Land Event Generator
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the help of equation 6.3 it is possible to relate the energy of a particle in the
rest frame with its energy in the lab frame

ERF = γfE − βfγfp‖ (6.4)

Using E = γm0 = Ekin,n + m0 and equation 6.4, the neutron kinetic
energy in the rest frame is expressed as

Ekin,n = γfγnmn − βfγfp‖,n −mn (6.5)

where γf and γn are the Lorentz factors for the fragment and the neutron
respectively, mn is the neutron rest mass, βf is the velocity of the fragment
and p‖,n is the longitudinal momentum of the neutron in the lab frame which
is calculated as follows

p‖,n = mnβnγncosθ (6.6)

with θ the angle between the outgoing fragment produced in the quasi-free
scattering reaction and the neutron.

In figure 6.23 is shown an example of the excitation energy distribu-
tion before and after correcting for the detection efficiency for the reaction
21N(p,pn)20N*→19N+n in a CH2 target in quasi-free scattering conditions.
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Figure 6.23: Example of the efficiency correction for the excitation energy of
20N in a CH2 target. The black curve is the excitation energy before efficiency
correction, the red curve is the result of the correction.
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Figure 6.24: Excitation energy distribution after efficiency correction of 20N
reconstructed for the proton target. The neutron separation energy is 2.161
MeV.

As we are interested in the quasi-free scattering reactions which occur
with the protons in the target, the contribution from the carbon and empty
target need to be subtracted. In figure 6.24 is shown the excitation energy
spectrum for the reconstructed hydrogen target. The cross section obtained
for the neutron break-up channel is (27.08±5.00) mb. The spectra begins
above 2.161 MeV, the neutron separation energy for the 20N. Despite the
high uncertainty due to the lack of the statistics, two peaks are observed.
In order to check it, we have performed a set of minimizations including
two Breit-Wigner functions and a background function. The Breit-Wigner
functions were characterized by their width (Γ) and peak position (Er), as
follows

f(E;Er,Γ) =
Γ

(E − Er)2 + Γ2/4
(6.7)

The background function was chosen as the product of an error and an
exponential function,

f(E) = a× erf(bE)× e−cE (6.8)

The combination of the Breit-Wigner and background functions was con-
voluted with the experimental response obtained via LEG simulation. Then
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a minimization was performed, obtained as a result (pink curve) the plot
shown in figure 6.25. The grey distribution is the combination of the two
Breit-Wigner and the background functions previous to the experimental re-
sponse filter. The first resonance was found to be at 3.2±0.3 MeV with a
width Γ of 0.96+0.5

−0.4 MeV. The second resonance is at 6.77+0.4
−0.3 MeV. Its width

have a very high uncertainty. According to [18], it has been observed a γ
ray with an energy of 2.1 MeV which corresponds to a decay from an state
of 2.943 MeV in the continuum. Our first resonance is in agreement with
the reported energy value. Regarding to the second resonance, shell model
calculations are needed in order to extract some conclusion.
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Figure 6.25: Excitation energy spectrum of the unbound states in 20N. The
experimental points are shown as blue points, while the result of the mini-
mization is the pink histogram. The black function corresponds to the orig-
inal resonances and the background functions, previous to the experimental
response filter. Two resonances are observed at 3.2±0.3 and 6.77±0.4 MeV.



Chapter 7

Discussion of the results

After the description of the analysis methods and their application to a
particular case, this chapter will be devoted to the interpretation and evalu-
ation of the results.

The first part of this chapter will focus on the discussion of the re-
sults for the inclusive cross sections in the (p,pn) and (p,2p) reactions for
the projectiles 21N, 23O and 22O. Next, the results for the respective mo-
mentum distributions and γ ray emission will be discussed. The last part
will be devoted to the discussion of the one neutron break-up channels:
21N(p,pn)20N∗ →19N+n, 23O(p,pn)22O∗ →21O+n and 22O(p,pn)21O∗ →20O+n.

7.1 Inclusive cross sections

This section summarizes the results for the cross sections associated to
the (p,pn) and (p,2p) channels of the projectiles 21N, 23O and 22O. The re-
sults are shown in table 7.1. It is observed that the cross section for the
reaction channel (p,pn) is larger than that of (p,2p) for a given projectile.
This is due to various reasons: all the projectiles are neutron-rich nuclei and,
therefore, there are more neutrons than protons available for reactions. Also,
the neutron 0d5/2 shell is almost full in the cases under study, giving rise to
a large value of the spectroscopic factors for the neutrons removed from this
shell. Moreover, the binding energy of the outermost neutrons is smaller
than that of the protons, thus favouring the neutron removal process. An-
other important difference relies on the underlying NN interaction involved
in each case. Under quasi-free scattering conditions, the (p,2p) and (p,pn)
processes are mainly induced by the pp and pn interactions. These two inter-
actions are very different in nature and hence one expects differences in the
corresponding knockout cross sections. Between 400 MeV and 500 MeV, the
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np interaction cross section is larger than that of pp [78]. Most important,
however, is the fact that the pp scattering is only allowed for isospin T = 1,
while for np scattering isospin T = 0 and T = 1 are permitted with equal
weight, with the T = 0 giving the dominant contribution.

From this discussion, it is clear that a reliable prediction of the quasi-
free scattering cross sections requires the use of a realistic NN interaction.
In the standard DWIA approach [79], traditionally used in the analysis of
quasi-free scattering experiments with stable beams, the scattering amplitude
(whose square provides the differential cross section) can be expressed as
a product of a realistic NN transition amplitude times some kinematical
factors. In more sophisticated reaction frameworks, such a factorization is
not possible but, still, a key basic ingredient is the NN transition amplitude,
such as in the AGS/Faddeev approach [80, 81] or, equivalently, a realistic NN
interaction, as it is done in the transfer to the continuum approach [82, 83].
Preliminary calculations performed with the latter method for some of the
reactions studied in this work, confirm the dominance of the (p,pn) cross
sections over the (p,2p) cross sections [84].

Ebeam (MeV/u) Reaction σ(mb)

417
21N(p,pn)20N 43.1±9.0

21N(p,2p)20C 2.08±0.49

445
23O(p,pn)22O 63±17

23O(p,2p)22N 5.4±1.3

414
22O(p,pn)21O 36.1±7.2

22O(p,2p)21N 5.28±0.58

Table 7.1: Inclusive cross sections for the (p,pn) and (p,2p) reactions for the
projectiles 21N, 23O and 22O, corrected for the Crystal Ball efficiency in a
proton target.

Figure 7.1 shows the total inclusive cross sections for the (p,pn) (left)
and (p,2p) (right) as a function of the neutron and proton number of the
projectile, respectively. It is observed for the (p,pn) channels that the cross
section is larger for N = 15 than for N = 14. This can be understood in
terms of the shell model: N=14 can be interpreted as a closed sub-shell with
the level 0d5/2 completely full, holding six neutrons, while the N = 15 has a
single neutron in the 1s1/2 shell. This magicity of the N = 14 was already
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observed in previous works [17, 18, 19].
The valence protons of these projectiles all reside in the same shell. The

oxygen isotopes have the two least bound protons saturating the 0p1/2 shell,
the nitrogen having one proton less in the same shell. It is more probable to
remove a proton from the oxygens because of the higher occupancy.
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Figure 7.1: Left: cross section for the (p,pn) channel as a function
of the neutron number for the projectiles 21N and 23,22O. Right: cross
section for the (p,2p) channel as a function of the proton number for
the projectiles 21N, 23,22O. In both cases, the one neutron (proton) sep-
aration energy for each projectile is included in the plot, taken from
http://ie.lbl.gov/toi2003/MassSearch.asp.

7.2 Momentum distributions

The width and shape of the momentum distribution contains information
about the structure of the projectiles. In Appendix C, all the plots showing
the longitudinal and transversal momentum distributions of the fragments
are included, for the reactions previously described. The experimental setup
has a better resolution for the momentum transversal component than for the
longitudinal one. Thus, the discussion will be based on the results extracted
for this component.

In order to obtain a reliable value for the full width at half maximum
(FWHM), this was studied as a function of the number of bins and bin off-
sets. It was observed that the FWHM is higher for a relative low number of
bins (affected by the bin width itself), then decreases with an increase of the
bin number, until this stabilizes. When the number of bins is too high, sta-
tistical fluctuations appear, making the FWHM oscillate from one histogram
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granularity to the next. With the purpose of obtaining an absolute value, the
distribution of the FWHM given by the different histograms representation
was studied, characterized by its mean and RMS values.

In table 7.2 and figure 7.2 the results obtained for the transversal momen-
tum distributions for all different channels are presented. The given FWHM
values were corrected by the full width at half maximum of the unreacted
beam without target FWHM (as shown in equation 6.2).

Reaction FWHM (MeV/c)

21N(p,pn)20N 190±33

21N(p,2p)20C 204±41

23O(p,pn)22O 108±25

23O(p,2p)22N 95±51

22O(p,pn)21O 240±16

22O(p,2p)21N 254±12

Table 7.2: Transversal momentum distribution FWHM for the (p,pn) and
(p,2p) reactions for the projectiles 21N, 23O and 22O.
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Figure 7.2: Left: FWHM of the transversal momentum distribution for the
(p,pn) channel are represented as a function of the neutron number for the
projectiles 21N and 22,23O. Right: same, but for the (p,2p) channel represented
as a function of the proton number.

For the two oxygen isotopes, it is observed that the momentum FWHM
decreases with the increasing of the neutron number. This is explained in



7.2 Momentum distributions 113

the shell model context. The N=14 valence neutrons are in the 0d5/2 shell,
while the single valence neutron for N=15 is in the 1s1/2. This change from
the d shell (angular momentum l=2) to the s shell (angular momentum l=0)
explains the narrowing in the momentum distributions. In the (p,2p) chan-
nels if we focus on the N=14 shell, it is observed that the FWHM for the 22O
is bigger than the one for the 21N. The reason is that the oxygen isotope has
its valence sub-shell completely full, rendering the nucleus tightly bound and
so more compact, which translates into a wider momentum distribution. An
accurate comparison between the two oxygen isotopes is limited by the lack
of statistics and does not allow to extract any conclusions, since the 23O has
very low statistics for the (p,2p) channel. Despite this, is observed a very
narrow distribution compared with the 22O.

This behaviour for the neutron shells of these N=14 nuclei was already
observed in previous works [85, 86] where the experimental observations sup-
port the existence of a sub-shell for N=14.

In order to investigate the angular momentum of the projectile’s shell
where the nucleon was removed, theoretical calculations have been performed.
First calculations were performed for the reaction 21N(p,pn)20N by using the
Distorted Wave Impulse Approximation (DWIA) theory and eikonal wave
functions by C. Bertulani. The theoretical formulation includes multiple
scattering based on medium modified NN (nucleon-nucleon) cross sections
[87].

The 21N structure can be described as a combination of the 20N in its
ground state with a neutron in the 0d5/2 and the 20N in an excited state 1−

with a neutron in an 1s1/2, each coupled to produce the 21N ground state
spin and parity 1/2−. The configuration will be as follows∣∣21N(gs)〉1/2− = a · [

∣∣20N(2−)〉 ⊗
∣∣0d5/2 〉] + b · [

∣∣20N(1−)〉 ⊗
∣∣1s1/2 〉] (7.1)

Figure 7.3 shows transversal components for the d and s waves calculated
by the theory using the mentioned approaches. To calculate the weight of
each wave function a Pearson χ2 on the experimental data was performed.
Figure 7.4 shows the result. The weights obtained for the 0d5/2 and 1s1/2
are 0.91±0.18 and 0.09±0.18. From the fit it is observed that the main
contribution to the 21N ground state is due to the 20N(2−) coupling with the
neutron in the d5/2.

The few-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) reac-
tion framework [80, 88] can be viewed as a multiple scattering expansion
in terms of the transition amplitude of each interacting pair. Calculations
were made by R. Crespo, E. Cravo and A. Deltuva [89], for the reaction
22O(p,pn)21O, assuming that the 22O can be well described as an inert core
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Figure 7.3: Transversal momentum distribution extracted from the contri-
bution of different neutron states for the 0d5/2 (solid black line) and 1s1/2
(dashed red line) waves following the approximations from [87], courtesy of
C. Bertulani.
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7.2 Momentum distributions 115

of 21O and a valence neutron. The 22O ground state could be in principle be
described as

∣∣22O(gs)〉0+ = a·[
∣∣21O(gs)〉5/2+⊗

∣∣0d5/2 〉]+b·[∣∣21O(exc)〉1/2+⊗
∣∣1s1/2 〉] (7.2)

Taking the core in the 5/2+ ground state the theoretical calculations have
shown that contributions beyond the single scattering term where the proton
scatters from the valence neutron are very significant and reduce the momen-
tum distributions by about 50%. It was also found that the contribution of
the wave function were the core is the 1/2+ excited state is also sizable.

As before, a Pearson χ2 minimization has been performed comparing the
shape given by the theoretical approach and the experimental one. The re-
sults, in figure 7.5, show clearly that the d shell contribution from the theory
(solid blue line) is not enough to reproduce the experimental momentum dis-
tribution obtained in this work. Excluding the four central points, a much
better fit is obtained (dashed pink line). This makes even more evident that
the contribution from the s wave is not negligible. The function where the
core is the 1/2+ excited state is under study.
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Figure 7.5: Experimental transversal momentum distribution obtained in
this work for the reaction channel 22O(p,pn)21O (points) compared with the
theoretical transversal momentum obtained in the few-body Faddeev approx-
imation. The solid blue line is the result for the minimization including all
the experimental points, the dashed pink line is the result of excluding the
four points in the middle.
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7.3 γ rays

The Crystal Ball detector was used to measure the deexcitation γ rays
in coincidence with the outgoing fragments for the following quasi-free scat-
tering channels: 21N(p,pn)20N, 21N(p,2p)20C, 23O(p,pn)22O, 23O(p,2p)22N,
22O(p,pn)21O and 22O(p,2p)21N. Due to statistical reasons and to the com-
plexity of some spectra, we have focused our study on the γ ray spectra of the
nuclei 22O, 21N and 21O. For these cases it was possible to extract the rela-
tive intensities of the emitted γ rays. In order to find the relative intensities,
we have performed a set of simulations in R3BRoot, obtaining the complete
response of the calorimeter in efficiency and resolution to a given energy emis-
sion. The γ-ray energies have been taken from the literature where accurate
determination of the decay schemes were available. The atomic background
is represented as an exponential function, taking particular care to apply this
function in regions where no γ ray was expected. Other background deter-
mination was tested, in particular studying the gamma ray spectra of 16O,
where the situation of the lowest excited state, located at 6.05±0.01 MeV,
forbids the emission of a low energy γ. An appropriate scaling of the 16O
spectrum, taking into account the number of reactions, leads to a very small
background correction, and therefore will not be used herein. In any case,
the test served to confirm the simple exponential shape of the background
above a given energy threshold.

In order to compare the simulation with the experimental data, we have
minimized via the Pearson χ2 method the distance between the experimental
and the simulated peaks, scaled by factors which will be used to determine
the relative γ-ray intensities. To ensure that this determination is completely
robust, the minimization has been performed for a set of energy thresholds
(100, 200, 300 and 400 keV) and number of histogram bins (20-50), charac-
terizing the probability distribution function of gamma intensities resulting
from each minimization. From the results of this probability function, esti-
mates and uncertainties of the gamma intensities could be obtained on solid
grounds.

The first spectrum that will be discussed has been obtained in coincidence
with the fragments from the reaction 23O(p,pn)22O. Based on the level scheme
of the 22O, taken from [17, 85], this isotope has three dominant γ rays in
cascade, with energies: 1383 keV, 2354 keV and 3199 keV. 23O ground state
can be described as the combination of the wave function of a nucleon in
the 0d5/2 shell or in the 1s1/2 shell coupled to the 22O core. According to
references [17, 85], the ground state of 23O has spin and parity 1/2+. The
ground state of 22O is a 0+ and the excited states are 2+, 3+ and (0−,1−).
This last state is not observed in the reference [17]. According to the spin
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22O Eth
x (keV) Eexp

x (keV) C2S, 1s1/2 C2S, 0d5/2 C2S, 0d3/2

0+ g.s. g.s. 0.796 - -

2+ 3374 3199 - 2.076 0.053

0+ 4613 4909 0.115 -

3+ 4829 4582 - 3.079 -

2+ 6502 6509 - 0.237 0.0049

3+ 8317 - - 0.164 -

Table 7.3: Spectroscopic factors for different core + neutron coupling ob-
tained from shell model calculations. The first column shows the spin and
parity of the 22O core states. The second and third columns show the the-
oretical [84] and experimental [17] energies of the states listed in the first
column, respectively. The last three columns show the spectroscopic factors
(occupancies) for the different core + neutron coupling possibilities calcu-
lated with OXBASH [90] using the WBT interaction.

and parity and shell model calculations shown in table 7.3 using the WBT
interaction [84], only the coupling of the 22O ground state to a neutron in
1s1/2 or the excited states 3+ at 4582 keV and 2+ at 3199 keV to a neutron
in 0d5/2 could be observed.

In order to calculate the relative intensity for each γ ray, we have tried to
minimized the difference between the experimental points and a simulation
curve including the two γ rays with energies of 1383 and 3199 keV and an
exponential function representing the background. The experimental spec-
trum showed a clear indication that the peak, originally assigned to 3199
keV, appears at lower energy, probably due to energy losses not correctly
evaluated in the Crystal Ball detector simulation for gammas of high energy.
We have performed two different studies of the spectrum for this nucleus:
the first including a contribution at 3199 keV and the second replacing it by
the response to a lower energy, 2900 keV, to compensate for the unaccounted
losses. The last one produces a much better χ2 and the results of this second
analysis provide intensities which are in better agreement with the ones from
[17]. The experimental γ ray spectrum (black points) together with the re-
sult for the minimization performed (solid red line) for this second analysis
are shown in figure 7.6.

The relative intensities for each γ ray are shown in table 7.4. The obtained
results are compatible with the literature [17, 85]. In both articles the most
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Figure 7.6: Left: experimental γ ray spectra (black markers) and best min-
imization (red histogram line) for 22O. The individual contributions of each
gamma are shown, according to the simulated response of the Crystal Ball
detector to each monoenergetic gamma emission. Right: level scheme used
in this work showing the energies and relative intensities together with their
uncertainties for the gamma rays. Shell model calculations by A. Moro [84].

energetic γ was found to be the most intense, corresponding to the decay of
the first excited state 2+. According to [17] the lowest energetic γ transition
has a relative intensity of 43±8 %, being in a reasonable agreement with our
calculation of 60±29 %.

Results from this work Results from [17]

Eγ (keV) Iγ (%) Iγ (%)

1383 60 ±29 43 ±8

3199 100 ±24 100 ±15

Table 7.4: Relative intensities determined for the gamma rays of 22O, using
the simulated energies of 2900 and 1383 keV.

The γ ray spectrum corresponding to 21N was also studied, from the
gamma coincidences with the fragments from the reaction 22O(p,2p)21N. Ac-
cording to reference [18], this nucleus has a γ ray at 1177 keV, with the
strongest intensity. This transition is in coincidence with the energies at
1228, 2142, 2438, 1790 and 884 keV (see figure 7.8). All the information
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Figure 7.7: Left: experimental γ ray spectra (black) and best minimization
(red) for 21N. Right: level scheme used in this work showing the energy and
relative intensity for the existent gamma ray. Shell model calculations taken
from [84].

about the spin and parity of the different states has been taken from [18]. As
it was done in the previous case, the 22O can be described as a core of 21N
coupled to a proton in the 0p1/2 or 0p3/2 shells. Taking into account the spin
and parity of the ground and excited states of 21N, we expect to observe only
the γ ray corresponding to the first excited state at 1177 keV (3/2−). Then,
we first try to interpret the experimental data from the minimization of this
unique contribution, additionally to the exponential background. The result
can be found in figure 7.7; no additional gamma contribution was found to
be necessary to interpret the experimental decay scheme. The exclusive cross
section obtained for the state at 1177 keV was found to be (1.1±0.1) mb.

The last spectrum presented in detail here is the corresponding to the
21O. The decay scheme has been studied previously [17]. According to this
reference there are four branches. Two of them are composed by one gamma
with energies of 1218 and 3026 keV respectively. The remaining two branches
are formed by two γ rays, namely 2133 + 881 keV and 3073 + 1854 keV. 22O
ground state can be described as a nucleon occupying either the shell 0d5/2

or the shell 1s1/2, coupled to 21O core. According to reference [17] the ground
and excited states of 21O have spin and parity 5/2+, 1/2+, 3/2+, 7/2+ and
9/2+ (see figure 7.8). So, the combinations that are possible to describe the
22O in its ground state would be mainly the ground state of 21O which has
spin and parity 5/2+ and the first excited state 1/2+. There are other states,
at higher energies, for example the 5/2+ at around 3000 keV, but according
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Figure 7.8: Left: level scheme for 21N proposed in the reference [18]. Right:
level scheme for 21O proposed in the reference [17].

to shell model calculations using the WBT interaction [84] the probability
to populate this state is very low. The spectroscopic factor for this state is
0.12, while the spectroscopic factor of the ground state is 4.79. In principle it
would be possible to produce other excited states via processes like dynamic
excitation of the core, but the dynamic excitation requires an exchange of
energy which should be not compatible with the conditions of the quasi-free
scattering selected in the analysis.

Taking into account all this information, the initial attempts were per-
formed with a single gamma emission at an energy of 1218 keV. The result of
the minimization is shown in figure 7.9. The exclusive cross section obtained
for the state at 1218 keV was found to be (0.4±0.2) mb.

The 20N has a very complicated spectra to be analysed with the Crystal
Ball detector, because it has four γ rays (615, 843, 944 and 1052 keV) in
an energy range relatively small, making it difficult to distinguish the con-
tributions due to the detector’s limited resolution (around 20% for a γ ray
with an energy of 1 MeV). However, a minimization was performed using the
relative intensities and energies from the literature [18]. Our results are com-
patible with these relative intensities set from [18], but different parameter
combinations produce similar χ2 values, resulting in very different relative
intensities which makes it impossible to extract accurate information from
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Figure 7.9: Left: experimental γ ray spectra (black) and best minimization
result (red) for 21O. Right: level scheme used in this work showing the energy
and relative intensity for the existent gamma ray. Shell model calculations
by A. Moro [84]

this spectrum. The lack of statistics for the most exotic available nuclei, 20C
and 22N, do not allowed us to perform a detailed study.

7.4 The breakup channels

In a similar approach to the analysis of the unbound states for the one neu-
tron breakup channel of the projectile 21N, the excitation energy spectra for
the reaction channels 23O(p,pn)22O∗ →21O+n and 22O(p,pn)21O∗ →20O+n
were investigated. The excitation energies for the nuclei 22O and 21O were
reconstructed by measuring the coincidence between the breakup reaction
fragments 21O and 20O and their respective emitted neutrons in quasi-free
scattering conditions. The cross sections for these two channels were de-
termined by subtracting from those obtained for the CH2, the carbon and
empty target contributions. The values obtained are (14.7±6.9) mb for the
23O(p,pn)22O∗ →21O+n and a cross section of (13.9±3.3) mb for the channel
22O(p,pn)21O∗ →20O+n. The excitation energy spectra, corrected by the ef-
ficiency of detecting one neutron in the LAND detector, are shown in figure
7.10 for the two studied cases. The possibility of emitting a neutron for the
22O begins when the energy is above 6.85 MeV (left), while for the 21O this
channel opens for energies above 3.806 MeV (right)1.

1Separation energies taken from http://ie.lbl.gov/toi2003/MassSearch.asp
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Figure 7.10: Excitation energy distribution for the 22O (left) and 21O (right)
reconstructed for the neutron decay channel. The one-neutron separation
energies are 6.850 and 3.806 MeV for the 22O and 21O, respectively

The excitation energy distribution for the 21O can be compared with
previous results measured by B. Fernández-Domı́nguez et al. [91]. In this
work they investigated the spectroscopy of 21O using transfer reactions in
inverse kinematics at the SPIRAL facility in GANIL. They observed two
resonances, one at 4.77±0.10 and the other one 6.17±0.11 MeV.

Figure 7.11: Excitation energy for the unbound states for 21O obtained by
B. Fernández-Domı́nguez et al. [91].

From the observation of the obtained excitation energy for 21O, it seems
evident the presence of three structures that could correspond to three sep-
arate resonances. In order to check it, we have performed a set of minimiza-
tions following the procedures described for the analysis of the excitation
energy spectrum of 20N (see Section 6.3). The positions of the three reso-
nances according to the minimization are: 4.41±0.07 MeV, 5.52±0.10 MeV
and 6.74±0.50 MeV. In the case of the first resonance we provide a width of
Γ = 0.280±0.140 MeV. For the other two resonances we are only able to give
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a superior limit of 0.300 and 0.450 MeV, respectively. The result obtained
for the first resonance are close to the previous value obtained by [91].
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Figure 7.12: Excitation energy for the unbound states for 21O. The points
correspond to the experimental data, the pink curve is the simulated response
of the excitation function included in black (see text for details).

The excitation energy distribution for the 22O presents very low statistics
to perform a detailed analysis of the resonances. But, the fact that the spec-
trum starts directly above the threshold could be an indicative of a resonance
at an energy very close to the neutron emission threshold. In [92] the struc-
ture of 22O was investigated by measuring the β decay of 22N in an experiment
performed at the National Superconducting Cyclotron Laboratory (NSCL).
According to [92] the first state above the neutron emission threshold is at
7.65 MeV. This state seems to be compatible with our observation.
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Chapter 8

Conclusions

Light neutron-rich nuclei around N=14 (23O, 22O and 21N) have been for
the first time investigated via quasi-free scattering (p,2p) and (p,pn) reactions
with a view to study the proton and neutron shells, respectively.

The S393 experiment was performed at GSI in 2010, employing six dif-
ferent settings centred on different A/Q ratios. The setup was placed at the
LAND-R3B experimental area at Cave C. An 40Ar primary beam was accel-
erated in the SchwerIonenSynchrotron (SIS-18) up to an energy of about 490
AMeV. The beam was then directed to the FRagment Separator area (FRS)
where, using a beryllium production target, a secondary beam produced via
fragmentation was selected depending on the A/Q ratio of the desired species.
Following this selection, the isotopes of interest were guided to Cave C, where
the reaction target and the detectors needed for the analysis were located.

Two key observables have been studied with the aim of shedding light
upon the structure of these nuclei. The inclusive cross sections and transver-
sal momentum distributions for the (p,pn) channels reveal a change in the
structure of these nuclei when we move from the N = 14 to the N = 15, i.e.,
from the 0d5/2 shell to the 1s1/2. For the (p,2p) reactions, the measurement
of the same observables allowed the same study for the 0p3/2, 0p1/2 proton
sub-shells. The comparison of the experimental data with the theoretical cal-
culations allowed to extract spectroscopic information of the neutron shells
in the projectiles 21N and 22O.

The results obtained for the cross sections are shown in table 8.1. It is
observed that the inclusive cross sections obtained for the (p,pn) channels
are higher than the ones obtained for the (p,2p). This is due to various
reasons: there are more neutrons than protons available for the quasi-free
scattering. The spectroscopic factors for the neutrons removed from the
0d5/2 are larger because the shell is almost filled in the cases under study.
Moreover, the binding energy of the outermost neutrons is smaller than the
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one for the protons making easier to remove a neutron. In the region between
400 MeV and 500 MeV, the n-p interaction cross section is bigger than the p-
p contributing to the increasing of the (p,pn) channels cross section. But, the
most important is the fact that in the (p,2p) reactions, the two particles in the
final state are identical allowing only the T = 1 configuration. Nevertheless,
in the (p,pn) reactions the T = 0 and T = 1 are allowed, having the first one
a cross section several times larger than the second one. It was observed, for
the neutron shells, that the 23O has the higher cross section. This could be
explained by its lower separation energy. Also, the other two nuclei (22O and
21N) have the valence neutrons in a closed shell. For the (p,2p) channels it
was observed that the nuclei with Z = 8 have the same cross section because
they have the same number of protons in the same shell. They have a higher
cross section than the 21N due to the larger number of valence protons to be
knocked-out.

Reaction σ(mb)

21N(p,pn)20N 43.1±9.0

21N(p,2p)20C 2.08±0.49

23O(p,pn)22O 63±17

23O(p,2p)22N 5.4±1.3

22O(p,pn)21O 36.1±7.2

22O(p,2p)21N 5.28±0.58

Table 8.1: Inclusive cross sections for the (p,pn) and (p,2p) reactions for the
projectiles 21N, 23O and 22O.

Regarding the momentum distributions, it was observed for the (p,pn)
channels that the FWHM decreases when moving from N = 14 to N = 15;
this can be interpreted as neutrons passing from a d-shell with angular mo-
mentum l = 2 to an s-shell with angular momentum l = 0, which has a
narrower momentum distribution and a wider spatial distribution. The mea-
sured FWHM are found in table 8.2. From the comparison with theoretical
calculations, it was possible to obtain the weights for the different waves. In
the case of the 21N nucleus, a contribution of 0.91±0.18 and 0.09±0.18 for
the d and s waves, respectively has been measured. For the 22O, it has been
observed that the composition of the ground state requires some strength of
the s wave, coupled with the first excited state of 21O. The (p,2p) channels
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were also investigated, obtaining the FWHM shown in table 8.2. From the
comparison of the FWHM for the two oxygen isotopes, it is observed that the
23O has a narrower momentum distribution because it has a larger separation
energy.

Reaction FWHM (MeV/c)

21N(p,pn)20N 190±33

21N(p,2p)20C 204±41

23O(p,pn)22O 108±25

23O(p,2p)22N 95±51

22O(p,pn)21O 240±16

22O(p,2p)21N 254±12

Table 8.2: Transversal momentum distribution FWHM for the (p,pn) and
(p,2p) reactions for the projectiles 21N, 23O and 22O.

The γ ray spectra for the nuclei 22O, 21N, 21O and 20N were studied by
measuring the coincidence of these isotopes with the gamma rays measured
in the Crystal Ball detector. For 22O, 21N and 21O cases, the gamma rays
relative intensities or exclusive cross sections were determined. It was found
via the observation of the γ rays with energies of 3199 and 1383 keV, that
23O could be described as the combination of an 22O core in its ground
state coupled to a neutron in the 0s1/2, an 22O core in its first excited state
(3199 keV) 2+ coupled to a neutron in the 0d5/2 and an 22O core in its second
excited state (4582 keV) 3+ coupled to a neutron in the 0d5/2. The calculated
relative intensities were found to be in good agreement with previous results
from [17, 85]. The study of the 21N γ ray spectrum revealed that the ground
state of the 22O can be described as a combination of the 21N core either
in its ground state (spin and parity 1/2−) coupled to a proton in the 0p1/2

or in its first excited state 3/2−, where will emit a γ ray with an energy of
1177 keV. The exclusive cross section for the excited stated at 1177 keV was
found to be (1.7±0.4) mb. The neutron shells for the 22O were studied via
the γ ray spectrum of 21O. 22O ground state can be described as a nucleon
occupying either the shell 0d5/2 or the shell 1s1/2, coupled to the ground state
of 21O or to the first excited state at 1218 keV, respectively. The exclusive
cross section for the first excited state was found to be (0.85+0.97

−0.85) mb.
The study of the excitation energy spectra allowed the determination of
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three resonances for the unbound states of 21O. The resonances are found
to be at 4.41±0.07 MeV, 5.52±0.10 MeV and 6.74±0.50 MeV, being the
width of the first resonance 0.280±0.140 MeV. The energy obtained for the
first resonance is close to a previous value obtained by [91]. The study of
the excitation energy spectrum for the 20N revealed the existence of two
resonances at 3.2±0.2 MeV and 6.77±0.4 MeV. The first one is compatible
with the result found by [18] where they measured a state in the continuum at
2.943 MeV. Despite the lower statistics in the case of the excitation energy
spectrum for 22O, the fact that the spectrum rises steeply just above the
one neutron separation energy could be an indication of the existence of a
resonance around 7.5 MeV.



Chapter 9

Resumen

Las primeras investigaciones en f́ısica nuclear comenzaron en 1911 cuando
Ernest Rutherford descubrió que cada átomo conteńıa un núcleo cargado pos-
itivamente [1]. Los núcleos pueden caracterizarse por su número de protones
(Z) y por su número de neutrones (N). Para un determinado elemento (un
Z) pueden existir varios isótopos (distinto N). Desde el decubrimiento del
núcleo, más de 2800 isótopos han sido identificados y se ha predecido que
existen más de 7000 que viviŕıan el tiempo suficiente para ser observados [2].
En la figura 9.1 se muestran los núcleos conocidos, representando su número
de protones frente a su número de neutrones. Los isótopos estables apare-
cen dentro de celdas negras, mientras que las otras celdas representan a los
isótopos radiactivos.

A lo largo de la historia, principalmente dos modelos han tratado de
explicar la estructura de los núcleos, “el modelo de la gota ĺıquida” y el
“modelo de capas”. El primero se basa en las similitudes de un núcleo con una
gota de ĺıquido incompresible para explicar sus propiedades macroscópicas.
Pero este modelo no es capaz de predecir la existencia de ciertos números
de nucleones (protones y neutrones) que haćıan a los núcleos ser altamente
estables. Este hecho fue observado por M. Goeppert Mayer [4] y también
por Jensen et al. [5] en un trabajo independiente. Esta evidencia sugirió que
los núcleos, al igual que los átomos teńıan una cierta estructura de capas.
A este modelo se le llamó “modelo de capas”. Para poder reproducir todos
los números mágicos se incluyó la interacción esṕın-órbita [6]. La figura 9.2
muestra las enerǵıas de part́ıcula independiente en un modelo de capas que
incluye los términos de oscilador harmónico y acoplamiento esṕın-órbita.

En general el modelo de capas explica muy bien la estructura de núcleos
cercanos al valle de estabilidad. Para esos núcleos los números mágicos
predichos por Mayer y Jensen son válidos, pero cuando nos vamos a núcleos
con una alta asimetŕıa en el número de neutrones y protones, esos números
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Figure 9.1: Carta de núcleos, mostrando el número de protones (Z) frente
al número de neutrones (N). Los isótopos estables aparecen dentro de cel-
das negras. Las otras celdas representan los isótopos observados. El
color depende de la vida media de dichos isótopos. Esta imagen ha sido
tomada de National Nuclear Data Center, la información ha sido extráıda
de la base de datos de la carta de núcleos Chart of Nuclides database,
http://www.nndc.bnl.gov/chart/.

mágicos dejan de ser válidos. Lo que se ha observado en los últimos años
gracias a los avances tecnológicos que nos han permitido estudiar regiones
lejos del valle de estabilidad, es que ciertas propiedades de los núcleos tienden
a evolucionar cuando se presentan condiciones extremas.

Para estudiar las propiedades de núcleos ligeros ricos en neutrones, en
Agosto de 2010 se realizó el experimento en cinemática inversa S393 en el
laboratorio GSI Helmholtzzentrum für Schwerionenforschung, en Darmstadt
[11], Germany. El mecanismo de reacción utilizado fue el quasi-free scat-
tering, que a diferencia del knockout no se restringe al estudio de las capas
más superficiales sino que permite estudiar las capas más profundas de los
núcleos. En este tipo de reacciones, un nucleón (protón o neutrón) del proyec-
til colisiona con un protón del blanco como si ambas part́ıculas fuesen libres
y no existe interacción alguna entre el núcleo que sobrevive a la reacción (se
considera un mero espectador) y los dos nucleones salientes.

En unos veinte d́ıas de haz se recogieron datos en el setup experimental
de LAND-R3B para diferentes settings de A/Q cubriendo la región desde
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Figure 9.2: Esquema de los niveles de nerǵıa en el modelo de capas de
part́ıcula independiente incluyendo los términos de oscilador harmónico y
acoplamiento esṕın-órbita. Para cada nivel se indican los números cuánticos:
n, l y j. Dentro de los paréntesis se indican las ocupaciones de las diferentes
capas. Los números mágicos aparecen en color gris dentro de un ćırculo.

Z = 4 hasta Z = 10. Los estudios que se pretenden realizar con los datos
tomados en este experimento son muy diversos y comprenden temas como:
medidas de reacciones de interés astrof́ısico relevantes para el proceso r de
nucleośıntesis y reacciones de knockout para estudiar la evolución de las capas
y las estructuras de clusters, no sólo para núcleos cercanos a la ĺınea de goteo
sino también para aquellos que están más allá de ella.

El principal objetivo de este trabajo es el estudio de núcleos en la región
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cercana a N = 14 para Z = 7, 8. Recientemente, se ha descubierto que
esta región de la carta de núcleos es un cierre de sub-capa en el caso de los
isótopos de ox́ıgeno, pero existen evidencias de que este cierre se debilita para
los nitrógenos e incluso desaparece en los carbonos. Para intentar esclarecer
este hecho, y aportar nueva información en esta exótica región de la carta de
núcleos poco conocida, hemos investigado las reacciones de quasi-free scat-
tering (p,pn) y (p,2p) sufridas por los proyectiles 21N y 23,22O, y también
los canales de evaporación de un neutrón para el estudio de los estados no
ligados de estos núcleos.

Para obtener los isótopos de interés, se produjo un haz primario 40Ar en
una fuente de iones y se inyectó en un acelerador lineal, donde se aceleró
hasta una enerǵıa de aproximadamente 490 AMeV. A continuación, este
haz se dirigió hasta el separador de fragmentos (FRS), donde se produce
y selecciona el haz secundario. A la entrada del FRS se colocó un blanco de
producción de Be de 4.011 g/cm2. Al golpear este blanco, por fragmentación
nuclear se producen una serie de isótopos que luego son separados en el FRS
dependiendo de su A/Q. Cuando una part́ıcula con carga Q y masa A viaja
a través de un campo manético de intensidad B experimenta la fuerza de
Lorentz. Si la velocidad inicial de la part́ıcula β es perpendicular al campo
magnético uniforme, la fuerza magnética se iguala a la fuerza centŕıpeta, y
por lo tanto, la part́ıcula se moverá en un ćırculo de radio ρ, con

Bρ =
p

Q
∝ A

Z
· βγ (9.1)

donde p es el momento de la part́ıcula, Q se puede sustituir por Z ya
que no existen estados de carga y γ es el factor de Lorentz. La selección
de un núcleo con un A y Z determinados, se realiza a partir de la selección
de intensidad de campo magnético B, ya que el radio ρ viene fijado por la
geometŕıa de los imanes del FRS. El FRS, además cuenta con la presencia
de detectores que permiten determinar la trayectoria de los núcleos, en par-
ticular en este experimento se usaron dos centelleadores colocados en planos
focales diferentes, que en combinación con otros detectores del dispositivo
experimental LAND-R3B permitieron la identificación de los fragmentos en
velocidad.

Una vez se han seleccionado las especies deseadas, se conducen al área
experimental (Cave C) donde se encuentra el setup (ver figura 9.3). En la
primera parte de Cave C (antes del blanco) se identifican los núcleos en
carga y en velocidad, usando medidas de pérdida de enerǵıa y tiempo de
vuelo, respectivamente. A continuación, los isótopos colisionan con el blanco
de reacción que está situado dentro de una cámara de vaćıo rodeado de ocho
detectores de silicio que se usan para medidas de pérdida de enerǵıa (carga)
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y posición (en X e Y). La cámara de vaćıo está a sus vez rodeada por un
caloŕımero que se usa para medir la enerǵıa de los rayos γ producidos al de-
sexcitarse los núcleos tras la colisión. Este detector, también se usa para iden-
tificar los eventos que se han producido por quasi-free scattering. Después
de la reacción, los fragmentos que viajan hacia delante atraviesan un imán
que los deflecta hacia las distintas ramas (neutrones, protones, part́ıculas
cargadas) de acuerdo a su carga y masa. Los neutrones, que no se desv́ıan al
pasar por el imán, van directamente a un detector de neutrones que mide su
enerǵıa y distribución angular. La rama de fragmentos pesados, está com-
puesta por tres detectores, dos detectores de fibras que miden la posición de
los núcleos en la dirección horizontal y el último mide el tiempo de vuelo y
la posición en X y en Y. En la tercera rama se mide la posición y velocidad
de los protones.

Conclusiones

Para poder obtener información estructural de estos núcleos, se han estu-
diado los siguientes observables f́ısicos: secciones eficaces, distribuciones de
momento, rayos γ y enerǵıa de excitación.

La sección eficaz es un observable f́ısico que refleja la probabilidad de que
una reacción nuclear ocurra. En la tabla 9.1 aparecen tabuladas las secciones
eficaces inclusivas para los diferentes canales. En general, se observa que las
secciones eficaces de los canales (p,pn) son mayores que las de los canales
(p,2p). Este hecho puede explicarse teniendo en cuenta una serie de factores.
El primero de ellos es que estamos estudiando núcleos ricos en neutrones
y entonces existen más neutrones en el núcleo disponibles para reaccionar.
Los factores espectroscópicos de los neutrones extráıdos de la capa 0d5/2 son
mayores porque esa capa esta casi llena en los casos que estamos estudiando.
Además, la enerǵıa de ligadura de los neutrones más externos es menor que
la de los protones, haciendo que sea más fácil arrancar un neutrón. Las
interacciones p-p y p-n, son las resonsables del arranque de un nucleón. En
la región de enerǵıas en la que estamos trabajando (400 - 500 MeV), la sección
eficaz de interacción n-p es mayor que la de p-p [78] contribuyendo de este
modo al aumento de la sección eficaz de los canales (p,pn). Pero, la mayor
contribución al incremento de la sección eficaz de los canales (p,pn), es el
hecho de que en (p,2p) las dos part́ıculas en el estado final son idénticas
permitiendo sólo la configuración T = 1. Sin embargo, en los canales (p,pn)
las configuraciones T = 0 y T = 1 están permitidas, teniendo la primera
una sección eficaz unas cuantas veces mayor que la segunda. Estos cálculos
han sido realizados por A. Moro [84]. Se ha estudiado también cual es la



134 Resumen

Figure 9.3: Esquema del dispositivo experimental usado en el experimento
S393. El haz viene desde la izquierda y encuentra el centelleador POS que
junto con el último detector del FRS mide el tiempo de vuelo que nos permite
identificar los fragmentos en velocidad. Después está colocado ROLU, que
está compuesto por cuatro plásticos centelleadores que pueden moverse para
definir el tamaño y la posición del haz en el blanco. El siguiente detector es
PSP se usa para medidas de posición y pérdida de enerǵıa (Q). En la zona
del blanco tenemos ocho detectores de silicio; los cuatro de la ĺınea de haz
se utilizan para determinar las trayectorias de los fragmentos e identificarlos
en carga; los cuatro que rodean al blanco se usan para la identificación de
los eventos producidos por el mecanismo de reacción quasi-free scattering.
Rodeando al blanco tenemos el caloŕımetro Crystal Ball para medidas de
rayos γ y part́ıculas ligeras emitidas en el poceso de quasi-free scattering.
Los siguientes elementos del dispositivo experimental son: ALADIN: dipolo
de gran aceptancia que desv́ıa las part́ıculas dependiendo de su A/Q; LAND:
determinación de trayectorias y momento de los neutrones; GFI’s: medida
de la posición horizontal de los fragmentos pesados; TFW : posición en X e
Y, pérdida de enerǵıa y tiempo de vuelo de los fragmentos pesados; DCHs:
reconstrucción de la trayectoria de los protones; DTF: medidas de posición,
pérdida de enerǵıa y tiempo de vuelo de los protones.
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dependencia de la seccción eficaz con el número de neutrones y protones,
para los canales (p,pn) y (p,2p) respectivamente. Se observa para el (p,pn)
que la sección eficaz del 23O (N = 15) es mayor que la del 21N y 22O (N =
14). Esto es debido a que el neutrón de valencia del 23O tiene una enerǵıa
de separación menor que los otros núcleos y también puede explicarse en
términos del modelo de capas donde la N = 14 constituye una capa cerrada
con seis neutrones llenando la capa 0d5/2, mientras que la N = 15 tiene un
único neutrón de valencia en la capa 1s1/2. Este comportamiento de la N = 14
ya ha sido observado con anterioridad en trabajos previos como [17, 18, 19].
Por primera vez se han estudiado las capas de protones para estos núcleos
mediante las reacciones (p,2p). Los protones de valencia de estos núcleos se
encuentran todos en la misma capa, la 0p1/2. La diferencia entre el nitrógeno
y los ox́ıgenos, es que estos últimos tienen un protón más y por consiguiente
es más probable arrancarles uno.

Reacción σ(mb)

21N(p,pn)20N 43.1±9.0

21N(p,2p)20C 2.08±0.49

23O(p,pn)22O 63±17

23O(p,2p)22N 5.4±1.3

22O(p,pn)21O 36.1±7.2

22O(p,2p)21N 5.28±0.58

Table 9.1: Secciones eficaces inclusivas para las reacciones (p,pn) y (p,2p) de
los proyectiles 21N, 23O y 22O, corregidas por la eficiencia de Crystal Ball y
en un blanco de hidrógeno.

La anchura y la forma de las distribuciones de momento contienen la
información acerca de la estructura de los proyectiles. El dispositivo exper-
imental usado posee mejor resolución para el momento transversal que para
el longitudinal, por lo tanto las conclusiones extráıdas en este trabajo se han
basado en el estudio de esta componente. En la tabla 9.2, se muestran los
resultados para la anchura a mitad de altura (FWHM) para todos los canales
estudiados. Para obtener la información de la estructura, se realizó un estu-
dio similar al realizado para la sección eficaz. Se ha observado que la FWHM
decrece con el aumento del número de neutrones. Esto puede ser explicado
haciendo uso del modelo de capas, ya que los neutrones de valencia para N
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= 14 están en la capa 0d5/2 que tiene momento angular l = 2, sin embargo
el neutrón de valencia para N= 15 están en la capa 1s1/2 que posee un mo-
mento angular l = 0. Por lo tanto la distibución de momento de l = 0 es más
estrecha. En los canales (p,2p), se observa que la FWHM del 22O es mayor
que la del 21N, esto sucede porque el 22O está en capa cerrada lo cual hace
que el núcleo sea más compacto espacialmente y por lo tanto su distribución
de momento es más extensa. Para hacer un estudio más detallado de las dis-
tribuciones de momento, los datos experimentales han sido comparados con
cálculos teóricos que nos han permitido obtener información espectroscópica.

Reacción FWHM (MeV/c)

21N(p,pn)20N 189.97±33.40

21N(p,2p)20C 203.86±40.61

23O(p,pn)22O 107.56±25.25

23O(p,2p)22N 95.12±50.92

22O(p,pn)21O 240.49±16.22

22O(p,2p)21N 254.54±11.77

Table 9.2: Transversal momentum distribution FWHM for the (p,pn) and
(p,2p) reactions for the projectiles 21N, 23O and 22O.

Los espectros de rayos γ para los núcleos 22O, 21N, 21O y 20N han sido
estudiados midiendo en coincidencia los fragments salientes de la reacción
con los rayos γ en el detector Crystal Ball. Para los isótopos 22O, 21N and
21O, las intensidades relativas de los rayos γ o secciones eficaces exclusivas
de su estado excitado han sido determinadas. Se ha encontrado, a través de
la observación de los rayos γ con enerǵıas de 3199 y 1383 keV, que 22O puede
describirse como una combinación del core 21O en su estado fundamental
acoplado a un neutron el la capa 0s1/2, un core de 21O en su primer estado
excited (3199 keV) 2+ acoplado a un neutrón en la caps 0d5/2 y un core de
21O en su segundo estado excitado (4582 keV) 3+ acoplado a un neutrón en la
capa 0d5/2. Los cálculos de las intensidades relativas realizados están en buen
acuerdo con resultados previos de [17, 85]. El estudio del espectro de rayos
γ del 21N ha revelado que el 22O puede ser descrito como una combinación
del core de 21N o bien en su estado fundamental (esṕın y paridad 1/2−)
acoplado a un protón en la capa 0p1/2 o en su primer estado excitado 3/2−,
donde emitirá un rayo γ con una enerǵıa de 1177 keV. Siendo la sección eficaz
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exclusiva del estado 3/2− (1.7±0.4) mb. Del estudio del espectro de rayos γ
del 21O se ha obtenido que el estado fundamental del 22O puede ser descrito
como el estado fundamental del 21O acoplado a un neutrón en la capa 0d5/2

o como el primer estado excitado a 1218 keV acoplado a un neutrón en la
1s1/2. La sección eficaz exclusiva de este último caso es de (0.85+0.97

−0.85) mb.
Cuando el núcleo posee una enerǵıa de excitación que está por encima de

algún umbral de separación de part́ıcula, la emisión de rayos γ compite con
la emisión de otras part́ıculas. A través de la reconstrucción de la enerǵıa de
excitación es posible el estudio de los canales no ligados situados en el con-
tinuo. En nuestro caso se han estudiado los canales 23O(p,pn)22O∗ →21O+n,
22O(p,pn)21O∗ →20O+n y 21N(p,pn)20N∗ →19N+n por medio de la detección
en coincidencia del fragmento producido después de la evaporación y el
neutrón. Estos estudios han servido para comparar en el caso de la enerǵıa
de excitación del 21O con resultados previos obtenidos por B. Fernández-
Domı́nguez et al. [91]. Se observa en este trabajo la existencia de dos reso-
nancias, una a 4.77 MeV y otra a 6.17 MeV [91]. El estudio del espectro de
enerǵıa de excitación del 20N y del 22O revela existencia de tres resonancias a
4.41±0.07, 5.52±0.10 y 6.74±0.50. Los resultados obtenidos son compatibles
con [91]. La distribución de enerǵıa de excitación analizada para la reacción
el 22O, a través de la 23O(p,pn)22O∗ →21O+n. A pesar de que este caso tiene
muy poca estad́ıstica, el hecho de que el espectro comience justo por encima
de la enerǵıa de separación de 22O podŕıa ser un indicativo de la existencia de
una resonancia. La reconstrucción del espectro de enerǵıa de excitación para
el 20N permitió la determinación de dos resonancias a enerǵıas de 3.2±0.3
MeV y 6.77 MeV. La observación de la primera resonancia podŕıa confir-
mar el resultado previo obtenido en [19], donde observaron un estado en el
continuo a 2.943 MeV.
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Appendix A

SSDs alignment

In this appendix are shown some results of the SSDs alignment performed
using a linear least squares fit. The positions of three of the four in-beam
SSDs were varied to determine the configuration with the minimum distance
between the real hits in the SSDs detectors and the ones defined by a straight
ion trajectory. Two and three dimensional plots for every two offset combi-
nation are shown in figure A.1 for the X coordinates and in figure A.2 for
the Y coordinates. The plots on the left show one SSD offset versus an-
other. The χ2 values are given by the color scale, where violet indicates the
smallest. The black dots in the two dimensional plots mark the position of
the minimum obtained. It is observed from the plots a strong correlation
between the offsets of the first and second SSD, which is not observed with
the fourth SSD. This is due to the fact that the third SSD positions are fixed,
so when the first is moved in one direction the second moves in the same.
This observation was also confirmed by studying the covariance matrix and
the global correlation coefficients.
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Figure A.1: Functional maps for the X coordinates in two (left) and three
(right) dimensional plots for each set of two parameters. The different SSDs
offsets mapped are in the X and Y axes. The Z axis is the functional value,
shown in the color scale in the left plots and in color and height in the right
plots. The minimal areas can be distinguished in the plots, highlighted by a
dot.
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Figure A.2: Functional maps for the Y coordinates in two (left) and three
(right) dimensional plots for each set of two parameters. The minimal areas
can be distinguished in the plots.
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Appendix B

Cross sections

This appendix contains a table summarizing the total inclusive cross sec-
tions for the projectiles 21N, 23O and 22O. The table contains the results for
the different targets and using the two analysis methods described in Sec-
tion 6.1.1. The final inclusive cross sections resulting from this work for the
(p,pn) and (p,2p) reactions can be found in Section 8.
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Target Reaction 2-dimensional σ(mb) 1-dimensional σ(mb)

CH2
21N(p,pn)20N 129±16 130±15

C 21N(p,pn)20N 43.8±8.0 42.9±7.8

H 21N(p,pn)20N 42.4±8.9 43.7±8.6

CH2
21N(p,2p)20C 5.70±0.56 5.76±0.55

C 21N(p,2p)20C 1.69±0.49 1.46±0.45

H 21N(p,2p)20C 2.00±0.37 2.15±0.35

CH2
23O(p,pn)22O 161±28 152±26

C 23O(p,pn)22O 35±18 26±15

H 23O(p,pn)22O 63±17 63±15

CH2
23O(p,2p)22N 12.7±1.8 10.2±1.9

C 23O(p,2p)22N 1.1±1.0 0.67±1.1

H 23O(p,2p)22N 5.8±1.0 4.8±1.1

CH2
22O(p,pn)21O 120±13 135±14

C 22O(p,pn)21O 49.4±5.9 60.6±7.3

H 22O(p,pn)21O 35.4±7.1 37.0±8.1

CH2
22O(p,2p)21N 15.05±0.56 14.01±0.51

C 22O(p,2p)21N 4.17±0.41 3.77±0.44

H 22O(p,2p)21N 5.44±0.34 5.12±0.34

Table B.1: Inclusive cross sections for the (p,pn)- and (p,2p)-type reactions
for the projectiles 23O, 22O and 21N, corrected by the Crystal Ball efficiency.



Appendix C

Inclusive momentum
distributions

This appendix contains the longitudinal and transversal components of
the momentum distribution for the different reactions studied in this work.
The longitudinal and the transversal component of the momentum distribu-
tions were measured in the laboratory frame and then transformed to the
projectile’s rest frame. The reaction channels 23O(p,pn)22O, 23O(p,2p)22N,
22O(p,pn)21O and 22O(p,2p)21N are presented in the next figures. On the
left hand side the momentum distributions for the CH2, carbon and empty
targets are shown and on the right hand side the momentum distributions
for the hydrogen target are shown. Figures C.1, C.2, C.3 and C.4 show the
longitudinal momentum distributions in laboratory frame for the channels
23O(p,pn)22O, 23O(p,2p)22N, 22O(p,pn)21O and 22O(p,2p)21N, respectively.
For the same reactions, figures C.5, C.6, C.7 and C.8 show the longitudinal
momentum distributions in the rest frame of the projectile. Finally, again
for the same reactions, figures C.9, C.10, C.11 and C.12 show the transversal
momentum distributions in laboratory frame.
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Figure C.1: Longitudinal momentum distributions in laboratory frame for
the channel 23O(p,pn)22O.
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Figure C.2: Longitudinal momentum distributions in laboratory frame for
the channel 23O(p,2p)22N.
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Figure C.3: Longitudinal momentum distributions in laboratory frame for
the channel 22O(p,pn)21O.
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Figure C.4: Longitudinal momentum distributions in laboratory frame for
the channel 22O(p,2p)21N.



150 Inclusive momentum distributions

 (MeV/c)
Z

P
500 0 500

) 
(m

b
/(

M
e
V

/c
))

Z
/d

(P
σ

d

0

0.1

0.2

0.3

0.4

0.5

0.6
2CH

Carbon
Empty

 (MeV/c)
Z

P
500 0 500

) 
(m

b
/(

M
e
V

/c
))

Z
/d

(P
σ

d

0

0.05

0.1

0.15

0.2

0.25

Figure C.5: Longitudinal momentum distributions in the rest frame of the
projectile for the channel 23O(p,pn)22O.
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Figure C.6: Longitudinal momentum distributions in the rest frame of the
projectile for the channel 23O(p,2p)22N.
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Figure C.7: Longitudinal momentum distributions in the rest frame of the
projectile for the channel 22O(p,pn)21O.
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Figure C.8: Longitudinal momentum distributions in the rest frame of the
projectile for the channel 22O(p,2p)21N.
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Figure C.9: Transversal momentum distributions in laboratory frame for the
channel 23O(p,pn)22O.
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Figure C.10: Transversal momentum distributions in laboratory frame for
the channel 23O(p,2p)22N.
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Figure C.11: Transversal momentum distributions in laboratory frame for
the channel 22O(p,pn)21O.
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Figure C.12: Transversal momentum distributions in laboratory frame for
the channel 22O(p,2p)21N.
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