
UNIVERSIDADE DE SANTIAGO
DE COMPOSTELA

FACULTAD DE FÍSICA

Departamento de Física de Partículas

Momentum Reconstruction and Pion

Production Analysis in the HADES

Spectrometer at GSI

Memoria presentada para
optar al Grado de Doctor
en Ciencias Físicas por:

Manuel Sánchez García
Abril 2003

Juan A. Garzón Heydt, Profesor Titular

de la Universidad de Santiago de Compostela,

CERTIFICA: que la memoria tituladaMomentum REconstruc-

tion and Pion Production Analysis in the HADES Spec-

trometer at GSI, ha sido realizada porManuel Sánchez García bajo
la dirección de los proferosres Carmen Fernández Cambronero y Juan
A. Garzón Heydt en el Departamento de Física de Partículas de
esta Universidad, y constituye la Tesis que presenta para optar al grado de
Doctor en Física.

Santiago de Compostela, Abril de 2003

Prof. Juan A. Garzón Heydt Manuel Sánchez García

In memoriam

Carmen Fernández Cambronero

A mis padres

Acknowledgements

Agradecimientos

During the time span of this work I have found many people to whom I
owe in some way or the other. All of them have in�uenced not only the work
I am herein presenting, but me as a person too.

I would like to thank prof. Carmen Fernández Cambronero and Juan A.
Garzón Heydt (Hans). They are the persons who gave me the opportunity
to enter this world. Carmen's touch is evident in the design of Hydra and
Hans has been a reliable advisor.

Special thanks go to W. Koenig. The discussions in the o�ce around a
sheet of paper have been certainly enlightening. At least for the two of us,
any other person looking to the paper after two hours of discussion would
only see a seemengly random bunch of lines. It would be di�cult to �nd a
point in the thesis were his advise is directly or indirectly not present.

Long were also the debugging afternoons and nights I spent with my o�ce
mate and friend, Dennis Bertini. We started many projects, not all of them
saw light though. I had the fortune to share o�ce with another excellent
person, Ilse Koenig, we had time to discuss about many di�erent things.

Romain Holzmann has been the head of the analysis group for years and
as such he has done a superb job in keeping it together and maintaining
the synergy. Nothing could have been done without those conditions. He
has also been the person who suggested me to start working on momentum
reconstruction and has provided advice when requested ever since.

I would also like to thank J. Díaz for his thorough revision of the pion
analysis chapter in this writing.

During this time I had the opportunity to know many di�erent people,
the list is too long. It is them who made this experience one to cherish.
I would like to thank Antonio, I could possibly not have survived the �rst
month in Germany without him and Hector, a long term companion.

There have been nice and not so nice periods during these years, in all of
them I could count on my family. They have been my greatest support ever.
Thanks go to Toño for keeping me in the track all this time with his acid
critics. Finally, there has been one person who has recently incorporated to
my life and has been pushing me forward ever since. Thanks Yoli.

VII

Contents

1 Resumen/Summary 1

1.1 El experimento Hades . 1

1.2 Software de reconstrucción . 5

1.3 Reconstrucción del vértice . 6

1.4 Reconstrucción de momentos 7

1.5 Producción de piones . 8

2 The Hades experiment 11

2.1 The Hades physics . 12

2.1.1 Previous experiments 13

2.1.2 Theoretical frame . 13

2.2 The accelerator . 18

2.3 The HADES spectrometer . 18

2.3.1 Requirements . 19

2.3.2 Overview of the spectrometer 21

2.3.3 The Start and Veto detectors 22

2.3.4 The Rich detector . 22

2.3.5 The magnetic spectrometer: Mdc and Ilse 25

2.3.6 The Tof and Tofino detectors 27

2.3.7 The Shower detector 28

2.3.8 The trigger scheme . 29

2.3.9 Data Acquisition system (Daq) 31

2.4 The Hades reconstruction software 31

3 The Hydra event reconstruction software 35

3.1 Software requirements . 37

IX

3.1.1 The �nal user's point of view 37

3.1.2 The developers view 40

3.1.3 Technical requirements 40

3.2 System overview . 41

3.3 The HADES class . 44

3.4 Data output . 46

3.5 Data structures . 47

3.5.1 The event . 48

3.5.2 The categories . 51

3.6 Data input . 56

3.6.1 Input from the Data Acquisition System:
HldSource . 57

3.6.2 Partially reconstructed data: HRootSource 60

3.7 Reconstruction parameters management 60

3.7.1 Input and output: HParIo 62

3.7.2 The runtime database 62

3.8 Task management . 64

3.9 Hydra's Initialization . 66

3.9.1 Spectrometer con�guration 67

3.9.2 Data base initialization 68

3.9.3 Tasks selection . 68

3.9.4 Selecting the data source 69

3.9.5 Initialization internals 69

3.10 Event processing . 71

3.11 HGeant simulation packages 72

4 Vertex reconstruction 77

4.1 Motivation . 77

4.1.1 Segmented target setup 77

4.1.2 Secondary targets suppression 79

4.1.3 Track �tting . 79

4.1.4 Alignment . 80

4.2 Reconstruction algorithm . 80

4.2.1 Least Squares Method algorithm 81

4.2.2 Error propagation . 83

X

4.2.3 Robust vertex �t . 84

4.2.4 Functional minimization 87

4.3 Achieved resolution . 87

4.3.1 Systematic error sources 89

4.4 Application to real data . 92

5 Momentum reconstruction 97

5.1 Motivation and requirements 98

5.1.1 Applications of momentum reconstruction 99

5.2 Reference trajectories algorithm 99

5.2.1 Fitting procedure . 99

5.2.2 Tabulating F . 102

5.2.3 Derivative matrix computation 109

5.2.4 Implementation considerations 112

5.3 �Kick plane� algorithm . 113

5.3.1 Charged particle motion in a magnetic �eld 114

5.3.2 Obtaining momentum from de�ection 115

5.3.3 Kick surface . 117

5.3.4 Kick plane parameterization 121

5.4 Final resolutions . 134

5.4.1 Low resolution: inner chambers and Meta 135

5.4.2 Medium resolution: inner chambers and Mdc3 141

5.4.3 Full resolution: full setup 149

5.5 Track matching . 152

5.5.1 Matching between Mdc and Meta 156

5.5.2 Matching inner and outer Mdcs 169

5.5.3 Matching Mdc track candidates with Meta 175

6 Pion production 183

6.1 Experimental setup . 184

6.2 Particle Identi�cation . 185

6.3 Production ratios . 189

6.3.1 �+�� ratio . 189

6.3.2 � to proton ratio . 191

6.4 Mass . 192

XI

6.5 Transverse momentum spectra 194

6.5.1 Particle Identi�cation 195

6.5.2 Energy loss correction 195

6.5.3 Acceptance correction 200

6.5.4 E�ciency determination and noise correction 203

6.5.5 Results on 12C + 12C simulation at 2.0AGeV 212

6.5.6 Real data �t to a thermal model 212

6.6 Medium resolution data . 217

7 Conclusions 223

A UML notation 225

XII

Chapter 1

Resumen/Summary

El presente trabajo se enmarca dentro de la colaboracion internacionalHades.
Ésta es una colaboración de mas de 100 investigadores en la que participan
18 laboratorios de 8 paises europeos. La sede central está en el instituto Gsi
(Gesselschaft für Schwerionenforschung) en Darmstadt, Alemania. Es allí
donde se dispone del acelerador de partículas y del espectrómetro necesarios
para el experimento.

Las tareas necesarias para llevar Hades a buen puerto son dispares. En
este documento se trata fundamentalmente del �software� de reconstrucción
de momentos. Aún siendo esa la parte central, el documento abarca desde
la creación del marco o estructura (�framework�) de análisis común al expe-
rimento, hasta la aplicación de los algoritmos de reconstrucción de momento
al análisis de producción de piones.

Lo aquí presentado representa tan sólo una fracción de todo el trabajo
realizado dentro del grupo de análisis en Hades, y éste es a su vez una
fracción del realizado por la colaboración. El objectivo es combinar esfuerzos
de cara a producir un incremento del conocimiento cientí�co.

1.1 El experimento Hades

El espectrómetro Hades (High Acceptance Di-Electron Spectrometer) está
instalado en el Gsi. El Gsi es un instituto alemán dedicado entre otras cosas
a la física de iones pesados. Para ello cuentan con un acelerador capaz de
alcanzar energias entre 1 y 2 GeV por nucleón para iones pesados, como el
uranio, o ligeros, como el neón, respectivamente.

El principal objectivo de Hades es la contribución al conocimiento de las
propiedades no perturbativas de Qcd, a través del estudio de modi�caciones

2 Resumen/Summary

en las propiedades de la materia hadrónica en un medio denso y caliente.
Un medio de esas características es el que se forma en las colisiones entre
iones pesados. Se puede hablar de distintas fases en una colisión de este
tipo. En una primera fase, los iones al colisionar dan lugar a una región de
alta densidad (hasta 3 veces la densidad nuclear normal) y temperatura (en
torno a 80MeV). Esta fase dura un período de tiempo muy corto (unos 10
fm/c). Tras ella sobreviene una expansión, debida a la presión acumulada,
durante la cual se suceden las interacciónes inelásticas entre nucleones. Estas
interacciones dan lugar a la formación de resonancias y estados excitados que
decaen emitiendo nuevas partículas (fundamentalmente piones). Al cabo de
un cierto tiempo, los nucleones estan separados y dejan de producirse reac-
ciones inelásticas, de modo que la composición hadrónica permanece estable;
a esta fase se la llama hadronización o congelación.

Para estudiar la fase de alta densidad necesitamos sondas que sean sen-
sibles a lo que allí ocurre y que no se vean afectadas por la multitud de
procesos que tienen lugar en las fases �nales de la colisión, de modo que en
el estado �nal conserven memoria de la fase densa. Unas sondas que veri�-
can estos requisitos son los mesones vectoriales: �, ! y �. Éstos tienen tres
características fundamentales:

� Una vida media corta, del orden o menor que la duración de la fase de
alta densidad en la colisión. Esta característica posibilita el hecho de
que una de estas resonancias decaiga en la fase densa, transcurriendo
toda su vida en dicha fase.

� Un canal de desintegración en e+e�. Cuando uno de los mesones vecto-
riales decae en la zona de alta densidad, puede hacerlo en un par e+e�.
Estas partículas, al ser leptones, no interaccionan por vía fuerte con el
resto de participantes. De esta manera, en el estado �nal, mantienen
memoria de las condiciones en que fueron producidas. A través de un
análisis de masa invariante de los leptones en el estado �nal es posible
reconstruir la masa del mesón originario.

� Sensibilidad de las propiedades básicas de los mesones a la densidad
del medio en que fueron producidos. Se espera que a altas densidades
se produzca una restauración de simetría quiral en Qcd, que llevaria
a la alteración de las masas de los hadrones y por ende también de los
mesones vectoriales.

En de�nitiva, la técnica consiste en la identi�cación de pares e+e� prove-
nientes de desintegraciones de mesones vectoriales y el cómputo de sus masas

1.1 El experimento Hades 3

invariantes. Las di�cultades para la implementación de esta idea son variadas
y condicionan el diseño del espectrómetro:

� Se precisa de una resolución en masa invariante del orden del 1% en la
región del mesón !, de modo que se pueda aislar su señal sobre el fondo
producido por otras fuentes. Para alcanzar dicha resolución, se necesita
un espectrómetro magnético de modo que se pueda medir el momento
a través de la de�exión en el campo. Para alcanzar altas resoluciones
se necesita de un elevado campo o alta precisión en la medida de la
dirección de las partículas antes y después del mismo. En el caso de
Hades, dado el efecto de multiple scattering, es recomendable reducir
también el tamaño del detector. Asimismo, la necesidad de una alta
aceptancia geométrica implica la no utilización de campos excesivos.
En consecuencia, el espectrómetro magnético de Hades consta de un
imán superconductor que crea un campo toroidal compacto antes y
después del cual se colocan sendos pares de detectores de deriva (Mdc),
responsables de la medida de la direccion de la partícula antes y después
de la de�exión.

� Los leptones no son las únicas partículas producidas, habiendo también
un mar de hadrones y leptones procedientes de otras fuentes como �-
Dalitz. Por esa razón, Hades cuenta con detectores especializados en
rechazar el fondo hadrónico: un detector tipo Cherenkov de umbral en
la parte interior, así como detectores de tiempo de vuelo y Pre-Shower
en la parte posterior (detrás del imán).
El detector Cherenkov se basa en la producción de luz al pasar partícu-
las cargadas por un medio con una velocidad superior a la de la luz en
ese medio. Como quiera que los leptones son partículas ligeras y por
tanto rápidas en comparación con los hadrones, es posible distinguirlos
en base a la producción o no de luz Cherenkov, escogiendo debidamente
el radiador.
Los detectores de tiempo de vuelo permiten identi�car leptones medi-
ante una medida directa de su velocidad.
Por su parte el Pre-Shower analiza el tipo de cascada producida por
cada partícula al interaccionar con la materia, distinguiendo los lep-
tones por generar cascadas de tipo electromagnético.

� La baja relación de desintegración (o �branching ratio�) (� 10�5) del
canal de desintegración de leptones trae consigo varias consecuencias
sobre el diseño del espectrómetro, si es que se quiere obtener datos es-
tadísticamente signi�cativos en una cantidad razonable de tiempo. Así,

4 Resumen/Summary

es necesario disponer de una gran aceptancia para maximizar la pro-
babilidad de detectar los pares producidos. Es también necesario operar
con altas tasas de contaje en los detectores de modo que la intensidad
del haz primario se pueda elevar, hasta los 108sucesos=s, y con ella el
numero de interacciones por segundo. Una consecuencia derivada de
las altas intensidades de operación es la necesidad de un esquema de
�trigger� o disparo, capaz de seleccionar sucesos con candidatos a pares
de leptones, de modo que se reduzca la cantidad bruta de datos a tratar
por varios órdenes de magnitud. El esquema de Hades se basa en tres
niveles:

� En un primer paso se seleccionan colisiones centrales. Ésto se
hace poniendo un corte en la multiplicidad mínima de partícu-
las cargadas registradas en los detectores de tiempo de vuelo, los
cuales cubren toda la aceptancia. Con esto se consigue un factor
de reducción 10.

� En un segundo paso se forman candidatos a dileptones usando
conjuntamente la información de los detectores Cherenkov, tiempo
de vuelo y Pre-Shower. Se requiere una identi�cación positiva
como leptones por esos detectores, así como que el par formado
tenga un ángulo de apertura mínimo y su masa invariante caiga
en un cierto rango. A través de este procedimiento se consiguen
factores de reduccion del orden de 100.

� En el tercer paso, aún no implementado, se suma la información
preliminar de los detectores Mdc para mejorar el cómputo de la
masa invariante de los candidatos a dileptones formados en el paso
anterior. Re�nando así el corte en masa invariante. El factor de
reducción adicional es del orden de 10.

� Para la obtención de secciones e�caces absolutas se necesita normalizar
las medidas a la intensidad del haz. Para ello se cuenta con un de-
tector de diamante colocado antes del blanco en la linea de haz. Este
detector cumple la doble función de marcar el tiempo de inicio para
los detectores de tiempo de vuelo, así como la de contaje del numero
de partículas incidente. Por ello debe ser capaz de tolerar tasas de
adquisición muy altas (� 108s�1)

1.2 Software de reconstrucción 5

1.2 Software de reconstrucción

La función de los detectores es la de medir características de las partículas
producidas en cada suceso que tenga lugar. Ésto lo hacen recogiendo gran
cantidad de señales electrónicas por suceso. Así pues, aparte de dichos detec-
tores, es necesaria la existencia de un programa de reconstrucción capaz de
interpretar las señales electrónicas y extraer a partir de ellas información con-
tenido físico de más alto nivel. El nombre Hydra se utiliza en Hades tanto
para signi�car dicho programa de reconstrucción así como el �framework� en
el que se basa; aqui trataremos del �framework�.

Hydra está implementado en C++ y basado en el paradigma de pro-
gramación orientada a objetos. Dos características fundamentales de este
paradigma son la encapsulación y el polimor�smo. La encapsulación hace
referencia a que el código se divida en entidades cerradas con sentido semán-
tico pleno (clases) que interaccionan con su ecosistema a través de interfaces
bien de�nidos. La encapsulación es pieza clave para diseñar un programa
modular, característica necesaria cuando sobre él van a trabajar distintos
grupos de programadores, posiblemente separados geográ�camente. En esas
condiciones la modularidad, si no es excesiva, reduce el nivel de interdepen-
dencias entre elementos del código y por tanto su complejidad. Una menor
complejidad lleva consigo un menor coste de mantenimiento y mayor facilidad
para la evolución del código.

Otra característica fundamental es el polimor�smo; a éste se llega a traves
de la �herencia�. Decimos que una clase hija hereda de otra madre cuando
implementa todas las funciones de la madre y contiene sus mismos miembros
de datos. La herencia permite la representación de la jerarquía �es un�. La
clase hija puede extender a la clase base con nuevas funciones y propiedades,
pero tambien puede rede�nir el comportamiento de las funciones de la clase
base. Dado que el interfaz de�nido en la clase base es válido también para la
hija, cualquier otro objeto puede hacer uso de ese interfaz sin necesidad de
saber si trata con la clase madre o la hija, pero obteniendo comportamientos
distintos en ambos casos. A esto se le llama polimor�smo.

El polimor�smo es una herramienta fundamental a la hora de diseñar un
�framework�. La diferencia entre un �framework� y una librería es que en el
segundo caso es el usuario de la librería el que controla el �ujo del programa.
En el caso del �framework�, el usuario extiende un diseño básico proporcio-
nando nuevas funcionalidades, ésto es hecho a través del polimor�smo.

Hydra es un �framework� para el procesado de sucesos registrados en
un espectrómetro. En ese sentido, distingue entre los datos a procesar y los
algoritmos necesarios para procesarlos, de�niendo interfaces especí�cas para

6 Resumen/Summary

ambos casos.

Todos los algoritmos derivan de una clase base: HTask. Ésta se re�ere a
un único algoritmo. Como clases hijas se proporcionan contenedores capaces
de albergar secuencias y grafos de algoritmos. El conjunto de estas clases
forma uno de los subsistemas de Hydra.

Otro subsistemas son el encargado de gestionar los parámetros de los
distintos algoritmos, el encargado de leer y guardar los datos de sucesos de
forma persistente, el encargado de proporcionar acceso a datos en tiempo de
ejecución etc.

Todos ellos forman un esqueleto puesto al servicio de los desarrolladores
de algoritmos para que éstos, al extender el �framework�, lo conviertan en un
programa completo de reconstrucción.

1.3 Reconstrucción del vértice

Uno de los algoritmos que corren dentro de Hydra es el de reconstrucción
de vértice. El objectivo de este algoritmo es obtener la posición espacial del
vértice de interacción en una colisión. Para ello se cuenta con la información
de la trayectoria de las trazas, registradas por las Mdc, que salen del punto
de interacción.

En primera aproximación podemos suponer que las trayectorias antes
del imán son líneas rectas. En este caso el vértice será un punto común a
todas ellas. Como quiera que la resolución �nita de los detectores hace que
las trazas no se corten en un único punto, es necesario rede�nir el vértice
como el punto de máxima aproximación al conjunto de trazas. Para obtener
dicho punto se puede minimizar una funcional de�nida como la suma de
las distancias al cuadrado a cada una de las rectas, dando así lugar a un
estimador para el vértice del tipo de Mínimos Cuadrados o �Least Squares
Method� (Lsm).

El mínimo de Lsm así de�nido se puede encontrar de forma analítica. Sin
embargo, en la anterior de�nición se ha obviado el efecto de la resolución en la
determinación de las trazas. Cuando esa resolución se traslada a la cantidad
de información que cada traza da sobre la posición del vértice ocurre que no
todas son iguales. Así por ejemplo, una traza paralela al eje z no contiene
ninguna información sobre la coordenada z del vértice, aunque sí sobre x e y.
Para tener ésto en cuenta se introducen pesos en la funcional haciendo que
deje de ser lineal en las coordenadas del vértice y por tanto que deje de ser
resoluble analíticamente.

1.4 Reconstrucción de momentos 7

También es necesario añadir pesos extra para compensar el efecto de los
�puntos lejanos�. Una característica común a los métodos basados en Lsm
es que la presencia de puntos fuera de la tendencia común tiene efectos muy
negativos sobre la estimación �nal de parámetros. Esta situación se puede
mejorar añadiendo pesos adicionales que limiten la contribución al funcional
de aquellos puntos. Los pesos introducidos son de nuevo no lineales en las
coordenadas del vértice.

Dadas las no linealidades, se impone la necesidad de un algoritmo de
minimización numérica. En este caso el algoritmo es iterativo y consiste
en utilizar las coordenadas del vértice cada iteración para calcular los pesos
en la iteración posterior. El algoritmo converge típicamente al cabo de 10
iteraciones.

1.4 Reconstrucción de momentos

Un conjunto de algoritmos de gran importancia para Hades son los de de-
terminación de momento. Se trata de un conjunto de ellos, y no de uno sólo
porque existen varios, desarrollados respondiendo a diferentes necesidades
del espectrómetro; necesidades éstas derivadas de la voluntad de tomar y
analizar datos aún cuando no todos los detectores están disponibles. Cada
algoritmo tiene ventajas e inconvenientes.

Basicamente hay dos algoritmos, aplicados a tres con�guraciones de de-
tectores. Los algoritmos son �Kick Plane� y �Trayectorias de Referencia�.
Las tres con�guraciones consideradas corresponden al numero de cámaras
Mdc disponibles en cada caso. Cada cámara añadida supone un salto en la
resolución alcanzable así como en el nivel de redundancia en los datos. El
sistema completo consta de 4 cámaras, 2 delante y 2 detrás del imán. Las
dos cámaras antes del imán están siempre disponibles mientras que detrás
del imán puede haber dos, una o ninguna.

El algoritmo de kick plane se basa en la idea de que la de�exión de
una traza en un campo magnético es proporcional a la integral de camino
del campo a lo largo del recorrido de la traza. Siendo esto asi, se puede
sustituir la integral por el producto de un campo promedio y la distancia
total recorrida. Una reducción en la distancia recorrida se puede compensar
con un aumento en el campo promedio. En el límite en que la distancia tiende
a cero toda la de�exión ocurre en una super�cie. De este modo podemos
modelar la traza como dos lineas rectas que se cruzan en un punto sobre
la super�cie de de�exión. La relación entre de�exión y momento vendra
entonces determinada por constantes que solo dependen de ese punto. Así

8 Resumen/Summary

pues es posible tabular dichas constantes en base a un Monte Carlo, para
luego ser usadas a posteriori.

El algoritmo de trayectorias de referencia se basa en la utilización de un
Monte Carlo para construir una tabla de todas las trazas posibles. Para cada
traza en la tabla se registran sus puntos de intersección con cada uno de los
detectores y se almacenan. Cuando se necesita calcular el momento para una
traza real basta con buscar la traza más parecida en la tabla y realizar una
interpolación lineal teniendo en cuenta a los vecinos más proximos. Éste es
el método que se utiliza para conseguier la máxima resolución.

El método del Kick Plane puede aplicarse a todos los escenarios, pero
es especialmente indicado para aquellos en los que parte de las Mdc están
ausentes, ya que el conocimiento de la super�cie de de�exión sirve como
apoyo para el emparejamiento de trazas.

Cuando no hay ninguna cámara Mdc detrás del imán la redundancia
disponible es baja. En ese caso se utiliza los detectores más externos (tiempo
de vuelo y Pre-Shower) para obtener un punto sobre la traza tras el campo.
Mientras en la parte interior se conoce una linea recta, que es la de entrada
en el campo. Entonces el método consiste en extrapolar esa recta hasta la
super�cie de de�exión y anotar el punto de intersección. La unión de dicho
punto con el proporcionado por los detectores externos proporciona la recta
correspondiente a la traza detrás del imán. Conocidas ambas trazas se puede
medir la de�exión y, por ende, el momento.

Como quiera que el campo es toroidal y la de�exión ocurre fundamen-
talmente en el ángulo polar, tan sólo queda una variable redundante: la
diferencia entre el azimut de las trazas antes y después del imán. A primer
orden esa diferencia debe ser cero, permitiendo el emparejamiento de trazas
al proporcionar un criterio que distingue las combinaciones buenas de las que
no lo son.

Cuando hay una o dos cámaras externas, se dispone de mas variables re-
dundantes para usar en el emparejamiento de trazas. En total 3: la de�exión
azimutal y dos variables más dadas por la medida de la dirección de la traza
en las Mdc externas.

1.5 Producción de piones

El presente trabajo no estaría completo sin la aplicación de los algoritmos
anteriormente presentados al análisis de datos reales.

Se ha estudiado la producción de piones en colisiones 12C+ 12C a 2AGeV
utilizando datos tomados en Noviembre del 2001.

1.5 Producción de piones 9

En el primer estudio se demuestran las capacidades de identi�cación
de partículas de Hades, en concreto de hadrones. La idea básica es que
disponemos del momento de las partículas y también de su tiempo de vuelo
así como de la distancia recorrida. Con esa información es posible calcular la
velocidad de cada partícula y representar su momento frente a la velocidad.
Dado que ambas variables estan relacionadas por la masa en reposo de la
partícula y que ésta es distinta para cada tipo de ellas, en la representación
se observan curvas correspondientes a los distintas especies: piones negativos
y positivos, protones etc.

Lo siguiente es mirar las razones de producción entre las distintas especies.
Así esperamos el mismo número de piones positivos que negativos, con las
devidas correcciones por aceptancia. También se espera, en base a medidas
anteriores, que el número total de piones esté en torno al 10% del número de
protones. Ambos resultados son reproducidos en Hades.

Un resultado de mas alto nivel es el espectro de momento transverso de
piones negativos. Se espera que este responda básicamente a la superposición
de dos distrubuciones térmicas (de Boltzmann). Se usan los piones negativos
porque son más fáciles de identi�car. Es de más alto nivel porque requiere
una serie de correcciones para poder ser comparado con la información en la
literatura

� Se necesita una correción por perdida de energía. Los distintos métodos
de reconstrucción de momento estiman el momento que las partícu-
las tienen al entrar en el sistema Mdc. Sin embargo, hasta llegar a
ese punto una partícula ha podido perder energía por ionización en
el blanco o en el detector Cherenkov que se encuentra por el camino.
Esta perdida de energía viene bien reproducida por la fórmula de Bethe-
Bloch y conlleva una pérdida de momento, con lo que la estimación del
Kick Plane o Trayectorias de Referencia presenta un error sistemático
por defecto que debe ser corregido.

� Se precisa una corrección por aceptancia del espectrómetro

� Se necesita de una estimación de la e�ciencia y nivel de ruido introduci-
dos por los algoritmos de emparejamiento de trazas. Ésto es debido a
que, en algoritmos como el Kick Plane, las trazas de ruido tienden a
acumularse en la zona del espectro de bajo momento, desvirtuando las
medidas.

Al cabo de las distintas correcciones se obtienen resultados comparables con
los de anteriores experimentos.

10 Resumen/Summary

Chapter 2

The Hades experiment

Investigation on the properties of nuclear matter in extreme conditions (high
temperature and densities) is essential to the understanding of processes like,
for example, those giving birth to the Universe in the Big Bang and its later
evolution, since at those moments the medium was one of high temperature
and density. To some extent we can �nd similar conditions nowadays inside
dense neutron starts. This line of investigation contributes also to obtain the
equation of state of nuclear matter which is not only important to Nuclear
Physics, but also to understand physics processes taking place during the
latest stages of stars evolution

Hades (6; 5), together with other experiments atGsi1, Cern2 andBnl3,
contributes to that line of investigation. The focus of Hades is the study
of in medium modi�cations to the properties of vector mesons. Calculations
based on Qcd, and some hadronic models, predict detectable changes in
the width and mass of hadrons produced in a dense nuclear medium. From
the point of view of Qcd such modi�cations could be a signal of the so
called chiral symmetry restoration, which is a non perturbative phenomenon.
Hades' main goal is to provide experimental insight for the study of Qcd on
the non perturbative regime and possibly see a signal of the expected chiral
symmetry restoration.

1Gessellschaft für SchwerIonen forschung
2Centre Europee de Recherche Nucleaire
3Brookhaven National Laboratory

12 The Hades experiment

2.1 The Hades physics

When it comes to observing the characteristics of vector mesons in dense
nuclear matter several techniques have been used. The basic idea is to pro-
duce them in heavy ion collisions and then analyze the di�erent variables in
the collision's �nal state. The di�erent particle species: pions, kaons, etc.
have been studied. Hades is focused on the study of lepton pairs produced
in the decays of vector mesons inside the hot, dense medium. However, the
spectrometer is also able to detect and study the properties of hadrons.

During the initial stage of a heavy ion collision at 2 AGeV, a compression
phase is created where density reaches values of up to 3 times that of nor-
mal nuclear matter. This compression phase lasts for about 10 fm/c and is
followed by an expansion phase. During the expansion, meson scattering, ab-
sorption and reemission equilibrate the various hadronic species. After a few
tens of fm/c the expansion makes inelastic reactions between constituents
impossible, hence the hadrochemical composition is frozen. This is the so
called freeze out point.

What we want to study is the high density phase. For that purpose light
vector mesons are a well suited probe. Their lifetimes (see table 2.1) are
short enough for them to have a signi�cant chance of decaying in the same
hot and dense medium were they are created. When they decay, they may
do so in two leptons. Since leptons do not experiment strong interaction,
when the leave the interaction zone they retain memory about how they
were produced. Hence they carry information about the properties of the
vector mesons in the dense medium. Whether if their masses or widths have
changed due to a partial restoration of chiral symmetry we should be able to
tell by looking at the lepton pairs' invariant masses.

The problem is the low branching ratio for the dilepton channel in the
vector meson decays. This needs to be compensated with high statistics,
which translate into a need for a high acceptance spectrometer and high beam
intensities. Another problem is the presence of several background sources,
like pion Dalitz decays, which also produce leptons (and lepton pairs) so that
the vector meson signal is sitting on top of a continuous background.

Vector mesons are hadrons of spin 1, either isoscalars (isospin 0) or isovec-
tors (isospin 1). They are composed of a quark and an anti-quark. The
neutral component of the � triplet and ! meson carry the same quantum
numbers of the photon, which allows their decay in dileptons through vir-
tual photon. The � meson is made of strange quarks, this manifests in the
presence of kaons in its decay channels. If we look to the mean life of these
mesons it seems the best candidate to be used as a probe is the � meson since

2.1 The Hades physics 13

Meson Mass Width c� (fm) Dominant channel e+e�

(MeV
c2

) (MeV
c2

) branching ratio

� 768 152 1.3 �� 4:4� 10�5

! 782 8.43 23.4 �+���0 7:2� 10�5

� 1019 4.43 44.4 K+K� 3:1� 10�4

Table 2.1: Light vector mesons life times. Data from (1)

it has a large chance of decaying in the dense zone. However, it has a very
large width, complicating its recognition on top of the background. On the
other hand the ! meson has a smaller chance of decaying in the interaction
zone, but it is a well de�ned resonance. This is also true for the � meson, but
its extended lifetime makes it less likely to decay in the high density phase.
Nevertheless, all three of them contribute and will be studied.

2.1.1 Previous experiments

Other experiments have made similar studies at higher energies, like He-
lios1-3(8) or more recently Ceres(10; 11; 12) at Cern. In particular
Ceres �nds an excess in the lepton pair production for intermediate invari-
ant masses from 0.2 to 1.5 GeV (see Fig. 2.1) which cannot be described by
the superposition of the conventional hadronic sources. This excess is only
observed in heavy ion systems, like Sulfur on Gold, but not in lighter systems
like proton on Beryllium or proton on Gold.

In the energy regime of Hades, the only existent data are from the orig-
inal Dls (13; 14; 15; 16; 17) experiment at Bevalac, Berkeley. The Dls
data came in two generations. The �rst generation was well reproduced in
transport model calculations by an incoherent sum of dilepton yields from pn
bremsstrahlung and free hadron decays. On a second generation (Fig. 2.2)
with more statistics and a re�ned analysis, an excess of up to a factor 7 was
found in the intermediate mass region. The problem with Dls was, how-
ever, the limited mass resolution and acceptance (0.5-1%) which translated
in rather low statistics.

Hades aims to improve on the resolution and statistics from previous
experiments to be able to put the di�erent models to test.

2.1.2 Theoretical frame

When it comes to explanations of the data, several models are available (see
(3; 4) for a couple of reviews).

14 The Hades experiment

mee (GeV/c2)

(d
2 N

ee
 /d

ηd
m

)
/ (

dN
ch

 /d
η)

 (
10

0
M

eV
/c

2)-1

CERES/NA45 S-Au 200 GeV/u

2.1 < η < 2.65
p⊥ > 200 MeV/c
Θee > 35 mrad
〈dNch /dη〉 = 125

charm

π
→

 e
eγ

ρ/
ω

 →
 e

e

φ
→

 e
e

η →
 eeγ

η , → eeγ

ω → eeπo

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 0.5 1 1.5

Figure 2.1: Ceres results: the data points correspond to the experimental
data, including the statistical error bars and the systematical errors (brack-
ets). The individual contributions to the theoretical predictions are quoted
in the graph. the dilepton enhancement is apparent for intermediate masses.
Taken from (10)

2.1 The Hades physics 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10-4

10-3

10-2

10-1

100

101

102

π0

ω

ρ

ω->π0e+e-

all

∆

πN

pn

N*

π+π−

η

C+C, 1.0 A GeV
'free' spectral function

dσ
/d

M
 [

µ b
/(

G
eV

 c
2)]

M [GeV/c2]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10-3

10-2

10-1

100

101

102

103

π0

all

N*

ω->π0e+e-

πN

pn
η

∆

ω

ρ
π+π-

Ca+Ca, 1.0 A GeV
'free' spectral function

dσ
/d

M
 [

µ b
/(

G
eV

 c
2)]

M [GeV/c2]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

ρ

all

π
+
π

−

C+C, 1.0 A GeV
full spectral function [26]

d σ
/d

M
 [

µb
/(

G
eV

 c
2)]

M [GeV/c
2
]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

all

ρ

π+π-

Ca+Ca, 1.0 A GeV
full spectral function [26]

d σ
/d

M
 [

µb
/(

G
eV

 c
2)]

M [GeV/c
2
]

Figure 2.2: Comparison between the di�erential cross section for dilepton
production in Dls and the Buu transport calculation. In the left part,
the � free spectral function is used. In the right part, the full in medium
spectral function of � is used in the calculation of the decay yields and �+��

annihilation. The thin lines indicate the individual contributions from the
di�erent production channels: starting from low masses, Dalitz decay �0 !
e+e� (dashed line), � ! e+e� (dotted line), � ! Ne+e� (dashed line),
! ! �0e+e� (dot-dashed line), N+ ! Ne+e� (dotted line), proton-neutron
bremsstrahlung (dot-dashed line), �N bremsstrahlung (dot-dot-dashed line).
Around 0.8 GeV: �0 ! e+e� (sashed line), ! ! e+e� (dot-dashed line) and
�+�� ! �0 ! e+e� (dot dashed line). Taken from (9).

16 The Hades experiment

From the point of view of Qcd the variation in the meson's mass and
width may be due to a partial restoration of chiral symmetry at high baryonic
densities. The Qcd Lagrangian with (u,d,s) quarks can be divided in two
parts:

LQCD = L0
QCD +�Lmass

with

L0
QCD = �qi�(@

� � igG�)q +
1

4
F��

�Lmass = ��umuu� �dmdd� �smss

where G� are the gluon �elds, mi the quark masses and q = (u; d; s). Let's
consider the projector

qR;L =
1

2
(1� 5)q

It separates the mass-less quark �eld into left and right components which
remain uncoupled under the gluon �eld interaction (as long as they are mass-
less). Then L0

QCD is invariant under the chiral �avor group SU(3)R�SU(3)L.
The�Lmass term breaks chiral symmetry explicitly. All the terms in�Lmass,
the part breaking chiral symmetry, contain a mixing term of the type

�qq = �qLqR + �qRqL

Hence a restored chiral symmetry can be characterized by a h�qqi0 = 0.
In other words, the spontaneously broken chiral symmetry leads to a �nite
quark condensate in vacuum:

h�qqi0 ' �(245MeV)3

Lattice Qcd calculations, at 0 chemical potential, show a dropping quark
condensate in vacuum for increasing temperature as well as in Chiral Per-
turbation Theory computations and other models. The reduction in the
quark condensate may lead of a reduction in the meson's mass in the nuclear
medium, as seen in studies based on Qcd sum rules.

2.2 The accelerator 17

Figure 2.3: Gsi's accelerator complex

18 The Hades experiment

2.2 The accelerator

The accelerator machine providing the beam for Hades is located at the
Gsi4 Institute in Darmstadt, Germany.

The accelerator complex consists of 4 major structures : a linear accel-
erator (Unilac) injecting ions into a 60 meter diameter Synchrotron (Sis).
From there the beam can be extracted to the FRagment Separator (Frs), to
the Electron Storage Rings (Esr) or the experimental areas.

The Unilac was constructed in 1975 as a Wideroe-Alvarez linear acceler-
ator and was recently upgraded (in 1999) to become a high current injector
for the Sis. The new High Current Injector (Hsi) provides an increase in
the beam intensities �lling the synchrotron up to its space charge limit for
all ions. Two ion sources feed the Hsi. After stripping and charge state
separation, the beam from the Hsi is matched to the Alvarez accelerator,
which accelerates the highly space charge dominated ion beams without any
signi�cant particle loss, up to a few AMeV.

The Sis is a synchrotron with a circumference of 216 meters consisting of
24 curvature magnets and 36 magnetic lenses. Before entering the Sis, ions
from the Unilac interact with a carbon foil achieving ionization states up to
72+ for Uranium. In those cases Sis allows energies up to 1GeV per nucleon,
while for light systems (like Neon) it is possible to achieve full ionization and
consequently increase the energy up to the 2 GeV per nucleon. The accel-
eration takes place in two resonance cavities diametrically opposed, where
ions see a potential of 15 kV. The operation frequency ranges from 800KHz
to 5.6MHz. The vacuum in the beam line is lower than 10�11 Torr.

2.3 The HADES spectrometer

Hades is a second generation experiment in high resolution dilepton spec-
troscopy. It intends to precisely measure the invariant mass of lepton pairs
produced by the decay of vector mesons in heavy ion collisions. That goal
puts a number of requirements on the design of Hades, shaping it.

This sections starts detailing what those requirements are and howHades
deals with them. Then, a quick overview of the spectrometer will be o�ered
before entering into a more detailed description of the di�erent sub detectors.

4Gessellschaft für SchwerIonen forschung

2.3 The HADES spectrometer 19

2.3.1 Requirements

The probability of producing a lepton pair as a consequence of a vector meson
decay in a heavy ion collision is rather low. This is due to the fact that the
branching ratio of the dileptonic channel is around 10�5. As a consequence,
in order to accumulate signi�cant statistics in a reasonable time, Hades
needs to have some characteristics:

� Large acceptance in order to maximize the probability of detecting a
pair once it is produced. The acceptance of Hades is �pair = 40%

� High count rates need to be supported. The goal is to be able to operate
with beam intensities as high as 108 particles per second. With a 1%
interaction length target, that yields 106 minimum bias events, or 105

central ones.

� A trigger system able to downscale the amount of raw data by several
orders of magnitude. The trigger scheme in Hades is made of three
stages, ideally the joint rejection power would be in the order of 104.
That is not the case yet, though.

Recording the data is not the whole thing. The ability to reconstruct the
invariant mass of the recorded dilepton pairs with enough resolution is also
critical. The design goal for Hades is to be able to achieve an invariant
mass resolution in the order of the ! width in the mass region of the !, so
that it can be resolved. That yields �M

M
' 1%. As a consequence, a mag-

netic spectrometer is needed with high position resolution before and after
the magnet �eld. Furthermore, at the operating energy range (1-2 AGeV)
multiple scattering may adversely a�ect position resolution and therefore mo-
mentum resolution too. This imposes the usage of low mass materials in the
di�erent detectors.

The need to measure heavy systems imposes a relatively high granularity
on the detectors, so that it is possible to deal with particle multiplicities as
high as 120 per event.

Lepton pairs are not the only thing produced in a heavy ion collision; both
hadrons and leptons from other sources, like pion Dalitz, are produced. As a
result, the dilepton signal is embedded in a soup of particles. For that reason
the spectrometer must contemplate systems providing rejection of hadronic
and electromagnetic background.

20 The Hades experiment

 Beam

Figure 2.4: 3D view of the Hades detector. The hexagonal symmetry is
apparent

2.3 The HADES spectrometer 21

2.3.2 Overview of the spectrometer

Fig. 2.4 shows an schematic view of the Hades spectrometer. It shows how
the spectrometer is divided azimuthally in six identical sectors, each covering
polar angles 18o < � < 85o, with practically full azimuthal coverage, besides
the shadow regions introduced by the coils and detector frames. This gives
an acceptance for lepton pairs of 40%(1). The detector systems in Hades
are, from inner to outer:

� A Ring Imaging CHerenkov (Rich) threshold detector, placed around
the segmented target. This detector provides lepton identi�cation, be-
ing unresponsive to fast hadrons (pions up to 3GeV).

� A magnetic spectrometer composed of two sets of Multi-wire Drift
Chambers (Mdcs) separated by a superconducting magnet made up
of six coils shaping a toroidal �eld embedded in the space left between
the chambers. The drift chambers determine the track's direction and
position before and after the magnet and the magnet provides the de-
�ection between them. The magnet �eld is inhomogeneous with a mo-
mentum kick ranging from 40 to 120 MeV. The larger momentum kick
is located in the lower polar angles, which corresponds to the larger
particle momenta due to the Lorentz boost. This map is intended to
provide bending power, which improves momentum determination res-
olution, without neglecting the need for a large momentum acceptance.

� Lepton identi�cation in the outer part of the spectrometer is performed
by

� A Time Of Flight (Tof) plastic scintillator wall made of thin
scintillator strips for large polar angles. For polar angles below 45o

four plastic scintillator (Tofino) cover the whole area providing
the time of �ight determination in low multiplicity reactions. Tof
is able to discriminate electrons from pions and protons up to
500MeV and 2GeV respectively.

� For the lower polar angles, the higher particle's momenta reduce
the e�ectiveness of the lepton discrimination based only on time
of �ight. For that reason, the Shower detector is needed in that
region. It is made of three gaseous chamber separated by lead
converters, even though it is not large enough to be considered a
calorimeter. The detector is able to register the �rst steps in the
shower produced by a particle crossing it. From the multiplication

22 The Hades experiment

factors on those �rst steps, the Shower tries to separate leptons
from hadrons. That is, particles giving raise to an electromagnetic
or hadronic shower.

� Start and Veto detectors sitting before and after the magnet respec-
tively. These are fast diamond detectors providing a 'start' signal for
the Tdcs and vetoing events with no interaction in the target respec-
tively.

2.3.3 The Start and Veto detectors

Start and Veto are two iden-

Figure 2.5: Start detector

tical diamond detectors placed be-
fore and after the target. The �rst
of them provides the �start� signal,
while the second vetoes all particles
not interacting with the target's nu-
clei.

Both diamond detectors are syn-
thesized using a Chemical Vapor De-
position (CVD) technique (18), which
allows the diamond to grow in an
environment under control.

The detector is capable of a time
resolution, including electronics, of

up to 29ns and tolerates rates of more than 108 particles per second for a
single detector channel. The detectors are radiation resistant and can be
constructed in very thin layers.

Start and Veto are placed 75cm upstream and 75cm downstream of
the target. The �rst of them being the Start. Each of them is octagonal
in shape and is divided in 8 strips, the width of which are optimized such
that a coincidence of one start detector strip with three veto detector strips
is su�cient for a veto e�ciency of 96.5%. The detectors are kept thin (100
�m) to keep multiple scattering and secondary reactions very low.

2.3.4 The Rich detector

The Rich detector (2) is a threshold Cherenkov detector with the mission of
separating leptons from the hadronic background. The working principle is
the emission of Cherenkov light whenever a particle crosses a medium with

2.3 The HADES spectrometer 23

Figure 2.6: Side view of the Rich detector

a velocity larger than that of the light in the medium. In that situation,
Cherenkov light is emitted in a well known direction determined by the par-
ticle's velocity (�) and the speed of light in the medium (�t), given by the
medium's refraction index (n). It is customary to quote the threshold for
light production instead of the �. This is related to the refraction index by

th =
np

n2 � 1

The Hades's Rich (Fig. 2.6) consists of a gaseous C4F10 radiator around
the interaction point, closed in the back by a VUV spherical mirror and in the
front by a gaseous photon detector separated from the radiator gas by a CaF2

window. The radiator's Cherenkov threshold is th = 18:2. Hence, leptons
with momenta from 100 to 1500 MeV produce Cherenkov light, while hadrons
in the same momentum range are below the threshold and go undetected.
Interesting properties about the radiator gas are that it is transparent to ul-
traviolet light (down to wavelengths of 145nm) and the absence of signi�cant
scintillation light from charged particles.

The Cherenkov light emitted by the leptons is re�ected in the VUV spher-
ical mirror. This mirror has a diameter of 145cm and a curvature R=870mm.
It is segmented in 18 panels, three per sector. The panels are made of pure

24 The Hades experiment

Carbon, machined to a thickness of 2mm. This allows minimizing multiple
scattering and photon conversion. The average re�ectivity is around 80%.
Due to the large acceptance of the mirror and the location of the target
(closer to the mirror than the curvature center), the azimuthal and polar
focal surfaces have non-negligible curvature, which leads to the formation of
ellipses instead of rings for large polar angles.

The re�ected light crosses the 5mm thick CaF2 window separating the
radiator gas and the photon detector. CaF2 is used due to its high trans-
mission in the VUV region (around 70% at 140nm). The photon detector is
designed to detect photons only in the VUV region. It consists of a Multi
Wire Proportional Chamber (MWPC) with a pad structure behind the photo
sensible CsI layer. The chamber operates on pure CF4 with a gain of 105.
The size of the 28272 pads ranges from 7x6.6 to 4x6.6 cm2 in order to com-
pensate for the mirror's spherical aberration. With this pad structure, the
eccentricity of the ring images is corrected in �rst order and leads to rings of
an almost constant diameter of 9 pads (� 5:5cm) for all polar angles.

The overall performance of the detector can be summarized in a �gure of
merit N0 ' 109 cm�1 , corresponding to a number of detected photons per
ring between 12 and 21.

The detector analysis comprises several stages. The �rst stage consists on
the cleaning of isolated noise hits, on a second stage hit clusters are identi�ed
and labeled. Then two independent algorithms are used to identify the rings:

1. A fast patter matrix search. The basic idea of this algorithm is to
overlay a mask on the pads image. The mask is divided in cells corre-
sponding to the pads, each cell has a weight, either positive or negative
de�ning a ring shape. It can be seen as a bitmap of a ring. When
the mask is overlaid to any particular region of the pad image the
charges registered in each of the pads are multiplied by the correspond-
ing weights and summed up. Due to the way weights have been chosen,
the summed value is large for real rings and low for fakes.

2. A Hough transformation. The basic idea in this case is to apply a
mathematical transformation to the pad image so that rings become
points in the transformed space. This can be achieved by taking any
possible combination of three pads and computing their center. Then
an histogram is built with the centers of all those combinations, real
rings should show up as peaks on that histogram; so the problem of
ring recognition has become a much simpler one of peak recognition.

2.3 The HADES spectrometer 25

2.3.5 The magnetic spectrometer: Mdc and Ilse

In order to achieve an invariant mass resolution of 1% in the ! meson re-
gion one needs to be able to reconstruct electron tracks with a resolution in
momentum in the order of 1% for electrons with momenta larger than 100
MeV. For that purpose, Hades has a magnetic spectrometer consisting of
a superconducting toroidal magnet (Ilse) and 24 multi-wire drift chambers
(Mdcs) in 6 sectors (see Fig. 2.7).

The magnet consists of 6 superconducting coils separately mounted in 80
mm thick boxes, producing an inhomogeneous magnetic �eld which reaches a
maximum value of 3T near the coil cases, but produces a maximum magnetic
�eld around 1.5T in the acceptance region. The momentum kick ranges from
40 to 120 MeV at full �eld. Fig. 2.8 shows a transversal cut of the �eld map
at � = 0.

The 4 drift chambers in each sec-

Figure 2.8: Transversal cut of the �eld
map at � = 0

tor are divided into two groups, with
two chambers before the magnet and
another two after. The toroidal shape
of the �eld allows to con�ne it in the
region between the chambers. The
frames of the chambers are situated
in the shadow region de�ned by the
magnet's coils so that the acceptance
is not further reduced. The size of
the drift cell in the chambers ranges
from 2.5 to 7 mm, keeping a high
enough granularity to deal with oc-
cupancies in the order of 0.6 cm�1

(in the low polar region). Each cham-
ber has six layers of sense wires with respective orientations +40o,-20o,0o,0o,+20o,-
40o providing enough redundancy in the measurements. The wire orientation
is chosen to optimize the position resolution in the direction of the momen-
tum kick, thus maximizing the resolution in momentum. Besides, the two 0o

layers are displaced by half a cell in the direction perpendicular to the wires.

In order to obtain the required momentum resolution, it is necessary to
minimize the e�ect of multiple scattering. That e�ect is dominant over the
position resolution for momenta below 0.4GeV. To minimize it, low mass ma-
terials have been chosen in the manufacturing of the chambers. The Golden
Tungsten sense wires have a diameter of 20�m and the �eld and cathode
wires are 12�m thick. The gas mixture used is He� iC4H10.

26 The Hades experiment

Figure 2.7: Transversal cut showing to opposing sectors of the Hades mag-
netic spectrometer

2.3 The HADES spectrometer 27

Drift velocity for the mixture saturates around 4cm=�s for the used volt-
ages, managing a nearly linear relationship between drift time and track
position in most of the cell (not in the borders). The average resolution for
a single hit is around 80�m over more than 80% of the cell.

In order to deal with the high acquisition rates in Hades a custom Tdc
has been devised. It can work at 25MHz and is manufactured in 0.6� tech-
nology.

2.3.6 The Tof and Tofino detectors

The Tof (5) detector measures time of �ight of charged particles in the polar
region between 45 and 85 degrees. The detector is made of plastic scintillator
rods, with length ranging from 2 to 3 meters and pro�les of 3x3cm2 and
5x3cm2. The rods are grouped in sets of eight, with 8 such sets per sector.

The light produced in the plastic is read out by 2 photo-multipliers sit-
ting at both ends of the rod, this allows for a time of �ight reconstruction
with a resolution between 100ps and 150ps. The position where the particle
has hit the detector can be inferred from the time di�erence between the
measurements at both edges with a resolution ranging from 1.5 cm to 2.3
cm.

The multiplicity in the Tof detector is already used during the �rst level
trigger on centrality. For the second level trigger time of �ight is already
available providing a separation between electrons and pions up to 0.5GeV
and protons up to 2GeV. On a later stage of the analysis the time of �ight
information is used in the Particle Identi�cation process.

Besides the time of �ight, each rod is equipped with Adcs allowing the
measurement of the signal height from the photomultiplier. From that infor-
mation, energy loss in the plastic can be inferred, which contributes to the
particle identi�cation.

Furthermore, when the outer Mdc chambers are temporarily not avail-
able in one sector, the Tof detector can still provide with some position
information used for momentum reconstruction. This functionality is avail-
able in the second level trigger also.

On the lower polar regions the Tofino detector substitutes the Tof.
This detector is made of 4 scintillating planes covering the low polar angles
up to 45 degrees. Only one photo multiplier is used per scintillator in the
Tofino case. The substitution of the Tofino detector by a Rpc (Resistive
Plate Chamber) wall is foreseen in the not so distant future. The new detector
must provide the granularity needed to deal with the higher multiplicities in
the heavier ion collisions.

28 The Hades experiment

8 mm 1.2 cm

2.95 cm

0.5 mm

7.5 mm

Cu−Be Field wire
mµ125

Sense wire 25µ m

2 mm thick fiber
glass support

Al coated mylar foil cathode plane

2 radiation length Pb converterCu pad layer

Au coated W

Figure 2.9: Side cut of the Shower detector

2.3.7 The Shower detector

Due to the larger momenta of particles at low polar angles, the lepton identi�-
cation based only on time of �ight measurements is not enough. Consequently
the Shower detector (19) is placed in the rear part of the spectrometer, at
low polar angles (� < 45) with the main goal of improving the lepton/hadron
discrimination.

The Shower detector is made of 6 identical sectors symmetrically dis-
tributed around the beam axis. Each sector consists of 3 wire chambers with
pad readout, separated by two lead converters 1.2 cm wide (2.5 radiation
lengths). The width of the converters is optimized to maximize the probabil-
ity of producing an electromagnetic shower for leptons in the Hades energy
regime, while keeping to tolerable levels the chances of an hadronic one.

The detector has a trapezoidal shape covering polar angles between 18o

2.3 The HADES spectrometer 29

and 45o on the full azimuthal range of the sector. The three wire chambers
are slightly di�erent in size to compensate for the solid angle variation due
to their di�erent distances from the target.

Each wire chamber has a wire plane with alternating 25�m golden tung-
sten sense wires and 125�m copper beryllium �eld wires separated 7.5mm
from each other. The wire plane is situated between two cathode planes
symmetrically disposed around it to con�gure the drift cells. One of the
cathode planes is made of stainless steel. The opposite one is made of 8 �ber
glass plates covered with a thin copper layer, 1.5 mm thick, where pads are
disposed forming a grid. Pads are aligned with respect to the target so that
particles coming from it cross a set of �xed pads in the three modules.

There are 32 pad rows and a number of columns ranging from 20 to 32,
making up for a total of 942 cells. The pad's heights range from 3cm to
4.5cm. Each pad covers an integer number of drift cells.

The wire chambers are operated in Self Quenching Streamer (SQS) mode.
This has the advantage that the induced charge is nearly independent of the
particle's energy loss. Hence low momentum protons do not leave larger
signals on the post converter and are thus not misidenti�ed as leptons.

The detector's analysis starts by identifying local charge maxima in the
wire chambers. The local maxima correspond to the places where a particle
has hit. For each hit, the sum of the charge induced in the pad of the
local maximum and its 8 neighbor pads is computed. The same sum is
computed for the corresponding nine pads in the other two modules. The
ratio of those sums is then calculated. The electromagnetic shower di�ers
from the hadronic one on the value of those ratios5, so a cut can be performed
to distinguish between both kind of them. The cut values themselves are
determined from simulation and they depend on momentum.

2.3.8 The trigger scheme

The trigger system (5; 20) for Hades is organized in 3 stages or levels. Its
task is to select central events with lepton pair candidates out of all the event
data generated by the spectrometer.

As already mentioned, the beam intensity Hades is targeted to operate
with, is around 108 particles per second, with a 1% interaction length target
that translates into 106 events per second.

5The electromagnetic shower is shorter, so the multiplication factors are larger in the
early stages

30 The Hades experiment

Out of all the events we are only interested in the central ones. To select
them is the task of the �rst level trigger (LVL1), which achieves a reduction
factor of 10 on the data by requiring a minimum multiplicity in the Tof and
Tofino detectors. This reduces the amount of data to 105 events/s, or 4
GB/s.

The second level trigger is based on the search for lepton candidates in
the event. For that purpose only the Rich, Tof and Tofino information is
used, keeping the rest of the data in intermediate memories until a decision
is taken. Two stages can be di�erentiated in the second level trigger logic.
In the �rs stage, detector speci�c Image Processing Units (Ipu) search for
lepton candidates in their respective detectors. The resulting candidates are
sent for its processing to the so called Matching Unit (Mu).

The Mu is a programmable device allowing di�erent working modes. In
the simple most one a positive trigger decision is issued any time a lepton
candidate is found by some of the Ipus. Several higher level steps can be
optionally performed:

1. The Rich and Tof/Shower lepton candidates are matched within a
window in polar and most importantly azimuthal angles.

2. Two lepton candidates of opposite polarity are required with an opening
angle larger than a certain cut value. The cut on opening angle is
intended to reduce the background from conversion electrons.

3. The invariant mass of the open lepton candidate is computed accepting
only masses within a certain window.

The time available for the second level trigger to make its decision is 10�s
on average. Operating at full potential, the second level trigger can achieve
reduction factors around 100. Thus achieving 103 events/s or 40 MB/s.

The, still non existent, third level trigger would additionally use theMdc
information. It would perform a fast tracking using only the information
about what Mdc wires are �red. This would allow to cross check the lepton
candidates identi�ed by the second level trigger as well as a better invariant
mass resolution derived from an improved momentum measurement. The
expected reduction factor for the third level trigger is 10.

With the three trigger levels active about 100 events per second (4 MB/s)
would �nally be written to tape.

2.4 The Hades reconstruction software 31

2.3.9 Data Acquisition system (Daq)

The acquisition system for Hades is based on an Atm network connecting
the Vme crates, used for the detector read out and second level trigger, with
a central event builder Cpu. The data taping speed in the event builder is 5
MB/s, corresponding to up to 2000 events per second on a C+C collision or
around 100 events/s for the heavier systems.

The Daq uses two pipes. A �rst level trigger pile where data are pushed
after a positive LVL1 trigger decision. The data is then transmitted to a
second level trigger pipe after a positive LVL2 decision. If the LVL2 decision
was negative the data is removed from the �rst level trigger pipe.

The second level pipe is implemented in Ram memory of the Vme bus
system, being directly mapped in their address space by a fast transport into
the event builder.

2.4 The Hades reconstruction software

Hades has a reconstruction software called Hydra. It is written on C++
using the Object Oriented paradigm and it is based on the Root framework.
The software package is extensively presented in chapter 3.

32 The Hades experiment

Bibliography

[1] Reiner Schicker et al. Acceptance and resolution simulation studies for the
dielectron spectrometer Hades at Gsi. Nuclear instruments and methods
in Physics Research, A(380):586-596, 1996

[2] K. Zeitelhack et al. The HADES RICH detector. Nuclear Instruments
and Methods in Physics Research, A(433):201-206, 1999

[3] W. Cassing, V. Metag, U. Mosel and K. Niita. Production of energetic
particles in heavy ion collisions. Physics Reports, 188(6):363-449, 1990

[4] C.M. Ko and G.Q. Li. Medium e�ects in high energy heavy ion collisions.
Nuclear Particle Physics, (22):1673-1725, 1996

[5] The Hades proposal

[6] Heike Neumann. Hades - a high acceptance dielectron spectrometer pro-
posed for relativistic heavy ion and nucleus-nucleus collisions. Acta phys-
ica slovaca, 44(3):195-205, 1994.

[1] Groom et al, Particle Data Group. Review of Particle Physics. Eur.
Physics J. C15 1-878, 2000

[8] M. Masera et al. Dimuon production below mass 3.1 GeV/c2 in p-w and
s-w interactions at 200 AGeV/c2. Nuclear Physics , A(590):93c, 1995.

[9] E.L. Bratkovskaya, W. Cassing, R. app, J. Wambach. Nuclear Physics
A634, 1998

[10] G. Agakichiev et al. Enhanced production of low mass electron pairs in
200 AGeV S-Au collisions at the CERN super proton synchrotron. Physics
Review Letter 75(7): 1272-1275. 1995

[11] Ceres collaboration.First results from CERES/NA45 on low mass elec-
tron pair production in Pb-Au collisions. Nuclear Physics, A(610):317c-
330c, 1996

34 BIBLIOGRAPHY

[12] G. Agakichiev et al. CERES results on low mass electron pair production
in Pb-Au collisions. Nuclear Physics A(638):159b, 1997.

[13] Jim Carroll. Measurement of e+e� pair production at BEVALAC. Nu-
clear Physics, A(495):09c-422c, 1989

[14] C. Naudet et al. Threshold behavior of electron pair production in p-Be
collisions. Physical Review Letters, 62(23):2652-2655, 1989

[15] G.Roche et al. First observation of dielectron production in proton-
nucleus collisions below 10 GeV. Physical Review Letters, 61(9):1069-
1072, 1988

[16] R.J. Porter et al. Dielectron cross section measurements in nucleus-
nucleus reactions at 1.0 AGeV. Physical Review Letters, 79(7):1229-1232,
1997

[17] S. Beedoe et al. Measurements of dielectron production in niobium-
niobium collisions at 1.05 AGeV. Physics Review C(47):2840, 1993

[18] E. Berdermann et al. Nuclear Physics (Proc Suppl.) B(78):533-539, 1999

[19] P.Salabura et al. Nuclear Physics B(44):701, 1995

[20] M. Traxler et al. The second level trigger system of the HADES detector.
Internal Hades report, 1999

Chapter 3

The Hydra event reconstruction
software

The main goal of the HADES experiment is the study of in medium modi�ca-
tions of vector meson properties, through their decay in lepton pairs. In order
to achieve that goal, the HADES spectrometer has been built, but we also
need software enabling us to make use of the machine and transform the low
level information provided by the detectors into some high level data, with
higher level physical content. We can divide the software used by HADES in
four large working areas:

� Data acquisition and monitoring

� Simulation

� Event reconstruction

� Physics analysis

In this chapter we will concern ourselves mainly with the event reconstruction
software. Actually we will speak about the design and inner workings of the
framework for the event reconstruction program, called Hydra1. Finding a
de�nition for framework is a di�cult task. We could say a framework is a
set of rules, interfaces2 and services put at the disposal of programmers, who
can extend it to perform a set of tasks.

1Hades sYstem for Data Reduction and Analysis (see (5))
2Interfaces in C++ are typically realized through abstract classes. That is classes

de�ning methods to be overridden by derived ones.

36 The Hydra event reconstruction software

A framework is not a class library. A class library presents the program-
mer with a set of interfaces and services that the programmer can use at
his/her leisure. The program's logic is not speci�ed by the class library but
by the programmer's code. In a framework, the programmer is presented
with a whole comprehensive unit which he/she can extend, in prede�ned
ways, to perform speci�c tasks. A class library can be completely generic,
while a framework needs to go one step down and put in some knowledge
about the problem's domain.

In the case of Hydra the main goal is the processing of events recorded
in a spectrometer. In other words; we read input data and those data are
processed by a set of algorithms which depend on parameters and need access
to the data in some structured way. As a result, new, elaborated data,
are produced. Typically we want to store those data for future analysis.
A more comprehensive list of requirements is presented in section 3.1; but
this paragraph already introduces the main concepts in Hydra: algorithm
management, data input, data structures, parameter management and data
output for analysis. Besides the subsystems, Hydra has to specify how do
they interact.

A framework speci�es an overall design. Furthermore it should be tailored
such that the design is enforced, taking good care of not being too restrictive
so that the programmers, the users of the framework, are deprived of the
necessary freedom. For this reason it is the task of the framework to provide
modularity by de�ning interfaces so that the main areas; input, output . . .
are loosely coupled. Allowing modi�cations in any of the subsystems without
altering the others.

To match those goals an Object Oriented Programming is an ideal ap-
proach. Encapsulation is critical in enforcing modularity as opposed to sug-
gesting it. Polymorphism is what allows a framework to be extended by the
programmers in a well de�ned way.

A framework does nothing interesting by itself. In the case of Hydra
all the interesting stu� occurs inside the algorithms which �ll the software
with life. To a great extent Hydra only exists to make the life easier for
the programmers writing algorithms. Other chapters in this same thesis
work will present some of the algorithms running in Hydra. Certainly, a
thorough description of all the di�erent algorithms in Hydra escapes the
scope of this work. By the time of this writing, several thesis are being
written to document them.

Section 3.1 presents an analysis of what the requirements are on Hydra,
shaping its design. The following sections present in more detail the actual
framework in its current incarnation. The last section in this chapter spends

3.1 Software requirements 37

some time on the simulation package for Hades: HGeant. Even though the
design and implementation of HGeant are not part of my work in Hades,
it is presented here since it will be often referenced in the following chapters.

3.1 Software requirements

The main goal of Hydra is the reconstruction of events recorded by the
Hades spectrometer. Reconstruction means application of various algo-
rithms to transform the Raw data delivered by Hades into elaborated data,
ready for the analysis step.

The reconstruction proceeds in steps. Each algorithm reads some input
data, maybe the output of another algorithm, and takes it to a new level of
elaboration. In that sense we can speak of data levels, which correspond to
the di�erent levels of elaboration.

For example, the �rst data level is the so called raw data, corresponding
directly to the electronic signals recorded by the spectrometer; typically a
number of channel from an ADC. The next level is usually the calibrated
data; it is a direct mapping of the raw data in physical units. While raw
data represent channel numbers, calibrated data may represent times, charges
etc. depending on the detector being calibrated. The algorithm going from
raw data to calibrated data is detector speci�c and generically known as a
calibrator.

The handling of algorithms and data levels can be seen from two per-
spectives. From the perspective of the developer using the framework to
implement new algorithms, and from the perspective of the �nal user want-
ing to do analysis with the full Hydra and accompanying algorithms. In
fact, most often one person is at the same time developer and user. But
we will separate here these two ideal personalities since they have di�erent
requirements.

3.1.1 The �nal user's point of view

The �nal user is concerned about producing a result and not very much about
the software's inner workings. The analysis software needs to be �exible
enough to adapt to the di�erent uses demanded from it.

A �nal user wants to be able to analyze not only raw data, but also
partially elaborated ones. In particular, steps like tracking, which are very
expensive CPU wise, should not be repeated every time a new cut wants to
be tested on the data. Another �use case� is that the parameters for any

38 The Hydra event reconstruction software

of the analysis steps change but we still do not want to repeat the whole
reconstruction in order to get updated data. Only the a�ected steps should
be repeated.

This means the concept of data levels must show up in the framework.
Furthermore, we need for the framework to be able to persistently store any
given data level and to start the processing from any other one. As far as
possible this should be transparent to the user. She only needs to specify
what the input �le is and what algorithms to use on it.

The data levels should be stored in a format which allows easy treatment
by the physicist in the analysis phase. In other words, the �nal user needs
to take the output data and easily plot the di�erent variables, separately or
one versus the other. She needs to be able to quickly apply cuts, or make
simple computations on the variables.

The inner structure of a data level may a�ect the way it is written out
and therefore the way it is accessed later. For this reason the user should
be allowed to change the inner structure of a data level at runtime, without
implying a change in the algorithms �lling or reading from that data level.
However this should not be a common task.

There are other things the user wants to be able to specify as input to
the software. Here is a list:

1. The event data to be reconstructed. Those data may be stored in
di�erent formats, and therefore come from di�erent sources:

� The Data Acquisition system, which records the data taken by the
spectrometer in tape. Those tapes need to be read and analyzed

� Partially reconstructed events, generated by the reconstruction
program itself. This enables for example, to try di�erent recon-
struction methods without restarting the analysis from scratch in
each try.

� Others3

2. Number and kind of the data levels, the so called event structure. How-
ever this is speci�ed manually in very rare cases. The software must
be intelligent enough that given a set of algorithms to apply on the
input data, the right data levels are �gured out and created without
user intervention.

3What is meant with others is that the program must be �exible enough that new
unforeseen data sources can be implemented with a minimum of fuss. For example a data
source implementing the merging any other two, enabling the embedding of simulated
events into real ones.

3.1 Software requirements 39

3. The reconstruction parameters to be used. Each algorithm depends on
a set of parameters to perform its task. The user needs to be able to
specify which parameter she wants to be used. However it must also
be allowed that the user only asks for the right parameters, that is the
recommended parameters from the algorithm's developer. Even if the
user speci�es a source where to get parameters from, there will typically
be many versions of those parameters available. The framework must
be able to load the right version for the data being analyzed automa-
tically. However, the user needs to be able to override the automatic
procedure if she wants to do so. Examples of foreseen, and supported,
parameter sources are:

� A central relational database management system. In our case
based in Oracle

� A standalone �le. Either binary or ASCII.

� Introduced by hand

4. The algorithms to be applied on the input. Being able to specify this
as an input makes the code be usable for di�erent purposes without
the need for a recompile relink cycle.
There should be the possibility to incorporate new algorithms to the
program while keeping the compiling and linking time to the minimum
possible. That means the organization of the code must be modular;
distributed in independent units which can be loaded and unloaded at
runtime.
The mechanism used to select the list of algorithms to apply needs to
combine �exibility for the power users and simplicity for the novel ones.
A power user may want to exhaustively specify the list of algorithms,
maybe introducing between them program �ows not necessarily linear.
On the other side, other kind of user is only interested in selecting from
prede�ned sets of high level algorithms and apply them one after the
other.

Once the reconstruction program has performed its task, the user wants to be
able, by looking at the output �le, to tell which parameters and algorithms
were used to obtain that output.

Lastly, the user may decide to use the software either in interactive mode
or batch mode for mass production.

40 The Hydra event reconstruction software

3.1.2 The developers view

The main requirement from a developer is to be able to worry only about her
algorithm. She wants to have interfaces enabling her to access the informa-
tion needed for the algorithm; but hiding the complexity of managing that
information.

An algorithm is a closed unit; it de�nes some hooks to attach itself to
the rest of the framework. It is presented with interfaces to access the data
without worrying about the internal structure of those data or where did
they come from. It is presented with a way to access proper parameters,
without it worrying about which is the right parameter version for the data
being processed.

An algorithm relies on an input data level, without any assumption about
what other algorithm was used to produce those data. That is core to the
modularity required by the �nal user.

Developers are geographically dispersed, so they want their algorithms to
be in a separated code unit which can be loaded or unloaded at any moment.
So that the code under development can be easily tested.

Also, an algorithm should not need to worry about how the data it pro-
duced is going to be stored.

3.1.3 Technical requirements

There are some technical decisions, or conventions, about the paradigms and
tools to use for the event reconstruction software. Some of these actually go
into the �eld of system's speci�cations rather than requirements; but are still
shown here. The lists is as follows:

1. Use of Object Oriented Programming. This programming paradigm
allows to attack medium and high complexity problems in a more solid
way. In particular when the software development is performed by a
dispersed group of people.

2. C++ programming language. Among the di�erent programming lan-
guages in the market, C++ is chosen for its performance and growing
popularity in the �eld of Particle and Nuclear Physics. That popularity
is what makes available speci�c libraries and tools.

3. The chosen compiler is g++. This compiler is chosen because it is free
and available in a large number of platforms. Having one standard
compiler makes easier the sharing of code between the di�erent groups

3.2 System overview 41

of developers. However it is not allowed to use extensions of C++
allowed by g++ but outside the C++ standard (see (6)).

4. Graphical notation: UML (see A). Software development in an interna-
tional team makes necessary the usage of well de�ned communication
tools. One of them is a standard notation for diagrams specifying a
software's design. To capture the program's design in diagrams may
be a tedious task, but useful for new users trying to understand the
system.

5. Control versioning system: CVS. The need for a central system of
version control is a consequence of the distributed development envi-
ronment. CVS is chosen because it is free, available in a large number
of platforms and abundant tools exist to work with it.

6. The ROOT system (see (2)) is used as a class library. It provides us
with

(a) A user interface

(b) An structured Input/Output system designed taking into account
the necessities of physical data analysis

(c) Graphics and histograming capabilities

(d) Documentation generation system

7. Supported platforms

(a) Linux

8. Regarding the code organization it must be divided in independent
shared libraries. A common library should implement the basic code
(the framework itself) and all other libraries, fundamentally providing
algorithms but not only, may be loaded on demand.

3.2 System overview

It was already mentioned that Hydra touches 5 main areas

� Data Input, either raw or partially reconstructed

� Data Output in a form suitable for further analysis

42 The Hydra event reconstruction software

� Management of algorithm's parameters; like detector geometry, cali-
bration constants. . .

� Data structure

� Management of algorithms

Besides that, we also need an additional subsystem to coordinate them all.
This sections presents an overview of the di�erent subsystems in Hydra
with the aim to give the reader the big picture; to be kept in mind while
reading the following sections, where the di�erent subsystems are explained
in detail. Each subsystem is de�ned by a set of classes:

� Fundamental class: Hades
Hades is the class which encapsulates the whole reconstruction pro-
gram, coordinating all Hydra subsystems. It provides methods to
control the di�erent tasks which can be performed. Including methods
to set the di�erent inputs, like parameters, algorithms to be ran etc. It
also provides methods to launch the reconstruction process itself.
The Hades class contains objects of di�erent classes which it uses
to implement the di�erent subsystems. Those object's classes can be
overridden in order to extend the framework at the user's will. The
structure of the Hades class can be seen in Fig. 3.1. See also section
3.3

� Classes to contain data
Since the reconstruction process is done event per event, the basic data
structure is the event. From the point of view of Physics, an event
holds all the information collected by the di�erent detectors in the
spectrometer regarding one interaction between one beam particle and
the target. Moreover, it also stores the totally or partially reconstructed
data which are derived from the original signals. But we can have other
types of events which do not contain information about an interaction
in the target; for example, signals produced in the detectors by a par-
ticle with the purpose of calibration. There can be, therefore, di�erent
kind of events: real events, simulated events, calibration events, etc.
An event is represented by an object implementing the HEvent inter-
face. This allows (and enforces) to inherit from HEvent other classes
which correspond to the di�erent kind of events we can �nd. Within
an HEvent data are organized in so called categories.
A category is a data container; in Object Oriented Terminology that
means it is a container of objects. The main particularity of categories

3.2 System overview 43

is that all objects in one category have to instantiate exactly the same
class. The reason for this requirement will be explained in section 3.5.1.
For the moment it is enough to say that categories present the algo-
rithms with a well de�ned way to access the data, hiding the data's
internal structure as much as possible. That makes easier to change
the inner representation of the data, for example, to accommodate a
change in the Input/Output system, with minimal e�ect on algorithm's
code.

� Classes to manage input of data
Once we have a place where to store an event's information, we need
a tool to read that information in. Since the data may come from
di�erent sources, as explained in the requirements section, a generic
interface is needed for the Hades class to use. Each data source is then
realized as a di�erent implementation of such interface. The interface
is represented by the abstract class HDataSource. See also section
3.6

� Classes to manage data output
A method is needed to put the data from the data containers into
persistent output in �les. For this purpose Root's TTree structure
is used. A TTree is an extension of the well known Paw (see (1))
ntuples to store complex structures. More on this in section 3.4

� Classes to manage parameters
In order to do the event reconstruction, several numerical parameters
are needed, like for example, calibration parameters or geometry posi-
tions of detectors. One common characteristic to most of these param-
eters is that they will go through di�erent versions, corresponding, for
example, to changes in the spectrometer or any other relevant condi-
tion. This makes necessary to have a parameter repository with some
versioning scheme. For that purpose the concept of a runtime database,
implemented in the HRuntimeDb class, is introduced. See also section
3.7

� Algorithm management
For each event we need to accomplish a certain task, which is repre-
sented by an HTask object. Again, HTask is an abstract class de�ning
a generic Api4 allowing to execute one task and to navigate through a
task set.

4API stands for Application Programming Interface. It is the de�nition of classes and
methods provided by a system for the developer's use.

44 The Hydra event reconstruction software

HReconstructor and HTaskSet are two particular subclasses inheriting
from HTask. The �rst of them is meant for reconstruction algorithms,
while the second one allows us to group several tasks in one. For more
information see section 3.8.

3.3 The HADES class

At the center of Hydra we �nd a class which is responsible for activating the
di�erent subsystems in the framework, provide access to them and coordinate
them in processes like, for example, initialization or event processing. The
class structure is shown in the diagram 3.1. The main components are

� A data source where to read event data from

� Several HTaskSet objects storing the tasks to perform for each event
type

� An HEvent where to store the information being processed

� A HSpectrometer created during initialization and storing informa-
tion about the spectrometer's structure

� A database where to read reconstruction parameters from

� A Root output tree

� An output �le

The Hades class is a singleton (see (4)). There must be one and only one
instance of this class active at the same time. There are two ways to access
that object, either the gHades global pointer or the Hades::instance() method.
The second one is recommended over the �rst, though. The simple global
variable has the problem that the instantiation of the Hades class is left to
the user of the framework, which can make the mistake of doing it twice.
Another problem with the global variable is that it is a potential source of
trouble should the framework be extended with multiple threading5. Indeed,
in a multi threaded environment there is no way to ensure that gHades is

5Multiple threading refers to a technique where several execution paths are running in
parallel inside one single program. This is possible thanks to the multi tasking abilities of
modern Operating Systems

3.3 The HADES class 45

TFile HTaskSet

+next()
+connect()

HSpectrometer

+addDetector()
+getDetector()
+init()

HRuntimeDb

+getContainer()
+setFirstInput()
+setSecondInput()
+setOutput()

Hades

+fOutputSizeLimit

+eventLoop()
+Hades *instance()
+makeTree()
+activateTree()

1

1

*

1 HMessageMgr

+setDebugLevel()
+warning(int level, char *text)

1

HTree

1

HEvent

+getCategory()
+addCategory()
+makeBranch()
+activateBranch()

12

HRootSource

+getNextEvent()

HDataSource

+getNextEvent()
+init()

HRecEvent

HDEtector

+setModules()
+init()

*

Figure 3.1: Hades class structure

46 The Hydra event reconstruction software

not accessed at the same time from two di�erent threads, potentially giving
raise to race conditions6 and therefore making the program unstable.

On the other hand Hades::instance() gives back a pointer to the current
Hades object if it was already instantiated, and instantiates one in case none
is in memory. The �rst advantage is that the instantiation is always done
once, without user intervention. The other is that it is very easy to put a
semaphore7 inside that method to provide for multiple threading.

3.4 Data output

The output system is based on the Root Input/Output facilities, with func-
tions to store objects in so called Root �les. This subsystem is responsible
not only to store event's data into an output �le, but also information about
how those data where created.

For the second part, we use Root's ability to store any conforming C++
object to �le. Then, the event's structure, algorithm's setup, control his-
tograms and so on can be stored by just writing the corresponding manager
objects. Since the Hades singleton is the manager of the managers, what is
done at the end is simply writing out the Hades object.

To store the event's data a Root's TTree facility is used. This structure
is specialized in storing multiple objects of the same class in a friendly way
for physics analysis. One can think of a TTree, �Tree� from here on, as an
extension of a Paw ntuple to Object Oriented Programming. That means
it has to be able to cope with complex structures made by objects storing
arrays of other objects.

A Tree is created by providing the class constructor with the class name
and a pointer to the kind of object which will be stored. Then the Tree itself
creates an internal representation for the object's structure. The internal
representation is de�ned in terms of branches; for each data member of the
object's class a branch is created. In case the data member is itself one
object, subbranches are created for each of its data members.

6Race condition refers to the situation where a system resource is accessed by one
process before it has �nished attending the request of some other. Therefore the second
request �nds the system in an unde�ned internal state.

7A semaphore is a tool used in multi threading programming to protect the access
to resources. Whenever a resource is in use by some thread (or process) the associated
semaphore is set to red, otherwise it would be green. A second thread accessing the resource
�nds the semaphore in red and must wait until it is green in order for its request to be
attended.

3.5 Data structures 47

There is a special case in the previous procedure. When the object to
be processed is an instance of the TClonesArray class the behavior is
slightly di�erent. In order to explain the special behavior for this case we
need �rst to know what a TClonesArray object is. A TClonesArray is
an array of objects instantiating exactly the same class; so all of the objects
in the container have the same data members. This fact is used by Root
to create branches for each data member of the class instantiated by the
objects in the TClonesArray. Typically this class is used to store the
ultimate objects containing the physical information. What happens then is
that we get independent branches for each of their data members, which are
the physical variables de�ning the event.

Doing it that way is convenient because Root provides plotting functions
which operate on individual branches; both to de�ne the variables to be
plotted and to place arbitrary cuts, providing a convenient method for data
inspection. Following the idea of ntuples it is also possible to read only one
branch at a time if it is so desired, thus signi�cantly speeding I/O when we
are interested in operating over a subset of the data.

On the other hand for a data structure to be suitable of being stored
using TTree it cannot be arbitrarily complex. For example complex tem-
plate structures are not allowed or pointers between the data objects stored
may bring a performance penalty. Still the possibilities o�ered are powerful
enough.

Not the whole data structure needs to be dumped into output. Through
the HCategory::setPersistency() method it is possible to de�ne which data
levels should and should not be stored.

3.5 Data structures

This section is devoted to the data structures used in Hydra to store event's
data. A physical event is an interaction between a beam particle and the
target, it can be either real, simulated or a calibration event. A calibration
event contains the response of one or several detectors to one or several
particles or to a calibration signal (a laser signal, for example). The event is
the unit for data processing. It can contain both the original data coming
from the spectrometer (raw data) and the more elaborated data which is
result from the reconstruction process. Since events are independent of each
other we only need to store one event in memory at any given time.

We will call event structure to the data structure used to keep in memory
all relevant information about one event during the reconstruction process.

48 The Hydra event reconstruction software

The event structure is a nexus where several subsystems meet; each of
them imposing certain requirements on the event structure. The algorithms
need a fast way to access the event's data; both sequentially, i.e. during
calibration, or randomly, i.e. in tracking.

Every event is reconstructed in steps, each step in the reconstruction
process producing one new level of reconstructed data. The number and
kind of levels which are stored in an event is not �xed beforehand. It can
change as a function of the kind of event (simulated, real . . .) as well as the
speci�c task we are accomplishing at a given moment. If, for example, we
are studying the calibration parameters for the Mdc, it makes no sense to
carry neither every data level for the other detectors nor those Mdc levels
which are not used.

The event structure is made accessible through the HEvent interface,
which basically works as an array of data levels. Each data level is accessible
through the HCategory interface; which works as an object container;
providing, among others, functions to access the data in the level. These
two classes only de�ne the interfaces, the actual implementation of the data
structure is relegated to their subclasses.

In the following sections, the HEvent and HCategory interfaces are
presented in more detail.

3.5.1 The event

All data relative to one event is represented as one object implementing the
HEvent interface. Hydra's central class, Hades, keeps one HEvent ob-
ject in memory at all times, that is the current event. It is globally accessible
because it belongs to Hades.

As we have already said, conceptually an HEvent is nothing else but a
container for categories, providing access to any category in the event. That
is accomplished through the function HEvent::getCategory(Cat_t aCat) which
takes as only argument a unique identi�er for a category and returns the cor-
responding object. This identi�er works as the category name. For example,
one such identi�er is catMdcRaw which corresponds to the category storing
raw data relative to the Mdc detector. In order to access that category we
would write something like

HEvent *event = Hades::instance()->getCurrentEvent()

HCategory *c = event->getCategory(catMdcRaw)

The result is that now the pointer c references the catMdcRaw category and

3.5 Data structures 49

we could use the HCategory interface to access the individual raw signals
stored in it.

Other methods allow to manage the categories in the event, adding them.
In that sense the event structure is dynamical. The type and number of ca-
tegories is not speci�ed beforehand. It depends on the tasks to be performed.

Besides the functions dealing with categories, there is a
HEvent::makeBranch() method which creates a Root TTree's branch for
the event. For simple implementations of HEvent this would be as simple
as a call to a standard Root service; for more complex implementations
makeBranch() assists Root's mechanism with knowledge about the inter-
nals.

Only two interdependent implementations of HEvent have survived in
Hydra. They are presented in the following sections.

The event under reconstruction

TheHRecEvent class implements theHEvent interface for physical events
which can be totally or partially reconstructed. Its class structure can be seen
in �gure 3.2. We will discuss in this section what is the particular structure
for this implementation.

In reality HRecEvent does not physically contain any categories. What
it contains is partial events. Partial events will be discussed later, but essen-
tially they serve as a way of grouping related categories.

But HRecEvent is a HEvent and therefore it is supposed to contain
categories and provide access to them. When the users asks HRecEvent
for a category, this, in turn, selects the corresponding partial event and gets
the category's pointer from there.

One needs to store more information in a physical event than the data
objects themselves; therefore each HRecEvent has also a header (object
of class HEventHeader). This header stores global information about
the event, like event number, run number, date, trigger . . . To access an
HRecEvent's header one can use the HRecEvent::getHeader() method.

Each partial event is identi�ed within the HRecEvent to which it be-
longs by a numerical constant whose value is that of the �rst category one
can store within that partial event.

The partial event: HPartialEvent

As its name suggests, a partial event is part of an event under reconstruction.
It serves to group related data levels or categories. This way all categories

50 The Hydra event reconstruction software

HEvent

+getCategory()
+addCategory()
+makeBranch()
+activateBranch()

HEventHeader

−eventSize
−eventDecoding
−id
−eventSeqNumber
−eventRunRumber
...

HRecEvent

+getHeader()
+addPartialEvent()
+getPartialEvent()

header

1

HPartialEvent

+setSubHeader()
+getSubHeader()

*

HCategory

+getObject()
+MakeIterator()
+getSlot()
+query()
+filter()
+setPersistency()

*

HLinearCategoryHMatrixCategory

TObject

header0..1

header

0..1

Figure 3.2: HRecEvent class diagram

3.5 Data structures 51

related to the Rich detector go to one partial event, those related to the
Mdc go to a di�erent one and so on.

Each partial event is itself an HEvent and therefore implements all the
methods de�ned in that interface. The HPartialEvent physically contains
a linear array of the managed categories plus a header.

The simulated event

Simulated events are events produced by the Hades simulation package:
HGeant. Simulated events can be used as input for the reconstruction pro-
gram instead of real ones in order to test the software. Therefore, simulated
events must conform to the same structure as real ones.

On the other hand, a simulated event holds more information than a real
one; in particular in a simulated event we know the collision kinematics, or
the dilepton tracks, for example. Therefore, the simulated event class needs
to hold more information than what is available in a real one.

No new event class is needed for simulated events. What is done instead
is add to a HRecEvent one more partial event, called Simul, which stores
extra information coming from the simulation. This is however not enough,
it only allows to store extra information on a per event basis. We need also
to do it on a per hit basis. That is, for every data object, i.e. a HMdcCal
object representing one measurement in one of the Mdc, we need to store
extra information coming from HGeant. This is accomplished by de�ning
daughter classes, HMdcRawSim, storing the extra information. That way
the information is there; but standard algorithms, using the parent classes,
can ignore it. Similarly Sim versions of the algorithms can be created if
something should be done about the extra information.

3.5.2 The categories

A category is an object container. What makes categories special is that
all objects within a category have to instantiate exactly the same class. For
example, the raw data objects for Mdc can be stored in the same category,
but raw data objects in the Rich have to go to a di�erent category since
they instance a di�erent class.

With that de�nition, there are several possible implementations for a
category depending on how the data objects are internally stored. However,
all of them must show the same interface to the programmer for accessing the
data; this is enforced by making all categories derive from the HCategory
class, which is abstract. In other words, HCategory de�nes the interface

52 The Hydra event reconstruction software

Algorithm 1 Using HCategory::getObject() to retrieve a data object from
the catMdcRaw category.

//get pointer to a category

HEvent *ev = Hades::instance()->getCurrentEvent()

HCategory *cat = ev->getCategory(catMdcRaw);

HLocation loc; //Declare a HLocation object

loc.setNIndex(4); //It's a location with 4 indexes

loc[0]=2; //Set indexes to (2,2,1,4)

loc[1]=2;

loc[2]=1;

loc[3]=4;

//Get data object

HMdcRaw *raw=(HMdcRaw *)cat->getObject(loc);

that must be implemented by the di�erent categories implementations. One
implementation can still be a generic object container storing objects of any
class, but only one class at the same time. In �gure 3.2 you can see the
HCategory's de�nition as well as some inherited classes.

The HCategory interface provides functions to access the stored data
objects. The access can be either random or sequential.

Random acces means we want to access one particular object in the cate-
gory for which we know some kind of identi�er. Each object in a category is
identi�ed by an array of integers. For convenience reasons, the integer array
is presented as an object instantiating the HLocation class. There is a well
known structure where each element is identi�ed by an array of indexes: a
matrix. Conceptually HCategory allows access to the contained objects
as if they were in a matrix. The corresponding function in the interface is
HCategory::getObject(HLocation &aLoc). Listing 1 shows an example using
that method. Typically each of the indexes is assigned a meaning, by con-
vention. For example, for the catMdcRaw category, which contains raw data
from the Mdc, the number of indexes to identify one object is 4. The four
indexes identify one wire out of the wholeMdc system; the �rs is sector, the
second is module, the third stands for layer and the fourth corresponds to
wire number

It is also possible to access one object giving only one index with the
function HCategory::getObject(int idx); but in this case it is not possible to
assign a meaning to the index.

Sequential access means we want a way to loop over a set of objects in the
category; it can be all of the stored objects or a �ltered set. Sequential

3.5 Data structures 53

access is performed using iterators, in the spirit of Stl8. Iterators are ob-
jects created from the object containers (categories) themselves invoking the
HCategory::makeIterator() method. This way, one iterator allows access to the
contents of the category which created it. The methods for that access are
speci�ed in the HIterator interface. There is a method HIterator::Next()
which keeps returning one object after the other in the container, until no
objects are left and from there on it returns 0. Invoking the Next() function
on an iterator until it starts to return 0 is called iterating over the category.

A typical situation is when we want to iterate over part of the category.
For example, when doing tracking on one chamber we may want to iter-
ate only on the raw data corresponding to that chamber. Let's think of a
category, like catMdcRaw, where each object is identi�ed by 4 indexes. In
our example those indexes have the conventional meaning of sector, module,
layer and cell number. We now want to iterate on all objects in the second
sector; that is, we want to retrieve from the category all objects with location
(2,*,*,*), where * represents any number. Such an scenario is supported with
the HIterator::gotoLocation() method. See listing 2 for an example.

It may also happen that we want to access all data objects in a category
passing a particular, arbitrary, �lter. To access objects like that there is
the function HCategory::query(TCollection *col, HFilter &�lter). This function
iterates over the category checking the �lter for each object. Those that
pass the �lter are added to the data container pointed by the method's �rst
argument. The second argument is the �lter itself. In order to be completely
generic the �lter is an object de�ned by the user; the only requirement is that
the object has to implement the HFilter interface. HFilter de�nes just
one method HFilter::check(TObject *obj), which takes one object as argument
and returns true if it passes the �lter, false otherwise. It is also possible to
use the HCategory::�lter() function to delete all objects in the category which
do not pass the �lter.

Besides having objects stored in a category we must be able to add new
objects to it. This is done in two steps, in the �rst step the users calls the
HCategory::getSlot() method to obtain a slot where to instantiate a data ob-
ject. In a second step, the object is instantiated in that slot; by instantiating
an object in a slot given by the category, the object itself is added to the
category. In fact, a slot is simply a memory region and instantiating in a
slot means using the �new with placement� operator giving the slot address
as argument. This operator is an overloaded version of the standard �new�

8Stl stands for Standard Templates Library and is standardized along with C++. It
de�nes object containers as well as algorithms to operate on them and iterators (see (7)
for a recent review).

54 The Hydra event reconstruction software

Algorithm 2 Various forms of sequential access on a category
//Retrieve a pointer to the category

HEvent *event = Hades::instance()->getCurrentEvent();

HCategory *cat = event->getCategory(catMdcRaw);

//Iterate over the whole category

HIterator *iter = cat->MakeIterator();

iter->Reset();

HMdcRaw *tmp;

while ((raw=(HMdcRaw *)iter->Next()) != 0) {

tmp->Dump(); //Print the object

}

//Iterate over sector 2

HLocation loc;

loc.set(1,2); //Set a 1 index location with loc[0]=2

iter->Reset();

iter->gotoLocation(loc);

while ((raw=(HMdcRaw *)iter->Next()) != 0) {

tmp->Dump(); //Print the object

}

operator from C++, which takes as an argument the memory address where
to instantiate one object. The procedure is clearer by looking at one exam-
ple, like the one in listing 3. getSlot() requires that the full location where
the object will be stored is known beforehand; in case this is not possible
the method HCategory::getNewSlot() should be used instead. Both this two
methods will return a pointer to the allocated slot or 0 in case no slot is
available.

By doing things this way the category is responsible for memory man-
agement. The main reason to let the category do the memory management
instead of simply using the C++ �new� operator comes from the high number
of data objects instantiated per event, and the high number of events to pro-
cess. The �new� operator calls an expensive routine in the operating system
to get the requested memory. However, a category can have a preallocated
block of memory for the data objects which are going to be instantiated; this
can speed memory management up because the category knows beforehand
the size of the data objects which are going to be instantiated, as well as the
kind of memory requests it will be asked for9

9This scheme is inspired by Root's TClonesArray class.

3.5 Data structures 55

Algorithm 3 Adding an object to a category.
//Get pointer to the category

HEvent *event = Hades::instance()->getCurrentEvent();

HCategory *cat = event->getCategory(catMdcRaw);

//We want to add one object in location

//2,2,1,3

HLocation loc;

loc.set(4,2,2,1,3);

//Get the slot

TObject *slot=cat->getSlot(loc);

//Instantiate the object. Now raw points to the new object

HMdcRaw *raw=new(slot) HMdcRaw;

.

The following sections describe two implementations of the HCategory
interface, focusing on the internal structure of the data.

The HMatrixCategory

This kind of category stores data objects in a matrix-like structure. In this
way, when we ask for an object in the category, the location indexes which
identify the objects are the same as the indexes of the underlying matrix. To
initialize a matrix category one needs to provide the following data in the
constructor:

� Number of indexes in the matrix

� Maximum value for each of the indexes (that is, matrix dimensions)

� �llRate: this is a number between 0 and 1 which corresponds to the
maximum fraction of occupied locations we expect.

Looking in more detail into this category's implementation we don't see the
mentioned matrix anywhere. That's because in practice, the data objects
are stored in an array (a TClonesArray from ROOT).

The internal structure of the category is as follows: on one side we have
a TClonesArray A with every data object, and we have a HIndexTable
object T which behaves like a matrix of integers. When we are looking for

56 The Hydra event reconstruction software

an object associated to a location, we get from T the matrix element corre-
sponding to the indexes of that location; this matrix element is an integer
giving the position in A of the desired data object.

In this way, it is not needed to get for A all the memory which would
be used if every location was full; and we can keep the TClonesArray
without holes. Not having holes is critical when we want to store the array
to an output �le.

We have already said that HIndexTable behaves as an integer matrix.
However, again, we can see that internally we have an array of integers. This
is done like that in order to be able to work with an arbitrary number of
indexes in our matrices.

Helper classes have also been implemented to compress the index table
on the �y, saving I/O time.

The HLinearCategory

This is the simplest kind of category we'll speak about. In fact, it is nothing
more than a lightweight wrapper around a TClonesArray so it can be
used within the framework.

Therefore, this category is only able to work with locations consisting of
just one index which corresponds to the position of the data object in the
underlying TClonesArray.

This category can be useful in a variety of processes like calibration. Let's
say, for example, that we want to go from raw data in Mdc to calibrated
data; each raw data object is identi�ed by four indexes (sector, module, layer,
cell). The �rst step is to read data from the acquisition system and place
them in the �catMdcRaw� category. After that the data are calibrated.

In this example, one possibility is to place the data in the category without
any order, using a HLinearCategory, and store the four indexes as a data
member of the data object. Later, during calibration, we iterate over all
data objects, and for each of them we do the calibration with the parameters
speci�ed by the indexes stored in the data object itself. That way we may
a�ord the overhead introduced in the HMatrixCategory by the index
table for this particular application.

3.6 Data input

In order to deal with the di�erent data sources which are possible a generic
interface is de�ned, this is HDataSource. That interface is used by the

3.6 Data input 57

Hades class to request any particular implementation for event data. Di�er-
ent implementations of HDataSource have been realized trough daughter
classes. Each implementation, or back-end, is able to read information from
a di�erent place, in a di�erent format.

The most important method in HDataSource is
HDataSource::getNextEvent(). When this function is called, one new event is
read from the data source into the event structure. The returned value of
the operation can be one of the following:

kDsOk: the event was successfully read

kDsEndFile: we have reached the end of one run (set of data with the same
reconstruction parameters), but more data are available

kDsEndData: we have reached the end of the data source

kDsError: error

The Hades singleton can combine up to two data sources10.

Another important function of theHDataSource interface is the method
HDataSource::init(), used during initialization. Within this method, each par-
ticular data source must check whether an event object exists or not and, if
it doesn't exist, then it is the data source's responsibility to instantiate an
event object. Usually, the data source will also have to add to the instan-
tiated event object those categories where data will be read. Note that if
an event object or the needed categories exist, then the data source is not
allowed to destroy them.

In the following sections we will review the most important data sources
at use in Hydra.

3.6.1 Input from the Data Acquisition System:
HldSource

HldSource is the base class for those data sources reading data in the for-
mat produced by the Hades acquisition system (Daq). The class structure
can be seen in �gure 3.3.

The HldSource reads raw data in the order and format provided by the
Daq and places them within the event structure; this usually implies some

10The second data source is used to support the embedding of simulated tracks into real
data. The alternative would be to de�ne a new data source performing the merge.

58 The Hydra event reconstruction software

HldBase

+getData()

+getHdrLen()

...

HldEvt

#virtual read()

#virtual readSubEvt()

HldUnpack

+virtual init()

+virtual execute()

+virtual getSubEvtId()

HldRemotEvt

+open()

#read()

#readSubEvt()

HldFilEvt

#read()

#readSubEvt()

HldSubEvt

+getSubEvtId()

+execute()

+init()

Reads events

from the network

Interface to read

one event from

te network

Interface to read

one event from file

Reads events from

a binary file

Provides basic

functionality

to decode the

 generic part

of an event.:

Header,

sub event size...

Collection of

subevents

Defines interface

to different event

types

It’s subclasses

decode one

subevent’s

data

Allows access to

one subevent’s

data

HDataSource

+virtual init()

+virtual getNextEvent()

HldSource

+getNextEvent()

+initUnpacker()

+addUnpacker()

HldFileSource

#fileList

+init()

+getNextEvent()

HldRemoteSource

#nodeName

+init()

+getNextEvent()

Figure 3.3: HldSource

3.6 Data input 59

reordering of the data. That process is known as unpacking and is realized
by unpackers within a HldSource. Each unpacker is itself an object of a
class inheriting from HldUnpack.

HldUnpack is an abstract class from which several di�erent unpacker
classes are inherited, such as HRichUnpacker or HTofUnpacker. In
fact, we have one di�erent unpacker class for each detection system inHades;
each of them only understand the binary format for a particular kind of data.
What happens is that each even from the Daq is divided in sub events;
each sub-event having an identi�er which is used to decide which unpacker
should be used. The most important method of this class is the HLdUn-
pack::execute() function, where the unpacking process is realized. Another
important function is HldUnpack::init() which is used during the initialization
procedure, as we will see in section 3.9.

The HldSource maintains a list of active unpackers at a given time11;
this list is con�gured at runtime during initialization. Only the sub-events
corresponding to the active unpackers are actually unpacked; thus supporting
cases where, for example, not all detectors are available; or we are just not
interested in them.

Thus far the general information about a HldSource. However, in practice
we will always use one of its subclasses likeHldFileSource orHldRemote-
Source. Both of them work in a very similar way, being the main di�erence
the fact that the �rst one reads data from a �le and the second one reads
data from a network connection to the Daq machines. Therefore, the �rst
one is more suitable for o�ine analysis, while the second one is more suitable
for on-line analysis.

Note that the unpackers used both in HldFileSource and HldRemote-
Source are exactly the same.

Reading process

Here is what happens when the HldSource::getNextEvent() function is called:

1. A bu�er is �lled with the information to be unpacked. This bu�er is
a HldEvt object inheriting from HldBase; it stores generic infor-
mation about the read event (event number, bytes used . . .). Each
HldEvt is made of sub-events, HldSubEvt objects, which are read
at the same time as the HldEvt.

11This list is built by the user himself in the initialization of the HldSource using
HldSource::addUnpacker()

60 The Hydra event reconstruction software

2. The HldUnpack::execute() function is called for each of the active un-
packers. Each unpacker has an associated HldSubEvt where it reads
data from, transforming those data into objects and placing them into
the event structure.

3.6.2 Partially reconstructed data: HRootSource

In this case, the data source is a Root �le holding an event tree. Usually
this tree has been generated by the reconstruction program itself and holds
completely or partially reconstructed events.

Besides the generic functionality required from HDataSource. The
HRootSource is able to dynamically select if the whole event from the
input �le should be read, or just part of it. It is also possible to con�gure
the data source such that not all events in the input �le are read, but just a
subset of them.

3.7 Reconstruction parameters management

The reconstruction parameters include all those numbers needed for the re-
construction process, like for example, positions or dimensions of the de-
tectors, calibration parameters, pattern recognition parameters, etc. These
numbers are organized in functionally related sets. Each of this sets is rep-
resented by a subclass of HParSet known as a parameter container. The
generic interface provides methods used by the framework to initialize the
parameter containers and manage parameter versions.

The interface class responsible for managing parameter sets in Hydra
is the HRuntimeDb class. As the name suggests, it implements a runtime
database. Among its responsibilities we �nd the management of parameter
versions.

Each set of parameters can have di�erent versions since they can change
with time. Actually there are two time axis in which they change. One
is the real time, the parameters for the data taken one day do not need
to be valid for the data taken the day after; detector positions could have
changed, for example. We de�ne run as a set of events taken in a time
range where parameters have not changed. Each run has a unique identi�er
which is used by the parameter management subsystem to determine what
parameters should be used when analyzing a particular set of data.

The other time axis has to do with people improving the quality of param-
eters with time, providing new versions which make previous ones obsolete.

3.7 Reconstruction parameters management 61

Proper version management is needed in order to know what parameters to
use on each moment. It may be needed to reproduce the analysis results ob-
tained at a past point in time and for that reason the history of parameters
is kept. There is a function to force the framework to use the parameters for
a historic date instead of the current one. The default behavior is to take
the latest version which has been declared valid and belongs to a �parameter
release�. The reason for doing so instead of just taking the latest version,
is that parameters in a release are cross checked for consistency among the
di�erent groups producing them.

Several versions of the same parameter container can be valid at the same
time, for example they could contain cuts for the reconstruction algorithm
useful for di�erent analysis, like minimum bias. This possibility is foreseen
through the so called contexts. Each parameter container can be assigned a
context so two versions of the same container can be valid at the same time
if they correspond to di�erent contexts.

In addition to versions the runtime database has to manage parameter
input and output. The parameters may come from di�erent sources, each
source being implemented as a subclass of HParIo and the runtime database
keeps three of them. The HParIo class de�nes the generic interface every
subclass has to implement, allowing the runtime database to read and write
speci�c versions of parameters. There are currently three back-ends available:

HParOraIo: Interfaces to an Oracle database residing at the central
institute, Gsi. When this back-end is used, the user is sure that she
gets the canonical set of parameters at any given time.

HParAsciiFileIo: Allows storage and retrieval of parameters fromAscii
�les. This kind of �les is convenient in cases where the user wants to
change the parameters by hand for experimentation. The main limi-
tation is that Ascii �les may only store one version of the parameters
per �le.

HParRootFileIo: Implements storage and retrieval of parameter from
binary Root �les. Root �les have the advantage over Ascii that they
may contain di�erent versions of the parameters. The disadvantage is
that it is not easy to modify parameters in a Root �le. Compared
to the Oracle interface, the advantage is that there is no need for
an open network connection to the central server. The disadvantage is
that the history of parameters is not stored.

In the following sections we will spend some more time examining in more
detail the HParIo interface and the HRuntimeDb class.

62 The Hydra event reconstruction software

3.7.1 Input and output: HParIo

A HParIo is essentially an array of HDetParIo objects. The HDetParIo
class de�nes the generic interface used to actually read and write the param-
eter containers for a code module. A code module is a set of algorithms
under the responsibility of a group. Examples would include the code mod-
ule implementing tracking on the Mdc or pattern recognition in the Rich.
This division is foreseen so that changes by one group of developers do not
a�ect the work of the other groups. There are two basic methods in the
HDetParIo interface:

init(HParSet *par, Int_t *set): Fills the parameter container pointed by
�par� for the detector modules indicated by �set�.

write(HParSet *par): Writes out the parameter container pointed by �par�.

The way down to the concrete implementation of these functions has two
levels. On the �rst level, two new classes are de�ned by subclassing HParIo
and HDetParIo for a particular data source. For example, for Root �les
we would have classes HParRootFileIo and HDetParRootFileIo. The
�rst of them handles generic questions about the particular source, while the
second one handles those details which can di�er from one code module to
the other.

The second level of concretion consists in de�ning a HDetParRoot-
FileIo subclass for each particular code module. For example HMdcPar-
RootFileIo or HRichParRootFileIo. Each of these subclasses has a
init() and write() functions for each supported parameter container.

When the runtime data base needs to read or write a container it calls
the init() or write() functions of all registered HXXXParYYYIo classes
until one recognizes the parameter container. Where XXX stands for code
module name and YYY stands for parameter source. Values for XXX would
be: Rich, Mdc, Tof, Shower and so on. Values for YYY are Root, Ascii and
Ora.

3.7.2 The runtime database

The structure of the runtime database is shown in �gure 3.4. Essentially
it consists of 3 HParIo objects, a list of parameter containers (HParSet
objects) and container factories.

Each container in the runtime database is identi�ed by a name. The
method HRuntimeDb::getContainer() can be used to retrieve a pointer to

3.7 Reconstruction parameters management 63

HContFact

HParSet *getContainer(char *name)

virtual HParSet *createContainer(HContainer *c)

HRuntimeDb

+getContainer()

+setFirstInput()

+setSecondInput()

+setOutput()

+initContainers()

+writeContainers()

HParIo

+getDetParIo()

+readVersions()
HDetParIo

+virtual init()

+virtual write()

*

HDetParRootFileIo

+init()

+write()

*

HRun

#name

+getParVersions()

*

HParVersion

#name

+getInputVersion()

+getRootVersion()

*

HMdcParRootFileIo

Interface called by

the runtime database

to create containers

getContainer() calls

createContainer()

HContainer

#name

+getContext()

*

HMdcContFact

+createContainer()

Parameter container

description

Container factory

for MDC detector

HParRootFileIo

+open()

+close()

+readVersions()

TFile

HParRootFile

+readVersions()

A parameter

container

Associates

a version number

to a container

name

Stores container versions

valid for the run identified

by ’name’

HParSet

#context

#versions[3]

#description

+init()

+bool hasChanged()

*

Figure 3.4: Runtime Database structure

64 The Hydra event reconstruction software

a container given its name. In case the requested container is not in the
database, it will try to instantiate the container automatically. This is done
by iterating on the registered container factories requiring the instantiation
of a container of the given name, until one of the factories recognizes the
name and succeeds.

The container factories are added to the runtime database during startup.
Each code module instantiates a container factory as a static variable. This
uses the HRuntimeDb::instance() and HRuntimeDb::addFactory() in its cons-
tructor, to register itself in the runtime database.

Out of the 3 HParIo objects, two correspond to inputs, one primary
and one secondary input, and the third object corresponds to the parameter
output, if any. Having two inputs has the advantage that if some data are not
available on the �rst one, the database will look for data on the second input
before returning an error. This is specially useful to combine part of the data
from a local �le with parameters from Oracle. For example, a developer
wants to test her new Rich parameters before changing the o�cial version,
but she still wants to get the o�cial parameters for Tof or Mdc.

The runtime database also supports marking containers as static with the
HParSet::setStatic() method. When a container is made static it will never
be updated, overriding the version management.

3.8 Task management

One of the requirements we've seen in the previous chapter was to have
a �exible system allowing us to select which algorithms to use for event
reconstruction, as well as in which way those algorithms are going to be
combined. In general we will call task to a process executed event per event.

Tasks are implemented as subclasses of the abstract class HTask. The
HTask interface de�nes what our understanding of task is. It has a function
to execute the task; this function is called HTask::next(int &errCode) because
it not only executes the task but also returns a pointer to the next task to be
executed. Each task has several possible output slots identi�ed by numbers;
the di�erent output slots represent di�erent return codes. Any other task can
be connected to any of the output slots, de�ning the work �ow. This way of
connecting tasks makes it possible to de�ne non linear execution paths. The
method to connect tasks is HTask::connectTask(HTask *task,int n).

For example to decide between two execution paths depending on a condi-
tion we could have a class with two output slots which checks that condition.

3.8 Task management 65

HTask

+next()

+virtual init()

+virtual reinit()

+virtual finalize()

HTaskSet

+next()

+connect()

*

HReconstructor

+execute()

+next()

Figure 3.5: Tasks classes

Depending on the condition being true or false, one output slot or the other
is chosen.

Usually tasks need access to the event structure and parameter container
in order to perform their job. The init() function is where a task asks the
framework for those kind of things, as we will see when explain Hydra's
initialization in section 3.9. The symmetric of init() is �nalize() which should
be used to perform cleanup after all events are processed, or to perform some
�nal computations.

There are two kind of prede�ned tasks in Hydra, the HReconstruc-
tor and HTaskSet. The �rst is the one subclassed by developers to imple-
ment new algorithms in Hydra. This class implements the next() method
and de�nes a new function, execute(), to be overridden by subclasses. It is
this function the one which gets called by the framework for every event.
The execute() method returns an integer. If it is less than 0, it is considered
to be an error code and treated accordingly. If the integer is larger than 0
the actual number is used to select which output slot the task should go to
next.

The HTaskSet is a way of grouping several tasks together, as the name
suggests. There are several ways to add tasks to a task set:

66 The Hydra event reconstruction software

� HTaskSet::add(HTask *t): is used to add one task after the other. All
tasks in the task set are executed in the order they are added.

� HTaskSet::connect(HTask *t, HTask *where, int n): is used to connect
the task �t� to the nth output slot of task �where�. The task �where�
has to be already in the task set.

� HTaskSet::connect(HTask *t): is used to connect task �t� as the �rst
one in the task set.

Each task has a name and for convenience there are equivalent methods to
the ones above, but taking task names (strings) instead of pointers. A task
set is the owner of the tasks in it, that means the task set and not the user is
responsible for deletion of the tasks. The Hades class has several prede�ned
task sets: for simulations, for real data, for calibration etc. Therefore, since
all tasks are inside a task set, the user is never responsible for deletion of
those objects.

It should also be noted thatHTaskSet is aHtask itself, making possible
to build recursive structures.

3.9 Hydra's Initialization

In this section we will describe how the di�erent systems interact during
the program's initialization. This will serve to indicate what does the user
need to specify as input and what support are the developers supposed to
give in their code. In particular, we will spend some time describing how an
algorithm, HReconstructor, interacts with the initialization scheme to
obtain the information it needs.

The system is initialized from settings given by the user in a macro. This
macro is written in C++ and interpreted in runtime by Cint12. Thus the
settings are speci�ed instantiating a few classes and directly calling their
functions. This has the advantage that the user is allowed to interact with
every part of the framework during initialization, allowing a high level of
customization. In any case, the basic settings given by the user are:

� What detectors are going to be used. Both what detector systems,
like Mdc, Rich, etc. and which detectors are active on each detector
system.

12Cint is a C++ interpreter integrated within Root

3.9 Hydra's Initialization 67

� What inputs, up to a maximum of two, are going to be used for reading
reconstruction parameters with the runtime database. This includes
both the kind of input and the physical location of the data if needed.

� What output to use for parameters. Both kind and physical location.

� The source where data will be read from. Both the kind of data source
and physical location.

� The list of tasks to be performed per event

� What output �le to use, if any. It is also possible to create an output
�le without event data.

� What part of the event structure should go to output. It can be all, a
subset or nothing.

� Optionally the user can also specify

� A speci�c version of the reconstruction parameters to be used.
Overriding the automatic versioning mechanism.

� A context for parameter containers. The context serves to dif-
ferentiate between parameter sets which are valid for the same
time range at the same date. This may happen when di�erent
parameters respond to di�erent analysis objectives.

� The type of event and the types of categories used to store the
data. This is not needed in most of the cases.

Whenever the user sets something, that setting overrides the default behav-
ior. As discussed, the user has a large freedom when setting up the analysis;
that means she can do things wrong. It is considered that the default settings
are safe, setting other variables besides the ones described above is done at
the user's risk.

The order in which the di�erent inputs are set is relevant. Setting up the
spectrometer con�guration should be the very �rst thing being done; then
the output �le should be set. Next would be parameter inputs and output,
task list and �nally what data to write. An example can be seen in listing 4

3.9.1 Spectrometer con�guration

The spectrometer con�guration is stored in a HSpectrometer class within
Hades singleton. During initialization the user is supposed to access that

68 The Hydra event reconstruction software

object and add to the active detectors. Each detector is represented by an
object of the HDetector class; each of theses objects contains the geo-
metrical information for one detector subsystem. To access the spectrometer
object the following line of code can be used

Hades::instance()->getSpectrometer()

To add a particular detector, the HSpectrometer::addDetector() method is
used, giving a pointer to the detector object.

3.9.2 Data base initialization

During the database initialization what the user sets is:

inputs: At least one input must be set, but the user can set up to a maximum
of two. To set one input, one only needs to create the corresponding
Io object (see 3.7.1) and use either setFirstInput() or setSecondInput()
methods from the HRuntimeDb class.

output: The procedure is the same as before: create a HParIo object and
call HRuntimeDb::setOutput(), giving a pointer to the object as a pa-
rameter.

3.9.3 Tasks selection

As already mentioned, the Hades singleton contains several master task sets
for di�erent purposes, like calibration, simulation or real data processing.
In order to specify what tasks to perform, the user needs to instantiate the
concrete objects implementing those tasks and add them to the corresponding
task set.

Since the analysis of a detector subsystem may involve several tasks and
the user does not necessarily know about all of them or their order, conve-
nience classes have been implemented to assist the user. Each code mod-
ule de�nes one such class, like HMdcTaskSet or HKickTaskSet. These
classes de�ne a static function make() which can be called giving as an argu-
ment a string of options. The options accepted by each of the classes di�er;
but what is common is that the result is a full HTaskSet containing the
tasks needed to perform a higher level process.

3.9 Hydra's Initialization 69

3.9.4 Selecting the data source

Selecting a data source is as trivial as instantiating an object for the cho-
sen data source kind and activate it as the current data source using the
setDataSource() method from the Hades class.

Obviously, each data source can get some di�erent initialization parame-
ters. As, for example, the server's IP direction if reading data from Internet,
a �le name, or nothing. Since our con�guration �le is a C++ macro, it is
enough to call the functions speci�ed in each data source's documentation to
set those parameters.

3.9.5 Initialization internals

We will explain what are the steps taken by the framework during initializa-
tion. That will serve to introduce the places where algorithm programmers
are supposed to supply information and which information should be sup-
plied. The procedure starts when Hades::init() is called.

1. The runtime data base is initialized
In this step, the Hades class calls functions in the runtime data base
to initialize the version management with the �rst run from the input.
This is needed because other steps of the initialization procedure may
require that the runtime database is active.

2. The spectrometer is initialized
In this step the init() function is called for HSpectrometer and all
of the active HDetector objects. Those functions are responsible
for setting up basic stu� like their respective classes for parameter
Input/Output.

3. Initialize data sources
The function init() is called for each data source. Within this function
the data source is responsible of creating an event structure if none is
active. It also must add the categories it needs to the event structure
and the containers it needs to the runtime database.
In the case of the HRootSource all information is taken from the
input �le. However, the HldDatasource and derived classes do it by
calling the init() function from the active unpackers (see 3.6.1). The
actions that need to be taken during the processing of HldUnpack::init()
are the same as the during HReconstructor::init() and will be explained
later.

70 The Hydra event reconstruction software

Algorithm 4 Example of initialization macro
//

//Setup spectrometer

HMdcDetector *mdc = new HMdcDetector;

Int_t modules[4] = {1,1,1,1};

Hades::instance()->getSetup()->addDetector(mdc);

//

//Set runtime database to read from Oracle

HRuntimeDb *rtdb;

rtdb->setFirstInput(new HParOraIo);

//

//Setup task list. Full MDC reconstruction

HTask *mdcTask = HMdcTaskSet::make(��,�simulation�);

//

//Add task to master task set

HTaskSet *master = Hades::instance()->getTaskSet(�simulation�);

master->add(mdcTask);

//

//Set output file

Hades::instance()->setOutputFile(�test.root�);

//

//Standard stuff. Intstruct the framework to initialize

Hades::instance()->init();

//

//Post initialization. Store in output all data levels

//but callibration. First we switch off output for

//the category corresponding to callibrated data

HEvent *ev = Hades::instance()->getCurrentEvent();

ev->getCategory(catMdcCal1)->setPersistency(kFALSE);

//

//Next the output is set up.

Hades::instance()->makeTree()

3.10 Event processing 71

Algorithm 5 Adding the catShowerCal category from a HReconstruc-
tor::init()

HEvent *ev = Hades::instance()->getCurrentEvent();

HCategory *cat = ev->getCategory(catShowerCal);

if (!cat) {

HSpectrometer *spec = Hades::instance()->getSetup();

HShowerDetector *det = spec->getDetector(�Shower�);

cat = det->buildCategory(catShowerCal);

if (!cat) return kFALSE;

else ev->addCategory(catShowerCal,�Shower�);

}

4. Initialize tasks
The init() function is called for all HTask objects active in the program
including all HReconstructor objects which are active. Within this
function the HReconstructor should

� Get the pointers to the categories it needs from the event struc-
ture. If some category is not there, then the task is responsible
for adding it to the event structure. See listing 5 for an example.

� Get pointers to the parameter containers it needs from the run-
time database. The runtime database automatically tries to add
containers that are not registered, so the user doesn't need to
do anything else here. There is one important thing to notice
at this point; the task only gets pointers to the containers. The
containers are not yet initialized! and the task is not allowed to
initialize them. For that purpose the function reinit() is foreseen.
This function's context is presented in section 3.10.

� Perform speci�c initialization tasks. Things that can be initialized
here are those which do not change from one run to the other.

3.10 Event processing

In this section we will see in more detail how the loop on events is realized.
This is, in fact, an explanation in pseudo-code of the Hades::eventLoop() im-
plementation. Reading the source code for that function is recommended for
anyone wanting to gain a deeper understanding of the details. This function
does the following:

72 The Hydra event reconstruction software

1. Ensure there is a current event, that is, an event structure and a data
source.

2. Clear the event structure.

3. While the number of processed events is less than �nEvents� and the
data source doesn't return an error code or and end of data code:

(a) Re initialize the task list by calling reinit() on all tasks.
At this point, the task may assume that all parameter containers
are properly initialized for the run currently being processed. So,
this is the point where to make all those calculations and initializa-
tions which require the parameter containers to have meaningful
data.
Maybe the task needs to go through some heavy initialization pro-
cedure which depends on parameters supposed not to change from
run to run. For example, for the tracking routines many calcula-
tions are done during initialization which only depend on the cell
geometry of the Mdc chambers, which is hopefully not changing
every few minutes. In such cases, to avoid foolishly repeating the
initialization procedure, one can check the return value of the con-
tainer's hasChanged() function and if it is kFALSE nothing needs
to be redone. In fact, the hasChanged() function is cheap, so it is
�ne to use it pervasively.

(b) While the number of processed events is less than �nEvents� and
there are data in the current run.

i. Read a new event from the data source

ii. Execute the task set for the current event

iii. Fill the output Root tree if one exists

iv. Clear the event structure

4. Check if the data source has returned an error code and notify it.

3.11 HGeant simulation packages

HGeant is a simulation package for Hades written in Fortran and built
upon the Geant (see (3)) program from Cern. The purpose of HGeant is
to simulate the detector response of the Hades spectrometer to the passage
of charged particles.

3.11 HGeant simulation packages 73

This means HGeant is not responsible of simulating any heavy ion colli-
sion. For that purpose, external programs, called event generators, are used.
The event generator output is a �le with the description of particles coming
out of a collision; HGeant reads that information and tracks the particles
through the spectrometer.

Geant itself is a framework to describe the passage of particles through
matter, integrating functions to calculate the e�ect of processes like en-
ergy loss, multiple scattering and others. What HGeant does is extending
Geant, implementing the functions left open by Geant in order to make a
complete program.

� HGeant provides a way to read con�guration options governing the
way in which the di�erent physical processes are treated withinGeant.

� It also provides a way to read event data, that is, the list of particles
which need to be tracked in one event. There are several possibilities
to do this in HGeant. Data can be read from a �le, obtained from
an event generator, for example. Data can also be generated on the �y
through the embedded event generators. The last option is to generate
the tracks from the C++ interpreter embedded in HGeant, either
in an interactive session or with a macro. In particular, the macro
option is very useful to quickly prototype dedicated event generators
for speci�c purposes.

� It provides a way to read the geometry describing the spectrometer; this
includes both the geometrical shapes of the di�erent detectors as well
as their material composition. This geometry information is passed to
Geant, which in turn uses it to simulate the di�erent e�ects a�ecting
particles passing through that matter.

� It provides digitization routines. These routines are called by Geant
when speci�c volumes, called active volumes, are entered or left by
a particle. In these functions, HGeant performs a basic simulation
of the detector's response, mostly recording relevant properties of the
traversing particle to be used in a more detailed digitization.

HGeant uses the Hydra facilities to write its output. This has the advan-
tage that the �les generated by the simulation are directly readable from the
analysis.

As already noted, HGeant mostly records information about the parti-
cles traversing the di�erent detectors. This information is then read by the

74 The Hydra event reconstruction software

analysis and processed by the so called digitizers. A digitizer is just another
HReconstructor object from the point of view of Hydra and thus it can
be managed as any other task.

The digitizers are responsible for the detailed simulation of the detector
response to the passage of particles. Each of them takes care of the speci�c
details of the detector it simulates. Using the output fromHGeant as input,
a digitizer is able to reproduce the signals a detector would have recorded
had the simulated event occurred in reality.

The digitizer's output looks exactly as calibrated signals from a detector,
which can be analyzed with the standard algorithms in Hydra. Further-
more, since we have information about the tracks originating those signals
and we have a way of propagating that information through the whole analy-
sis chain it is possible to compare the output of the full event reconstruction
with the original input and study the di�erences to evaluate the reconstruc-
tion's quality.

Bibliography

[1] R.Brun et al. PAW-Physics Analysis Workstation. CERN Program Li-
brary entry Q121, 1995

[2] Rene Brun and Fons Rademakers. ROOT - An Object Oriented Data
Analysis Framework. Nuclear Instruments and Methods A(389), 1997.
See also http://root.cern.ch

[3] GEANT � Detector Description and Simulation Tool. CERN Program
Library Long Writeup W5013, 1993

[4] Eric Gamma et al. Design Patterns. Addison-Wesley.

[5] M. Sánchez. Diseño y Programación orientados a objetos de la recon-
strucción de sucesos en el experimento Hades de colisiones núcleo-núcleo.
Diploma thesis, University of Santiago de Compostela, 1999

[6] ISO standard ISO/IEC 14882:1998

[7] Mathew Austern. Generic Programming and the STL. Addison-Wesley,
1998. ISBN 0-201-30956-4.

76 BIBLIOGRAPHY

Chapter 4

Vertex reconstruction

The Hades experiment deals with collisions between two nuclei; the so called
target and projectile. One of the relevant informations in such a collision is
where in space did it take place?. That's the question we try to answer
through the process of vertex reconstruction. Therefore, with the word �ver-
tex� we refer to the point in space where the interaction between the two
colliding nuclei took place.

The raw material used to �nd the vertex is a set of particle tracks; that is,
the recorded trajectories of particles through the Hades spectrometer. But
before the algorithm itself and its performance are presented, we will spend
some time on its motivation.

4.1 Motivation

We can distinguish between two kind of vertex reconstruction: event-wise and
across events. In the �rst case, the set of tracks is limited to the statistics
available on one event; while in the second we can accumulate statistics
across many interactions. Those two kind of vertex reconstruction are useful
in di�erent scenarios and, even though the main focus of the present work is
event-wise reconstruction, the presented tools are useful for both of them.

This is easier to understand by having a look at the di�erent situations
to be addressed.

4.1.1 Segmented target setup

One of the problems in HADES is that thin targets have to be used, so that
the leptons produced in a collision are not reabsorbed. On the other hand

78 Vertex reconstruction

Targets

Figure 4.1: Segmented target setup

thick targets have the advantage of providing higher reaction rates.

The compromise solution is to build a segmented target. That is, lay
several thin targets in a row (see 4.1); each of the targets being thin allows
for the leptons to escape while keeping high reaction rates.

In such scenario an event-wise vertex determination informs about which
segment was hit. This, in turn, would allow for a more precise vertex recon-
struction, or could be used as a constraint in the track's �tting. It has even
been suggested that one possibility is to use di�erent materials for the dif-
ferent segments, thus e�ectively carrying out several experiments in parallel,
minimizing the possible systematic deviations among them since all experi-
ments are using exactly the same setup. In this case knowing the collision
vertex is crucial to select the reaction under study.

4.1 Motivation 79

-1000 -800 -600 -400 -200 0 200 400 600
0

100

200

300

400

500

600

700

800

GSI - DUBNA modules
Sector - Color

2 - Red
3 - Blue
4 - Green
5 - Black
6 - Brown

Start

Entry
window

Main
Target

Exit
window

?

BeamLine reconstruction

Figure 4.2: z coordinate of maximum approach of tracks to the beam axis.
The di�erent elements in the beam line appear as peaks as tracks are pro-
duced by collision of beam particles with those elements. The di�erent colors
correspond to the di�erent sectors. Taken from (3).

4.1.2 Secondary targets suppression

It has been shown (4.2) the data contain a small contamination from sec-
ondary targets. Namely, interactions of the beam particles with detectors
like Start or Veto, or even the protection foils before and after the target.
Obviously, those events are not interesting, since they typically correspond to
reactions di�erent from the one under study. In order to reject such events,
an event-wise vertex reconstruction becomes handy.

4.1.3 Track �tting

The vertex position can be used as one additional point in the track �t; thus
potentially improving the �tting resolution.

80 Vertex reconstruction

4.1.4 Alignment

Vertex reconstruction allows for the determination of the target position
relative to the tracking detectors (MDC). This is very useful for alignment
purposes (see (3)). In this case the reconstruction doesn't need to be event-
wise.

4.2 Reconstruction algorithm

Vertex reconstruction is well known topic with several algorithms in the mar-
ket. Most of them involve a certain form of a �t, either Least Squares or Max-
imum Likelihood, with the main di�erences in the functional to be �tted and
how to perform the �t. However, other approaches like neural networks(5; 8)
are also being explored.

Even within the methods based on traditional �ts there are several ap-
proaches depending on the functional to be �tted. While most of them
minimize some form of distance between the vertex points and the tracks,
others like the dual approach (4) perform �rst a change in the parameter
space. In particular the dual approach consists on using the fact that for a
set of straight lines in two dimensions y = aix + b, with i : 1 : : : N , if the
lines are to cross on a given point (the vertex) given by (xv;yv) then it can
be shown that the ai and bi are linearly dependent and the vertex point can
be obtained from the linear �t of the ai with respect to the bi.

In our case we have chosen to minimize the distance of tracks to a given
point, which is directly 3D. That distance may be de�ned in several ways: it
can be the 3D distance between a point and the track or we can �x the vertex
plane and compute the distance on that plane. The vertex plane is the plane
z = zv, with zv the zeta coordinate of the vertex. Both methods have been
implemented with similar results. The one presented here minimizes the 3D
distance.

The idea is that in order to estimate distance in any given plane it is
necessary to extrapolate tracks to that plane, after extrapolation a symmetric
error in the track's slope translates into a non symmetric error (and therefore
not Gaussian) on the position in the plane. In fact, the error would still be
symmetric if the plane was perpendicular to the track. That is the reason to
use the 3D distance; in each case the extrapolation plane is perpendicular to
the track.

Regarding the �tting routine itself, Kalman �ltering (6; 7) has been widely
used to treat the problem of outliers and multiple scattering within the

4.2 Reconstruction algorithm 81

tracking detectors. In our case multiple scattering happens mostly before
the tracking (Mdc) detectors and outliers have been treated by introducing
weights into the Least Squares functional.

4.2.1 Least Squares Method algorithm

Assuming the interaction zone of the two colliding nuclei is point like, we can
de�ne the interaction vertex as the point of closest approach to all primary
tracks in the event.

Such a de�nition already suggest to use the output of tracking as the
starting point in the vertex �t. In other words, the input will be straight lines
reconstructed using the Mdc chambers. In general, that will only include
the two inner ones, but in case the magnetic �eld is o� all four chambers
could be used.

Formally, what we are looking for is to �nd the point of closest approach
to a set of N straight lines (tracks). Let track ith be represented by a position
vector ~ri and a direction vector �̂i, then each point in the track can be written
in the form

~xi = ~ri + �̂it; 8i : 1 : : :N; t 2 < (4.1)

Let ~rv be the vertex position in space. Then, the distance of this point
to a given straight line can be computed as:

di = j(~ri � ~rv)� �̂ij (4.2)

Summing up to all lines and normalizing by the error we get

Q2 =
NX
i=0

d2i
�i

=
NX
i=0

j(~ri � ~rv)� �̂ij2
�i

(4.3)

The vector ~rv which minimizes Q2 is the point of closest approach to all
tracks. This way the problem has been reduced to a simple Q2 minimization;
which, if we assume the �i to be constant, can be solved analytically. In fact
the �i are not constant, they depend on the vertex position, which is what
we are trying to minimize, and do so in a di�erent way for each track. The
corrections needed to account for that fact will be presented later.

In order to do such a minimization we need to compute the partial deriva-
tives of Q2 with respect to the parameters and equal them to zero. That is,
we need to solve @�2

@xv
= @�2

@yv
= @�2

@zv
= 0.

82 Vertex reconstruction

These derivatives can be obtained from the expression of di

d2i = [(yi � yv)�zi � (zi � zv)�yi]
2 + [(zi � zv)�xi � (xi � xv)�zi]

2+

[(xi � xv)�yi � (yi � yv)�xi]
2

(4.4)

So, we end up with

@�2

@xv
=
X

w2
i

��(xi � xv)(�
2
zi
+ �2

yi
) + (yi � yv)�xi�yi + (zi � zv)�xi�zi

�
= 0

@�2

@yv
=
X

w2
i

�
(xi � xv)�xi�yi � (yi � yv)(�

2
zi
+ �2

xi
) + (zi � zv)�yi�zi

�
= 0

@�2

@zv
=
X

w2
i

�
(xi � xv)�xi�zi + (yi � yv)�yi�zi � (zi � zv)(�

2
xi
+ �2

yi
)
�
= 0

(4.5)

where wi = 2=�2i are treated as constants. The equation system (4.5) is linear
in the parameters xv; yv; zv and therefore it can be immediately solved. In
matrix notation, if we de�ne

Ai = w2
i �
0
@�2

yi
+ �2

zi
��xi�yi ��xi�zi

��yi�xi �2
xi
+ �2

zi
��yi�zi

��xi�zi ��yi�zi �2
yi
+ �2

xi

1
A (4.6)

and

A =
X

Ai (4.7)

and

B =
X

Ai

0
@xiyi
zi

1
A

Then, we can write the equation system 4.5 as

A

0
@xvyv
zv

1
A = B)

0
@xvyv
zv

1
A = A�1B (4.8)

Thus obtaining the vertex coordinates.

4.2 Reconstruction algorithm 83

4.2.2 Error propagation

In the previous section we have assumed that the uncertainties, �i, in the dis-
tance determination were constant. This assumption allowed us to derivate
an analytical solution for the Least Squares Method problem (Lsm in short,
see (2)) . However, in reality, the fact that �i is not constant needs to be
taken into account. These uncertainties inform us about how relevant each
of the track is when it comes to determining the vertex, they are necessary to
give correct weights to the di�erent tracks. One can visualize this intuitively
by realizing that a track going parallel to the z axis contains no information
as to what the z coordinate of the vertex is.

We will deduce now the expression for � for a generic track given by
parameters (x; y; x0; y0), where (x; y) are the track's x and y coordinates for
z=0 and (x0; y0) are the track's slopes in the XZ and YZ planes respectively;
x0 and y0 come de�ned in terms of the direction vector components as:

x0 =
�x
�x

y0 =
�y
�z

The variance can be computed from the well known equation

�2(d) = (
@d

@x
;
@d

@y
;
@d

@x0
;
@d

@y0
)

0
BB@

�xx �xy �xx0 �xy0
�xy �yy �yx0 �yy0
�xx0 �yx0 �x0x0 �x0y0

�xy0 �yy0 �x0y0 �y0y0

1
CCA
0
BB@

@d
@x
@d
@y
@d
@x0
@d
@y0

1
CCA (4.9)

where �ij denote the covariance of the i and j variables for i 6= j and the
corresponding variance for i = j. For convenience, let's also introduce the
variables

�x = x� xv

�y = y � yv

�z = 0� zv

where (xv; yv; zv) are still the coordinates of the vertex point. With these
de�nitions and using �2

z = 1� �2
x� �2

y, the expression of distance between a
track and the vertex, d, becomes

84 Vertex reconstruction

d2 =
�
�2

z ��2
x

�
�2
x +

�
�2

z ��2
y

�
�2
y +�2

x +�2
y �

2 (�x�z�y�z +�x�z�x�z +�x�y�x�y)

For simplicity we will not compute the derivatives with respect to x0 and
y0; instead the expressions will be shown for the derivatives with respect to
�x and �y. The former ones can be obtained from the later trivially as:

@d

@x0
=

@d

@�x

@�x
@x0

+
@d

@�y

@�y
@x0

=
@d

@�x

1� �2
x

L
+

@d

@�y

x0y0

L

@d

@y0
=

@d

@�x

@�x
@y0

+
@d

@�y

@�y
@y0

=
@d

@�x

x0y0

L
+

@d

@�y

1� �2
y

L

where L =
p
x02 + y02 + 1.

The only ingredients missing are the partial derivatives of d, given by

@d

@x
=

(1� �2
x)�x � �x(�z�z +�y�y)

d
@d

@y
=

(1� �2
y)�y � �y(�z�z +�x�x)

d

@d

@�x
=

(�2
z ��2

x)�x ��x�y�y + 2�x�y�y�z ��x�z(1� 3�2
x � �2

y)

d

@d

@�y
=

�
�2

z ��2
y

�
�y ��x�y�x + 2�x�y�x�z ��y�z(1� 3�2

y � �2
x)

d

The �nal expression can now be obtained just from the matrix multi-
plication from Eq. 4.9. The fact that the vertex coordinates appear in this
expression has the consequence that the Lsm functional is not anymore linear
in the parameters. In other words, by introducing proper error propagation
we are not able to obtain an analytical solution anymore. Numeric methods
are then needed to minimize Q2; the methods used are presented in section
4.2.4. Before that, more non linearities will be introduced in the treatment
of outliers presented in the following section.

4.2.3 Robust vertex �t

One problem we see with the method presented in 4.2.1 is how the �tting
behaves in the presence of outliers. That is, when we have several tracks

4.2 Reconstruction algorithm 85

��

Figure 4.3: This �gure shows the e�ect of an outlier (dashed line) on the
vertex estimate. The solid circle is the vertex estimate when only the �good�
tracks are taken into account. When the outlier is introduced the new vertex
spot (hollow circle) is pushed back by it.

pointing to one common vertex, the real one, and another track going far
away from that point (see �gure 4.3). In such case too much weight is given
to the track passing far away (outlier). This makes the �tted result to be
farther away from the real vertex than it would have been if the outlier was
not used. In other words, adding wrong information makes the result worse.

This is a well known problem a�ecting any method which is based on Lsm.
The reason for it is that Lsm assumes the errors in the measurements to be
Gaussian. The presence of outliers is a symptom that the Gaussian assump-
tion is wrong; instead the actual distribution may look still like a Gaussian
but with longer tails. Then it is more probable to have a measurement far
from the model estimation than what we would expect from the Gaussian
approximation. Since Lsm does not know about it, it will try to modify the
model parameters to accept the outlier. In other words, the compact nature
of the Gaussian distribution makes it cheaper for the �tting routine to accept
a small deviation in many data points than a large deviation in any single
one.

From a physics point of view, these outliers may be originated by a variety
of reasons. Ranging from badly reconstructed tracks in the chambers to
secondary particles not originating from the target. In any case, we cannot
get rid of them prior to the vertex reconstruction, and therefore the algorithm
devised for that purpose must behave well in the presence of outliers. In other
words, we need to make our algorithm robust.

A pragmatic way to accomplish this objective would be to somehow
choose initial values for xv; yv; zv and then simply remove from the sam-
ple those tracks passing far from that initial vertex. The advantage of such a
method is its simplicity. However, with such a method, the choice of initial
vertex strongly in�uences the �t result.

86 Vertex reconstruction

A more elaborated approach (1) can be developed by just accepting the
fact that the residuals 1 are non Gaussian distributed and using a more
general method, which can deal with this fact.

Weighted LSM: Tukey weights

A well known estimator matching the requirements is the maximum like-
lihood (Ml) method (2). Let f(d) be the residuals distribution; then we
call likelihood L =

QN
i f(di)). The Ml consists on �nding the parameters

xi; yi; zi which make L maximum. Actually, what is typically maximized is
not L, but lnL as the logarithm's derivative is de�nite positive. Then the
minimum of a function and its logarithm are the same.

An important input toMl is the actual distribution of residuals. Actually,
if a Gaussian is used, the Lsm method is recovered. In our case, we have
some tracks pointing to a common vertex and a few astray ones. Let's call
the �rst subset signal and background to the second.

Then, the approximation can be made that signal's residuals follow a nor-
mal distribution while background is uniformly distributed. The compound
residuals distribution can be written as:

f(d) = (1� �)'(d) + �h0; � 2 [0; 1] (4.10)

Where � is the background level. The Ml function can then be written
as

ln
Y

f(di)
N
i =

X
ln

�
1� �

�
p
2�

e�
d2i
2�2 + �h0

�
(4.11)

Di�erentiating with respect to xv; yv; zv and dividing by

(1� �)
e�d

2

i =2�
2

�
p
2�

(4.12)

We recover the Lsm system with equations

X wi

�2
di
di
xv

= 0

X wi

�2
di
di
yv

= 0

X wi

�2
di
di
zv

= 0

(4.13)

1The residual for a particular measurement is the distance between that measurement
and the vertex point

4.3 Achieved resolution 87

with the weight function

w =
1 + c

1 + cexp(t2=2)
; t =

e

�
; c =

��h0
p
2�

1� �
(4.14)

which can be approximated by the famous Tukey's bi-squared weights

w(t) =

(
(1� (t=CT)

2)2 if jtj < CT

0 otherwise
(4.15)

Recapitulating, it has been shown that the problem of taking into account
outliers can be addressed by introducing weights into a standard Lsm func-
tional. Therefore, the name of �weighted Lsm� for this algorithm. Fig. 4.4
shows the residuals distribution in the reconstructed vertex's z coordinate,
with and without using weights.

4.2.4 Functional minimization

Both corrections on the original algorithm have the e�ect of introducing non
linearities which make an analytical solution di�cult if not impossible. In
practical terms, this translates into the need for an iterative minimization
procedure.

As shown, all non linearities can be moved into the weight factors ac-
companying the terms in the sum. Those weights depend on the vertex's
position itself. However, we can assume that the weights change slowly with
the vertex. Then, a valid procedure is that in each iteration the vertex from
the previous one is used to compute the weights. This is repeated until a
certain convergence criterion is achieved. In our case the criterion is that the
vertex from the new iteration has a distance to the one from the previous
iteration which is smaller than a certain value �. Convergence is achieved
after 10 iterations typically, for a value of � = 0:01.

4.3 Achieved resolution

The most obvious ingredient to the vertex resolution is the uncertainty in-
duced by the tracking resolution in the Mdc detectors. In particular the
resolution in the determination of slope. The slope is specially important
because the target is far from the tracking detectors (around 0.5 meters).
Thus a small error in the slope translates into a proportionally large error in
the track position at the vertex plane.

88 Vertex reconstruction

htemp
Entries 4809

Mean 0.4687

RMS 2.189

 / ndf 2χ 55.25 / 7

Constant 16.42± 739.8

Mean 0.008169± -0.003551

Sigma 0.007992± 0.4753

 z (mm)∆
-10 -5 0 5 10

co
u

n
ts

0

100

200

300

400

500

600

700

800

htemp
Entries 4809

Mean 0.4687

RMS 2.189

 / ndf 2χ 55.25 / 7

Constant 16.42± 739.8

Mean 0.008169± -0.003551

Sigma 0.007992± 0.4753

Residuals on z coordinate. No tukey weights

htemp
Entries 4045

Mean 0.01047

RMS 0.9391

 / ndf 2χ 1.637e+04 / 97

Constant 0.6988± 772.1

Mean 0.00042± -0.01149
Sigma 0.0004756± 0.4206

z (mm)∆
-10 -5 0 5 10

co
u

n
ts

0

100

200

300

400

500

600

700

800

htemp
Entries 4045

Mean 0.01047

RMS 0.9391

 / ndf 2χ 1.637e+04 / 97

Constant 0.6988± 772.1

Mean 0.00042± -0.01149
Sigma 0.0004756± 0.4206

Residuals in z coordinate with Tukey weights

Figure 4.4: E�ect of activating the Tukey weights in simulated data from
a C+C collision. Both �gures show the reconstructed z coordinate of the
vertex minus the actual one. In the �rst case (left) the reconstruction was
done without using Tukey weights and we see the e�ect of outliers in the
tails. On the second case outliers (right) have mostly been removed. In both
�gures multiple scattering was switched o�.

4.3 Achieved resolution 89

Another important problem is the e�ect of multiple scattering. When
a particle traverses a medium it is subject to multiple scattering. Multiple
scattering is the e�ect produced by the multiple elastic collisions a particle
experiments with the atoms and molecules of the medium it is traversing. In
each of those collisions, the particle is deviated from its original direction.
Since it depends on many variables multiple scattering is considered a random
process. After several such collisions, information of the incident direction is
gradually degraded.

In Hades, when a particle reaches the Mdc detectors is has traveled
through the target and the Rich detector, that adds up to a distance around
0.5 m through di�erent materials. Consequently, the direction measured in
theMdc is not the same as the direction the particle left the target with, but
for vertex reconstruction we need the direction at the interaction spot. Since
multiple scattering may alter direction with equal probability in any sense, it
can be assumed that the direction determined from Mdc is a measurement
of the one we are interested in, just with an extra error source. This has an
e�ect on our ability to determine the target, introducing an additional error
as shown in Fig. 4.5.

In that �gure, the residuals in the reconstructed z coordinate of the vertex
are plotted for both the case with and without multiple scattering. Besides
the fact that the distribution is wider with multiple scattering on, it is also
shown how multiple scattering introduces signi�cant tails. This is due to
the fact that multiple scattering cannot be considered a Gaussian process.
It certainly is the compound e�ect of many deviations which may a�ect the
measurement in any direction, however the deviations are not always small.

The next e�ect is the low available multiplicity for some systems. Even
though Hades intends to measure systems as heavy as Au+Au which trans-
late into high track multiplicities, for the moment all data have been taken
with lighter systems, like C+C. Lighter systems mean less particles per event
and that a�ects the achieved resolution because, as any other �tting routine,
the vertex algorithm requires redundancy to make accurate estimations. Fig.
?? illustrates this e�ect.

Table 4.1 shows what the average resolution is for di�erent combinations
of the variables above. All results are with Tukey weights activated; it should
be noted that for low multiplicities Tukey weights does not always converge.

4.3.1 Systematic error sources

Thus far the statistical errors. There are also sources for systematic ones. An
example is alignment: if the real position of the Mdc chambers is di�erent

90 Vertex reconstruction

htemp
Entries 2475

Mean 0.1918

RMS 4.279

 / ndf 2χ 19.69 / 11

Constant 6.23± 185.7

Mean 0.05698± 0.07243

Sigma 0.06883± 1.876

 z (mm)∆
-20 -15 -10 -5 0 5 10 15 20

co
u

n
t

0

20

40

60

80

100

120

140

160

180

200

220

htemp
Entries 2475

Mean 0.1918

RMS 4.279

 / ndf 2χ 19.69 / 11

Constant 6.23± 185.7

Mean 0.05698± 0.07243

Sigma 0.06883± 1.876

Residuals in z coordinate. Tukey weights + MS

htemp
Entries 4045

Mean 0.01047

RMS 0.9391

 / ndf 2χ 1.637e+04 / 97

Constant 0.6988± 772.1

Mean 0.00042± -0.01149
Sigma 0.0004756± 0.4206

z (mm)∆
-10 -5 0 5 10

co
u

n
ts

0

100

200

300

400

500

600

700

800

htemp
Entries 4045

Mean 0.01047

RMS 0.9391

 / ndf 2χ 1.637e+04 / 97

Constant 0.6988± 772.1

Mean 0.00042± -0.01149
Sigma 0.0004756± 0.4206

Residuals in z coordinate with Tukey weights

Figure 4.5: Multiple scattering e�ect on simulated C+C data. Both �gures
show the reconstructed z coordinate of the vertex minus the actual one. In
the �rst case multiple scattering was turned on in HGeant while it was
o� for the second �gure. Besides the increase in width, multiple scattering
introduces larger tails (see text).

4.3 Achieved resolution 91

Multiple Scattering No Multiple Scattering
C+C Au+Au C+C Au+Au

Ideal tracking 1.1, 1.1, 1.9 0.3, 0.3, 0.5 0.4, 0.4, 0.4 0.08, 0.07, 0.09

Table 4.1: Vertex reconstruction resolution in di�erent scenarios using Tukey
weights. Each entry in the table is a triplet with the resolutions in x; y and
z in mm.

x (mm)
∆

-10
-5

0
5

10

y (mm)

∆

-10

-5

0

5

10
0

100
200
300
400
500
600
700

Residuals in x,y coordinates. No MulS

Figure 4.6: Residuals in the x and y coordinates for the scenario C+C without
multiple scattering and Tukey weights activated.

92 Vertex reconstruction

from the one used in the analysis one should get systematic errors. The
kind of alignment which a�ects vertex reconstruction is alignment between
the Mdc chambers themselves. There are several techniques to attack that
alignment problem, some of them making use of the vertex information. A
review of the techniques and its application to Hades can be found on (3).

Another e�ect is the one introduced by secondaries, that is particles not
originating from the target. This is in part taken care of by the Tukey
weights.

The third e�ect is the presence of a residual magnetic �eld between the
two inner chambers. Because of that �eld the track does not follow a straight
path, that bending depends on the particle's momentum. If the tracking al-
gorithm assumes the track to be straight, it will introduce a small systematic
in slope which translates into a systematic in vertex determination (around
100�m for full �eld). There are several solutions:

� Use full tracks for the vertex �t, that is tracks not only formed with
the inner two Mdc detectors, but also the outer ones. At that level
momentum information has been introduced and, depending on the
momentum reconstruction algorithm, the curvature in the inner cham-
bers has been taken care of.

� Use tracks formed only with the �rst Mdc. It can be assumed that
there is no �eld around Mdc1. The disadvantage is that by using only
one Mdc the slope resolution is reduced.

4.4 Application to real data

Fig. 4.7 shows the reconstructed vertex for a Nov01 data set. In that case
the used target was a cylindrical carbon target with a length of 5mm and
a diameter of 8mm. That re�ects in the widths of the distributions, while
their means tell about the target position.

4.4 Application to real data 93

x (mm)
-30 -20 -10 0 10 20 30

y
(m

m
)

-30

-20

-10

0

10

20

30

vxy
Entries 102587
Mean x -3.098
Mean y -0.655
RMS x 4.73
RMS y 4.17

vxy
Entries 102587
Mean x -3.098
Mean y -0.655
RMS x 4.73
RMS y 4.17

x and y coordinates of the reconstructed vertex

vz
Entries 102587

Mean -32.43

RMS 6.798

z (mm)
-80 -60 -40 -20 0 20 40

co
u

n
ts

0

2000

4000

6000

8000

10000
vz

Entries 102587

Mean -32.43

RMS 6.798

z coordinate of the reconstructed vertex

Figure 4.7: Reconstructed vertex coordinates for events in the Nov01 data
set. The distributions centers correspond to the target position in their
respective coordinates

94 Vertex reconstruction

Bibliography

[1] G. Agakichiev et al. A new robust �tting algorithm for vertex reconstruc-
tion in the CERES experiment. Nuclear Instruments and Methods in
Physics Research A(394):225-231, 1997

[2] W.T. Eadie et al. Statistical methods in Experimental Physics. North
Holland Publishing Company, Amsterdam, 1971

[3] H. Álvarez Pol. On the multiwire drift chamber alignment of the Hades
spectrometer. PhD. Thesis, Universidad de Santiago de Compostela, 2002.

[4] E. Calligarich et al. A fast algorithm for vertex estimation. Nuclear In-
struments and Methods in Physics research A(311):151-155, 1992

[5] G. Stimpft Abele. Finding the Decay Vertex of a Charged Track with
Neural Networks. Université Blaise Pascal. Unpublished

[6] M. Regler and R. Frühwirth. Reconstruction of charged tracks. From Tech-
niques and Concepts of High Energy Physics. Pienum Publishing Corp.,
1990

[7] R. Frühwirth. Application of Kalman �ltering to track and vertex �ting.
Nuclear Instruments and Methods in Physics Research A(262):444, 1987

[8] I. Kisel et al. Elastic neural net for track and vertex search. Nuclear
Instruments and Methods in Physics Research A(389):167-168, 1997

96 BIBLIOGRAPHY

Chapter 5

Momentum reconstruction

In this chapter we will deal with the problem of obtaining the momentum
of particles traversing the hades spectrometer. This task is essential to
understand the physics of events recorded by the machine.

A particle's momentum is obtained from its de�ection in a magnetic �eld,
which requires measuring the particle's direction before and after the magnet.
This information is provided by the inner Mdc chambers before the mag-
net, and either the outer Mdc or Meta detectors in the outer part of the
spectrometer. The magnetic �eld is provided by a toroidal superconducting
magnet in between the two inner and the two outer Mdc chambers.

The main di�culties we will have to face are related to the e�ect of mul-
tiple scattering and the fact that the magnetic �eld in use is inhomogeneous.
The �rst of these problems a�ects mostly the detector design, as materials
have to be chosen to minimize this e�ect. As we will see, even with a careful
design, the e�ect of multiple scattering is not negligible. On the other hand,
the additional di�culty of dealing with an inhomogeneous magnetic �eld is
something we will have to deal with in the o�ine analysis.

In the following sections the requirements on momentum reconstruction
will be presented, as well as two particular algorithms: the so called �kick
plane� and �reference trajectories�. These two algorithms respond to dif-
ferent design goals, their connections and di�erences will be shown. First
both algorithms will be presented from a theoretical standpoint, while the
later sections in the chapter deal with their application and performance in
di�erent scenarios.

Mainly these di�erent scenarios respond to the temporal non availability
of some of theMdc chambers, due to its installation not being completed for
some of the data taking periods. Section 5.4.1 describes a setup where the
two outer Mdc chambers are absent, thus seriously limiting the resolution;

98 Momentum reconstruction

on section 5.4.2 the innermost of the two outer chambers is added (Mdc3)
enabling a much improved resolution; last but not least the e�ect of adding
the outermost chamber is discussed in section 5.4.3, giving us the �nal edge
on momentum resolution.

5.1 Motivation and requirements

As explained in 2 hades' mainly strives to obtain the invariant mass of
dilepton pairs coming out of heavy ion collisions. For this purpose a reli-
able momentum reconstruction is needed, since a dilepton's invariant mass
directly depends upon the momentum of the participating leptons, as shown
in its well known expression.

M =

q
(E1 + E2)2 � jp1 + p2j2 (5.1)

where (Ei;pi) is the quadrimomentum vectors for lepton i.

The information on particle momentum has many other applications as
well, ranging from assisting the second level trigger with particle identi�-
cation. Naturally, this broad range of applications translates into di�erent
requirements.

The second level trigger's Matching Unit (Mu) uses momentum infor-
mation on-line to select events with an increased probability of containing a
dilepton. This is done by identifying lepton candidates and then placing cuts
on their invariant mass. Here, the main constraint is in the time used up by
the momentum reconstruction algorithm. This time has to be short so that
the mu can cope with the high rates of data taking. On the other hand the
algorithm's resolution is not of critical importance for the mu.

All other tasks, which take place during the o�ine analysis, are more
concerned about resolution than speed. Some of those tasks include lepton
identi�cation in the Shower detector, particle identi�cation etc. But the most
demanding is being able to resolve the ! meson; which requires the invariant
mass resolution to be at least in the order of the meson's width, and that, in
turn, demands a momentum reconstruction resolution of about 1%.

For comparison, the precursor experiment, Dls (see (1)), had a resolution
in the order of 10%.

Another requirement is for the algorithm to adapt to experimental setups
where not all detectors are present, as already explained.

5.2 Reference trajectories algorithm 99

5.1.1 Applications of momentum reconstruction

This is a list of all known uses of momentum reconstruction in hades

� In the Matching Unit, to help in taking the trigger decision. The mo-
mentum is used to obtain the invariant mass of open pairs, placing a
cut on �reasonable� masses.

� The Shower detector uses momentum to help in the lepton identi�-
cation. Shower takes a decisions whether if a particle is a lepton or
not by looking at the �rsts steps in the shower produced by the particle
in the detector. The multiplication factors for electromagnetic showers
di�er with momentum and so does the cut to be applied.

� Particle Identi�cation (Pid) a topic where momentum plays a signi�-
cant role since Pid is usually performed with two dimensional cuts on
histograms like momentum versus speed.

� Lepton analysis. Momentum is needed to obtain invariant mass

� Hadron analysis. One typically wants to look at cross sections as a
function of momentum, transverse momentum, energy etc. Most of
those variables involve momentum in one way or the other.

5.2 Reference trajectories algorithm

The standard way to estimate a track's parameters in many experiments is a
Least Squares Method (LSM) which requires a track model. The di�culty in
our case is precisely in obtaining such a track model, due to the inhomoge-
neous nature of the magnetic �eld in hades. We will see that in fact not the
full track model is needed, but only certain information about it. The main
idea of the �Reference Trajectories� algorithm is to obtain that information
by numerical means.

5.2.1 Fitting procedure

A track is completely de�ned by 5 parameters, thus it can be represented by
a �ve dimensional vector with components p = (1=p; �; z; �; �); let's call the
parameter space where this vector lives P. The �rst parameter is the inverse
of the the particle's momentum. The reason to use 1=p as parameter instead
of just p is that de�ection in the magnetic �eld is inversely proportional

100 Momentum reconstruction

x0

z0

y0

ρ

z

Figure 5.1: De�nition of � and z

to momentum; what is actually measured is de�ection and thus we expect
random errors to a�ect it in�nitesimally; thus 1=p can be expected to behave
in Gaussian way, while p does not. The other 4 components of p represent a
straight line as it comes out of the interaction point. Let's assume the track
goes through the point v = (x0; y0; z0) with direction given by the vector
� = (�x; �y;�z). Then

� =arccos

�zp

�2
x + �2

y + �2
z

!

� =arctan(�y=�x)

� =y0 cos�� x0 sin�

z =� (x0 cos�+ y0 sin�) cos �

sin �

where � and � are the well known polar and azimuthal angles with respect
to the z axis, while � and z give information on the track's origin. Intuitively
z is the z coordinate of the point in the track which is closest to the z axis
(e.g. 0 if they intersect) and � is the distance of closest approach between
the z axis and the track itself.

In order to estimate the parameter vector p, all the information we have
are the coordinates of several points along the track. Let's put those co-
ordinates in a measurement vector xm. In our case the measurements are
provided by the 4 Mdc chambers, each of them giving the (x; y) coordinates

5.2 Reference trajectories algorithm 101

of the track on the chamber's center plane. Therefore xm is a 8 dimensional
vector1 living in a vector space X. Since p is a complete de�nition of the
track, there must be a function F : P ! X relating the two vector spaces.
In general x = F(p)

There are two components contributing to xm, that is xm = x + xr
where xr corresponds to the random measurement errors. Therefore our
measurement vector will come with a covariance matrix; let its inverse be
W .

The LSM2 tells us that as far as xr are Gaussian an optimal estimation
of p can be obtained from xm just minimizing the functional

Q2 = (F(p)� xm)
TW (F(p)� xm) (5.2)

Up to this point everything is like in a standard LSM, now we would
proceed to �nd pe satisfying the following system of 5 equations:

@�2

@p

����
p=pe

= 0 (5.3)

The problem is F being unknown. Even if we knew F, the problem of
solving 5.3 with a non linear F looks daunting. We have tackled the second
of the problems by linearizing the functional. Let's assume F to be smooth
enough around pe. Then F admits a Taylor expansion around any point p0
close to pe.

F(p) =
nX

k=0

@kF

@pk

����
p=p0

(p� p0)
k

Then, a �rst order approximation can be done which is good for all p
close to p0 (and pe). Consequently, the following simpli�ed model can be
used for the functional minimization.

F(p) ' F(p0) + A � (p� p0) +O
�
(p� p0)

2
�

(5.4)

Where A is the matrix with elements A(i; j) = @Fi(p)
@pj

���
p=p0

. With this ap-

proximation equation (5.2) can be written as

Q2 = [F(p0) + A � (p + p0)� xm]
T W [F(p0) + A � (p + p0)� xm]

14 chambers times 2 measurements per chamber
2Least Squares Method

102 Momentum reconstruction

Imposing (5.3) and after some math work we arrive to

pe = p0 +
�
ATWA

��1
ATW � (xm � F (p0)) (5.5)

There are still two problems: we need methods to obtain a suitable p0
and to compute both the A matrix and F(p0). In order to tackle the second
of the issues, we can restrict ourselves and impose for p0 to belong to a set of
points speci�ed beforehand and for which we have numerically computed the
corresponding F(p0). In other words, we tabulate F. The details on how to
obtain such a table and how to calculate the A matrix from it are explained
later; for the moment let's assume that they are given.

With these ingredients it is easy to devise an iterative algorithm to esti-
mate the track parameters. We start from an initial estimation, this could
be taken from an alternative momentum reconstruction algorithm, like the
kick plane algorithm from section 5.3; let's note that estimation by p0e. From
any estimation, a better one can be iteratively obtained by

pk+1e = pke +
�
ATWA

��1
ATW � �xm � F (pke)

�
Since we don't know how to calculate F (pke) for a generic pke . In each

iteration that vector is substituted by the closes entry in the table of F .
This minimization algorithm is sketched in Fig. 5.2. The algorithm typically
converges in 1 or 2 iterations

5.2.2 Tabulating F

The goal is to evaluate F for a set of points forming a grid in the 5 dimensional
parameter space, as in Fig. 5.3. The limits of the grid are basically de�ned
by the geometrical acceptance of hades and the kind of physics to do. The
granularity has to be chosen hitting a compromise between resolution and
memory consumption. The key of the method explained above is the linear
approximation of F between grid points. The more �ne grained the binning
the better the linear approximation is, and therefore the better the resolution
we get out of the �t routine. On the other hand the more �ne grained the
binning the larger the memory consumption, so we have to hit a compromise
which satis�es the requirement of 1% momentum resolution.

The limits on the parameters are de�ned by the hades geometry as
follows

5.2 Reference trajectories algorithm 103

converged &
i < maxIter

converged=true

let i=0
let m=measurement vector
let W = invers covariance of measurements
let p = initial parameter vector
let p0_old[0] = p0_old[1] = 0

let p0 = closest point in grid to p
let f = F(p0)
let A = Derivative matrix of F at p0
let At = transpose of A
let chi2_matrix = (At*W*A)¯¹ * At*W
let deltaP = chi2_matrix * (m-f)
let p = p0 + deltaP

p & p0
in same grid

cell

no

yes no

yes

cycle detected
converged=true

i=maxIter

p0 = p0_old[1]

let p0_old[1]=p0_old[0]
let p0_old[0] = p0

noyes

The initial
parameters

vector can be
get from

the kickplane

Figure 5.2: Flowchart of the minimization algorithm explained in the text.

P X

F

Figure 5.3: Since the track model is di�cult to obtain analytically, F is com-
puted on a set of data points forming a grid. The computation is performed
with a Monte Carlo

104 Momentum reconstruction

� �; z are strongly related with the originating point of the track, which,
for physically interesting particles, has to be in the target region. There-
fore the limits in �; z are chosen to de�ne a cylinder along the z axis
encapsulating the target. � is the radius of such a cylinder and z the
height range. The actual numbers depend on the particular target
con�guration for a given experiment.

� �; � are the familiar polar an azimuthal angles. So their ranges are de-
�ned by the angular coverage of the spectrometer. In � this ranges from
18o to 85o. However values outside that window need to be accepted to
account for detector resolution e�ects, therefore the window has been
extended to span from 14o to 90o. In principle � should cover from
-180o to 180o with 0o corresponding to the center of the uppermost sec-
tor. However we can make use of the spectrometers' sector symmetry
to reduce this range to span from -30o to +30o; furthermore, the left
and right halves of each sector are also symmetrical; so we actually
need to tabulate F for � in the range 0o to 30o.

� 1=p is the most di�cult to specify because it means putting a window in
the momentum acceptance. Currently the range is set to 1

p
2 � 1

1500
; 1
100

�
in units of MeV �1. 100 MeV is the minimum allowed momentum
because it is essentially the momentum kick of the magnetic �eld, 1500
MeV is set as the maximum to provide good resolution on the region
of physical interest (around the ! meson mass) while keeping memory
usage at a reasonable level. To determine momentum below 100 MeV
either the kick plane can be used or a reference trajectories �t with a
speci�c table for low momentum.

As for the binning, we have not devised any mathematically rigorous method
to optimize it; but a hand made approach has been used instead. The �rst
step being to chose an initial binning based on educated guesses. This guesses
are based in the intuition gained while implementing the �Kick Plane Algo-
rithm� (see Section 5.3). In that section it is shown that 1=p essentially goes
linearly with de�ection, so the corresponding binning can be rather rough for
the high resolution we need to achieve. It is also shown there that the main
variation in momentum kick happens when moving along �, so the binning
has to be relatively �ne grained. The binning in � could be rougher was it
not for the strong variation in the magnetic �eld at large �, that is, near the
magnet's coils.

There are two possible solutions here, one is to allow for variable sized
cells in the grid and the other is to reduce the overall bin size in �. Since

5.2 Reference trajectories algorithm 105

 (rad)θ
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

p p∆

-0.4

-0.2

0

0.2

0.4

θMomentum resolution for 18 bins in

 (rad)θ
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

p p∆

-0.4

-0.2

0

0.2

0.4

θMomentum resolution for 36 bins in

Figure 5.4: The leftmost �gure shows �p
p
as a function of � for two di�erent

bin sizes. The leftmost �gure corresponds to 18 bins while the one at the
right is for 36 bins. The vertical bars show the bin boundaries

the �rst complicates derivatives computation code both complexity and time
wise, it has been left for future exploration. In our case we started from the
previous work on reference trajectories by R.Schicker (see (7)).

In order to optimize the binning, the �nal momentum resolution (�p
p
) can

be plotted versus the di�erent parameters; this makes it easy to see if a more
�ne grained binning is needed in each case. One example is shown in Fig.
5.4 where �p

p
is plotted versus � for two di�erent binning in � itself. The

�gure corresponding to the rough binning shows a structure within each bin,
indicating that a smaller bin size would be helpful. It should also be noted
that this structure is non linear; pointing in the direction of a problem with
bin sizes, rather than a problem with the �t routine. Moreover, such a plot
allows to directly estimate what will the e�ect of reducing the bin size be, in
terms of momentum resolution.

Another fact that needs to be taken into account is that F depends on
the charge of the particle being tracked. The reason is that positrons are
bent toward the beam pipe and electrons away from it. Then for a given
entry point in the �eld, if the particle is an electron it will see a weakening
�eld along its path while if it is a positron it will see a strengthening one3, as
shown in Figure 5.5 on page 106. Thus, for the same momentum the electron
is less de�ected; that is, F has di�erent values. The immediate consequence
of this is the need for two grids. One for positively charged particles and
another one for negatively charged ones.

3This is not truth over the whole sector. The argument reverses for the lowermost polar
angles. But the point is still valid that electrons and positrons behave di�erently.

106 Momentum reconstruction

e−

+e

Figure 5.5: Dependency of momentum kick on charge

Numerical computation of F

For each grid point, F is computed using the HGeant Montecarlo program
described in section 3.11. This package describes the passage of particles
through matter, simulating the processes that a�ect those particles trajecto-
ries, including the e�ect of the magnetic �eld.

The basic procedure starts by writing a simple event generator for HGeant.
Using the generator, particles are fed to the simulation package. HGeant
propagates them through a model of hades and their position at the detec-
tion planes is recorded. For each entry in the table, or grid vertex, a set of
particles is shot. One of the important e�ects in HGeant is of course the
multiple scattering on the Mdc foils and the air between Mdcs. Therefore
one wants to average over a few hundred trajectories. Since the �t routine can
be said to work by comparison with these tracks, they are called �Reference
Trajectories�, naming the algorithm.

It should be noted that it is not a good idea to use uniform distributions
in the parameters and then perform a binning (see Fig. 5.6), because in such
a case each point in the grid would get the mean value of F over the bin and
if F is not linear, the mean is biased and it does necessarily correspond to
the value at the grid point; this mostly a�ects the computation of derivatives
during the �tting phase. The need to match the binning in the event gen-

5.2 Reference trajectories algorithm 107

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Functional value
Average over the bin
Functional
Interpolation with values

Interpolation with averages

Interpolation for averages vs values

Figure 5.6: This �gure shows the di�erence between interpolating taking the
value of the function at the grid points (solid vertical lines), and the average
over the bin. Bin boundaries are marked by the dashed vertical lines; the
function model used as example is f = x3

erator with the binning in the grid forces the need to recompute the whole
sample whenever the binning changes.

We are using simulation to evaluate F, this means the method will be as
good as the simulation is. That is the reason why a large e�ort has been
made by the collaboration to have an accurate description of hades in the
simulation package; this means not only the geometry has to be reproduced
in HGeant with great detail, but also the magnetic �eld itself. The �eld map
was obtained by two methods, using a simulation package called Tosca, which
describes iron less magnets very well; but also a measurement was made to
crosscheck the result with discrepancies below 1% (see (8)).

Fig. 5.7 shows a component of F for a given grid point evaluated for
150 with the same parameter vector; this component corresponds to the
y coordinate in Mdc3. It can be clearly seen that the distribution is not
even symmetric, let alone single valued. The asymmetry comes from the
e�ect of �Energy Loss� which a�ects the track before reaching the region

108 Momentum reconstruction

htemp
Entries 150
Mean 165.2
RMS 0.04347

y3 (mm)
165.15 165.2 165.25 165.3 165.35 165.4 165.45 165.5

0

2

4

6

8

10

12

14

16

18

htemp
Entries 150
Mean 165.2
RMS 0.04347

-y3 {abs(theta-.82)<.01 && abs(phi-1.68)<.02 && abs(1/p-.005)<.0005}

Figure 5.7: A component of F at grid point

of the magnetic �eld. Energy loss is, in this particular case, due to the
interactions of the track with the air and it is a random process described by
a Landau distribution. Each energy loss diminishes the particle momentum
and that basically increases the de�ection of the particle in the �eld. The
larger the energy loss, the larger the momentum change and therefore the
larger the alteration in de�ection. Given that the incident direction is �xed it
seems natural that the variable is also shaped like a Landau distribution and
actually it is well �tted by one. The situation is simpler for the components
representing the position of the track before the magnet, those are, within
numerical resolution, single valued.

Therefore we have two kind of components in the measurement vector xm:
the ones representing position before the magnet, whose parameterization is
trivial, and the ones after the magnet. In this second case a solution would
be to �t each distribution to a Landau for every single bin in the grid and
taking the peak position (MVP). However, a test showed each �t taking close
to 1.5 seconds4. Assuming a reasonable binning (16� 6� 15� 18� 12) this
would translate into 126 hours of computing time, which is unpractical even

4Time taken on a Athlon XP1700 CPU. Running at 1.4GHz

5.2 Reference trajectories algorithm 109

if a factor could be get by optimizing the �tting code.

Instead, the chosen approach is to iteratively �lter away the outliers.
That is, the entries falling far away from the MVP. This way the mean of
the �ltered distribution and the MVP tend to be the same. To determine
what far away means, the original distribution is taken for each component
of F and for each bin. Then the mean value and RMS of the distribution
are computed. Those two numbers are used to create a window centered at
the mean and with a width of 2 times the RMS. The �ltered distribution is
obtained from the original one by �ltering away the entries falling outside
the window.

The resulting distribution can itself be �ltered in the same way, repeating
the procedure as many times as needed. In each iteration the function value is
estimated by the mean. Typically 2 iterations are enough since the di�erence
between the MVP of the Landau distribution and the calculated mean is well
below the 80�m position resolution of the drift chambers.

This simple approach allows to parameterize a full set of reference trajec-
tories in a matter of minutes.

5.2.3 Derivative matrix computation

As explained in 5.2.1 each iteration in the �t routine requires the computation
of the A matrix with elements Aij =

@Fi
@pj

. This makes up for 40 derivatives
which need to be computed in each iteration step. In principle it is possible
to compute A for each grid bin in advance and store the results in a table.
However such a technique is impractical due to the large amount of memory
it requires, about 380Mb for a binning (16 � 6 � 15 � 18 � 12). Actually
dealing with such large arrays has also a possible impact in performance.
The reason is that in todays computers the processor is much faster than
what standard memory can support, therefore the need for large caches. A
matrix of this size will not �t in the cache so each access will produce a cache
miss in the processor, thus slowing down the operation. How big this e�ect
is has not been tested, though.

Fortunately there are methods in the literature which allow to e�ciently
compute the derivatives of a tabulated function; as it is in our case. The one
we have implemented is based on the so called Savitzky-Golay �lters (see
(2)).

Before going into the description of the method let's �x some notation.
Let's note the indexes moving in the 5 dimensional grid by greek letters
�=(�1; : : : ; �5). Each point of the grid in the P space may be noted as

110 Momentum reconstruction

p(�1;:::;�5). Fi (p�1;:::;�5) is the i
th component of F(p) calculated at that point,

where i runs from 1 to 8.

The idea is to compute the derivatives @Fi
@pj

at any given point of the grid
starting from the known values of F at the grid points themselves. For this
purpose we make a least squares �t of a polynomial of order M to the values
of Fi calculated at several points of the grid along the coordinate with respect
to which we are di�erentiating, i.e., having di�erent values of the �j index,
while keeping the remaining coordinates unchanged.

Let's suppose that the grid point where we are calculating the derivative
has �j = � and all the points in the grid are equally spaced by some constant
distance �. Then, the known values of the F function may be written as

fk = Fi(p�1;:::;�j=�+k;:::;�5)

where k = : : : ;�2;�1; 0; 1; 2; : : :
Usually it is not necessary, neither advisable, to perform the �t over the nj

points of the grid along the j coordinate; but only over just n points between
f�nL and f�nR, being n = nL+nR+1. Typical values are M = nL = nR = 2
which makes n = 5.

The idea is rather simple and potentially also quite expensive in terms
of time complexity. Savitzky-Golay �lters allow to reduce the task of �tting
a polynomial and computing its derivative to a mere scalar product of two
vectors of dimension n and one division. The basic idea is that since the
least squares �t is a linear operation on the data, the coe�cients of the �tted
polynomial are themselves linear on the function values. Then, there is a set
of coe�cients ci for which the process of polynomial least squares �tting and
evaluation is reduced to:

g� =

nRX
k=�nL

ckf�+k (5.6)

To derive such coe�cients lets write down the LSM �t to a polynomial
of order M, assuming the error in the f�+k are the same for all k. Then, the
functional to minimize is:

Q2 =

nRX
k=�nL

f�+k �

MX
m=0

sm�
m

!2

(5.7)

The set of fsmg coe�cients minimizing Q2 is given by the solution of the
system of equations:

5.2 Reference trajectories algorithm 111

1

2

@Q2

@sm
=

nRX
k=�nL

f�+kk

m �
MX
j=0

sjk
mkj

!
= 0 8m : 0; : : : ;M (5.8)

De�ning matrix S with elements

Skm = km k = �nL; : : : ; 0; : : : ; nR m = 0; : : : ;M

and vectors s = (s0; : : : ; sM) and f = (f�nL; : : : ; fnR). We can write the
system of equations in matrix notation as

(StS)s = Stf) s = (StS)�1(Stf)

Now, the value of the polynomial at k = 0 is s0 = g� and the value of the
�rst derivative is s1

�
where � is the grid step size5. Therefore the so called

Savitzky-Golay coe�cients fckg are given by

ck =
MX
m=0

h�
StS

��1i
0m

km

If what we want to compute is the derivative we use coe�cients:

ck = ��1
MX
m=0

h�
StS

��1i
1m

km

Since the Savitzky-Golay coe�cients themselves are independent of the
function values f� we can calculate all of them in advance and reuse them
each time a partial derivative needs to be computed. It should be stressed
that the key factor allowing the derivation above is that the grid points are
equally spaced in each dimension.

Implementation considerations

The one problem of the method outlined above is evident when we need to
perform the di�erentiation close to the edges of the grid. In that case we may
not get enough points either to the left or the right. Then, the di�erentiation
routine adapts itself by determining how many points can be used for the
�t and choosing appropriate Savitzky-Golay parameters from a table. For
example, table 5.1 shows the full set of coe�cients for nL = 2,

5� = bj(�1; : : : ; �j ; : : : ; �8)� bj(�1; : : : ; �j � 1; : : : ; �8)

112 Momentum reconstruction

M nL nR Savitzky-Golay Coe�cients

2 2 2 -0.20 -0.10 0.00 0.10 0.20
2 2 1 -0.05 -0.35 -0.15 0.55
2 2 0 0.50 -2.00 1.50
2 1 2 -0.55 0.15 0.35 0.50
2 0 2 -1.50 2.00 -0.50
2 1 1 -1.50 2.00 -0.50

Table 5.1: Sample Savitzky-Golay coe�cients for di�erent values of M;nL
and nR

Another complication appears when di�erentiating with respect to � near
the � = 0 region. In this region we have to make use of the sector symmetry
when looking at the neighbors.

5.2.4 Implementation considerations

The main concern implementing the �t routine explained in 5.2.1 has been
its performance. That was the reason to implement Savitzky-Golay �lters;
but it was also the reason to build a customized linear algebra package, this
package is inspired in the Blitz++ library (see (3)). The goal is to e�ciently
compute the matrix which appears in (5.5) multiplying (xm � F(p0), let's
call it M for the rest of this section.

Direct inspection shows that computing M involves 3 matrix multiplica-
tions, one transposition and one inversion. The single-most standing point
is the matrix inversion; but in fact, using the so called LU decomposition of
a matrix6 there is no need for a full matrix inversion, as we can use back-
substitution which a�ords a factor 3 in the linear algebra, compared to cal-
culating the inverse by Gauss-Jordan. The only place where we need the full
inverse matrix is when computing the covariance matrix of the parameters;
but that is something done after the last iteration in the �t.

As for the code itself it was crafted to make it as e�cient as custom
Fortran code, but with the added re-usability inherent to Object Oriented
Programing (OOP). The all too common mistake in C++ when dealing with
matrices is to de�ne a matrix class and overload the arithmetic operators to
return objects. Then, code as innocent as this

6The LU decomposition consists in expressing a matrix as the product of other two: L
and U, both of them triangular. The L matrix has all elements above the diagonal equal
to zero, correspondingly U has the elements below the diagonal equal to zero. See ref (9).

5.3 �Kick plane� algorithm 113

Matrix a(3,3),b(3,3)

Matrix c(3,3)

c = a * b

is actually performing signi�cant work behind the scenes. The line c=a*b
creates a temporary matrix, multiplies a and b into it and then copies the
result to c element by element. The Fortran equivalent would a�ord the
intermediate step. Therefore in our implementation there is no * operator
for matrices and only *= is allowed.

The same happens when transposing a matrix, the obvious solution would
be to create a method transpose() returning the transposed matrix. Again,
this involves copying the matrix elements one by one. A better way to do
it is to realize that a matrix and its transposed are two views on the same
data. Then the best thing is to separate the view and the data (also referred
as model) in two di�erent classes: HRtMatrix for the view and HRtMem-
oryBlock for the data7.

Then a matrix and its transposed can be represented by two instances
of HRtMatrix on the same HRtMemoryBlock object. Since the model
can be shared by several views it has to be reference counted to avoid mem-
ory leaks and multiple destruction. The performance gain comes because
HRtMatrix objects are now lightweight. Besides it is possible to create the
views in advance and keep them around, when new matrix data is computed
both views are automatically updated at the same time.

5.3 �Kick plane� algorithm

The kick plane algorithm di�ers from the reference trajectories in that it
models the track's trajectory inside the �eld region. We will see that even if
the full track model is unknown, its momentum can be approximated by the
track's de�ection alone. It will be shown that the de�ection of a particle in
a magnetic �eld is proportional both to the �eld strength and the distance
traveled by the particle in the �eld. Therefore one can replace the original
�eld by another compressed in space, but increased in strength, such that the
e�ect stays the same. Taking this process to the limit, the �eld is compressed
into a 2 dimensional sheet, the kick plane, where all of the de�ection takes
place.

7For the literate in Object Oriented Design, this is just an application of the design
pattern known as �Model View Controller�. (see (4)).

114 Momentum reconstruction

In order to cope with the �eld's inhomogeneities the �eld region is divided
in cells where we can assume the �eld to be constant. This requires the
building of a grid, like for reference trajectories. The di�erence is basically
in the size of the grid. In some sense the kick plane algorithm is a derivation
of reference trajectories where we have put some more physics knowledge in.

Given that all six hades sectors are symmetrical we will concentrate in
one of them. Everything said in this section refers to the �rst, uppermost,
sector, unless noted. All other sectors are equivalent.

5.3.1 Charged particle motion in a magnetic �eld

Let's start by assuming there is not electric �eld in the region where the
magnet sits. That is the magnetic �eld is static @B

@t
= 0. Then the motion

of a single charged particle in the �eld is governed by the Lorentz force. Its
equation of motion can be written as (see (5))

m
d2r

d2t
= q

dr

dt
�B (5.9)

De�ning the trajectory length coordinate

d�2 = jdrj2 = dx2 + dy2 + dz2

(5.9) can be written as

d2r

d2�
=

q

p

dr

d�
�B

This equation has a nice geometrical interpretation, since dr
dt

is a unit
vector tangent to the particle's trajectory at any point. d2r

d2t
is a unit vector

perpendicular to the track and with length 1
�
, where � is the track's curvature

radius.

De�ning � as the angle between dr
dt
and B. We can write

1

�
=qB

sin(�)

p

psin(�) =q�B sin2(�)

Where p sin� is the component of the momentum perpendicular to B and
� sin� is the curvature of the track trajectories projection into a plane per-
pendicular to B

5.3 �Kick plane� algorithm 115

Given the geometrical interpretation of d2r
d2�

we can write the in�nitesimal
de�ection of the track as

d� =

����d2rd2t
���� d� =

q

p
B sin(�)d� (5.10)

If de�ection is additive, that is, if the in�nitesimal rotations happen
around a �xed axis, the total de�ection of a charged particle in a �eld can
be obtained from the integral

�� =
q

p

Z �2

�1

B sin(�)d�

5.3.2 Obtaining momentum from de�ection

Let's assume the �eld is con�ned to some spatial area, like in the case of
hades and most other spectrometers. Then, for any given track, the �eld
can be expressed as

B =

(
B(�) �1 < � < �2

0 otherwise

The particle's de�ection can also be calculated making use of the fact
that the Lorentz force is perpendicular to the momentum, then jpj remains
constant and only the momentum direction changes. Let p1 be the momen-
tum at � = �1 and p2 the momentum at � = �2. Then, as shown in Fig.
5.8

jp1j = jp2j) pk = �p = 2p sin

�
�

2

�

In di�erential form and making use of the fact that sin(�) ' � for small
angles, we come to

dpk = pd�

Using (5.10)

dpk = qBsin�d�

In the hades case sin� = 0. Also, the �eld being toroidal implies de�ec-
tion taking place in one plane. Then it is legal to integrate, that is, for each
particular track

116 Momentum reconstruction

p1

p2

∆p
ξ

Figure 5.8: Track de�ection

pk = q

Z �2

�1

Bd� = K(�2 � �1)

where K is a constant, di�erent for each track and �2��1 is the track's path
length inside the �eld. Intuitively we can expect the path length to depend
essentially on the tracks de�ection, the larger the de�ection the larger the
path length. So it is justi�ed to make an ansatz �2��1 = F (�) = f(sin(�=2))

Performing a Taylor expansion in powers of sin(�=2) around sin(�=2) = 0
we get

f = a+ b sin(�=2) + c sin2(�=2) +O(sin3(�=2))

Therefore, the momentum and de�ection are related by

p =
pk

2 sin(�=2)
=

A

sin(�=2)
+B + C sin(�=2) (5.11)

The crucial point now is to realize that A;B and C depend essentially on
the magnet properties alone. Or, in other words, on the spatial region being
traversed by the particle. This implies we can extend the previous equation
to arbitrary tracks where A;B;C are functions of the polar and azimuthal
angles.

Once we have parameterized A;B;C. Eq. (5.11) allows to calculate
momentum from particle's de�ection. From the derivation of this formula,
it is also clear that the model is better for the smaller de�ections, that is,
larger momenta.

5.3 �Kick plane� algorithm 117

z (mm)

0200400600800100012001400x (mm)

-600-400-200 0 200400600

y
(m

m
)

0

200

400

600

800

1000

1200

1400

Kick Surface in LAB system

Figure 5.9: 3D view of the kick surface. z axis is the beam-line, y is the
gravity axis.

5.3.3 Kick surface

Outside the magnetic �eld region, the trajectory of any given particle can be
approximated by a straight line. We will use the word segment for such a
track piece which is straight. In hades, each track has two such segments,
one before the magnet and another one after.

Because of the toroidal magnetic �eld, for each track in Hades the de�ec-
tion happens in one plane. Then we expect for two segments belonging to the
same track to meet at one point. In other words the corresponding straight
lines should cross. In practice, numerical and resolution uncertainties prevent
this from happening exactly. It, then, makes sense to de�ne the cross point
between two segments as the point of closest approach between them. Let's
note these cross points for a set of N tracks by ri = (xi; yi; zi) 8i : 1 : : :N .

A method on how to calculate the cross point has already been given in
Chapter 4. Indeed, the cross point between segments is nothing else than
the vertex de�ned by those two segments. An interesting observation is that
if we make a 3D plot with the coordinates of such points, see Fig. 5.9, we
discover that they lay in a surface; this is the so called kick surface. Knowing
about it, is interesting for several reasons.

As we discussed before, the parameters A;B and C are functions of the

118 Momentum reconstruction

�eld region traversed by the particle. Given a track which enters the magnetic
�eld with a certain direction, it will always hit the same spot in the kick
surface, regardless of its momentum. Then it is natural to think that A;B;C
can be parameterized as functions of position on the kick surface.

By knowing the kick surface we don't need any more two segments in
order to obtain a particle's de�ection. It is enough with just one segment
and one point from the second. The intersection of the �rst segment with
the kick surface gives us a point which also belongs to the second segment
by construction of the kick surface. Then, we have two points on the second
segment, which completely de�ne it, allowing us to compute the de�ection.

During the construction phase of Hades, as more detectors are made
available, it happens that while the inner segment of a track is usually well
de�ned, one cannot say the same about the outer. Missing outer detectors
have the e�ect that the direction information after the magnet is either miss-
ing or of low quality. The consequences of such partial setups are discussed
in detail in other sections of this same chapter. For the moment it is enough
to know that the kick surface's equation is very helpful in those cases.

Kick surface parameterization

Even though we have been speaking of de�ning a track's segment only where
there is no magnetic �eld, the spectrometer's implementation schedule re-
quires for the kick plane algorithm to be functional even when the only outer
detector is the Mdc3 chamber. In this case the detection plane is still inside
the �eld region. We can rede�ne the outer segment as the given by the tan-
gent to the track in the detection plane. With this de�nition the kick surface
still exists and it is still possible to use it. However, it comes as no surprise
that the parameterization function is di�erent than in the case where the
track is measured outside the �eld region. For this reason, in this section we
will only concern ourselves with the generics on how the process of param-
eterizing the kick surface proceeds given a surface model. The models for
the di�erent setups are detailed in the relevant sections: Section 5.4.1 and
Section 5.4.2.

A kick surface model is nothing else but the equation of a surface in the
space. That is, we start from a model

y = f(x; z)

Not any model will do. First of all it has to respect the symmetry of a
sector; that is

5.3 �Kick plane� algorithm 119

Figure 5.10: Using the kick plane to determine de�ection using just one point
in the outer region

120 Momentum reconstruction

f(x; z) = f(�x; z) 8x
Another condition is for f not to be too complex. The reason being the

need to compute the intersection of an arbitrary straight line with the sur-
face. As we will see, this computation is performed for each track candidate
during software operation. Therefore it not only has to be analytical, but
also involve a not too large number of operations. The surface model is ob-
tained empirically, plotting �gures like 5.9 as well as its projections. For any
given surface model, the surface parameters can be determining with a Least
Squares Fit, minimizing the functional

Q2 =
X

[yi � f(xi; zi)]
2

In order to obtain the data points (xi; yi; zi) in the �t we could use either
simulations or real data. However, with real data we have to confront a
number of problems

� Real detectors have �nite resolution, which translates into a smearing
of the data points. The consequence is the need for larger statistics
than if the data points where only a�ected by numerical resolution.

� It is in general not trivial to match the inner and outer segments of
a track. The easiest solution to overcome this issue is selecting events
with a multiplicity of one. This represents a signi�cant reduction of
available statistics.

� During the �rst phases of the construction of Hades the information
about the outer segment is simply missing since the Mdc detectors
are missing in the rear part of the spectrometer. In this case it is not
possible to use real data to determine the kick surface.

Using a HGeant simulation to obtain the cross points ri is the preferred
option. The problem with simulations is how well do they reproduce reality;
but the motion of a charged particle through a static magnetic �eld is a well
known process. Besides, the magnet is iron less, so it is well described by
simulation packages; not only that, but the �eld map given by simulation
has also been cross checked with reality.

Either way, once we have a set of data we need to clean it up. Low
momentum tracks (�50MeV) curl in the magnet losing all information about
the incident direction. This kind of curled track cannot be well described by
the kick plane algorithm; in particular it does not give raise to a kick surface.

5.3 �Kick plane� algorithm 121

So we need to take them out of the data sample used for the �t. Note that
we are not interested in this kind of track. It is very di�cult to match such
a track with a segment in the outer region of Hades, let alone calculate its
momentum.

This is not as big a problem as it may seem. In the production phase of
Hades, when examining the in medium modi�cations to the vector meson
properties, we are anyhow not interested in such low momentum particles.

However, that momentum region is interesting when studying �0 Dalitz
decays. This is useful in order to understand the behavior of the detectors and
analysis in realistic conditions, because �0 Dalitz is a well known reaction.
For that kind of situation it is enough to downscale the �eld intensity and
then we would see curling for tracks at 5 MeV instead of 50 MeV.

Since such tracks correspond to low momenta, it is enough to place a
momentum cut to eliminate them. The value in the momentum cut is not
really critical. These low momentum tracks manifest themselves as outliers
during the �tting process. Even though LSM gives them too much weight
they typically represent only a few percent of the total number of data points
used. It is actually possible to perform a �t without any cut and for each ri
compute di as the distance between the point ri and the kick surface. Then,
we can obtain a reasonable momentum cut by simple inspection of a plot of
di vs momentum. Such a plot is shown in 5.11.

The �tting itself is performed using the Minuit package from Cern,
which comes integrated in Root. This allows us to keep the surface model
unde�ned until the very last moment, enabling us to easily check di�erent
possibilities. Note that the slowness of Minuit is not a problem since the
process of �nding out the kick surface is done very seldom.

5.3.4 Kick plane parameterization

The task at hand is to obtain the form of the functions A;B and C in (5.11).
However, we will �rst spend some time looking to the 0th order approximation
of that formula. If we stay at 0 order (5.11) becomes

p =
A

2 sin(�=2)
(5.12)

In this case A has a clear physical meaning. Comparing equations 5.12
and 5.11 we can interpret A as the momentum kick of the magnet, see Fig.
5.8. Getting familiar with it provides knowledge about the magnet properties,
and helps understanding the results in the following sections. Furthermore,

122 Momentum reconstruction

10
-3

10
-2

10
-1

1

p (MeV)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

d
 (

m
m

)

0

20

40

60

80

100

120

140

160

180

200

histo
Entries 970000
Mean x 652.8
Mean y 14.12
RMS x 591.9
RMS y 26.11

histo
Entries 970000
Mean x 652.8
Mean y 14.12
RMS x 591.9
RMS y 26.11

Distance to kick surface vs momentum

Figure 5.11: Distance to kick surface (di) vs momentum. The color scale
indicates number of entries relative to the maximum. Note the logarithmic
scale.

5.3 �Kick plane� algorithm 123

pt_integral
Entries 49383
Mean 75.38
RMS 17.12

A (MeV)
20 40 60 80 100 120 140 160 180 200

N

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

pt_integral
Entries 49383
Mean 75.38
RMS 17.12

 and pφ, θ’A’ integrated over

Figure 5.12: Integral spectrum of the magnet's momentum kick (A)

the basics of the parameterization process are the same as compared to the
full �edged model.

Once more, analytical derivation of A is an arduous task given the in-
homogeneous nature of the magnetic �eld. Instead, we can use HGeant
to obtain it numerically and then either parameterize A with an empirical
model, or tabulate its values.

For any given track traversing the �eld we can compute A if we know the
track's momentum and the de�ection it su�ered. HGeant, being a simulation,
is able to provide us with that information; the details on how this is done
di�er from one setup to another and they are explained in the corresponding
sections.

In order to get a glimpse on how A looks like we only need to shoot
particles through HGeant. If this is done with uniform distributions in mo-
mentum and solid angle what we get back is an integral spectrum of A like
the one shown in 5.12. From that �gure we learn basically two things: the
mean magnet's momentum kick is around 75 MeV and it ranges from 40 to
140 MeV. If we were to approximate the momentum kick by a constant our
resolution would be dominated by the width in this distribution. So we could
estimate a resolution around 20%, very far from what we want to get. In
order to improve that number we need to disclose the ingredients summing
up in the integral spectrum.

124 Momentum reconstruction

Since we are staying at 0th order in powers of de�ection angle, we should
expect one of the ingredients to be the de�ection itself, equivalently momen-
tum. This can be taken care of by going to higher orders as shown later; but
in fact this is not the main factor. As already noted in Fig. 5.12, A plays
the role of the momentum kick. As shown in 5.3.2, this is given by the path
integral of the �eld along the track.

pk = q

Z �2

�1

Bd�

Since B is not constant, and in fact strongly depends on position, it
is natural to think that A must depend on the geometrical region of the
magnetic �eld being traversed.

As noted in section 5.3.3 the existence of a kick surface suggests that A
can be parameterized as a function of position over the kick surface itself.
Thus, for each track, we need not only to record p and �, but also a point on
the kick surface. Following the scheme on Fig. 5.10 we store the intersection
point, k, of the inner track segment with the kick surface. In cartesian
coordinates k = (xk; yk; zk), since the kick surface is a surface we only need
two coordinates to specify a point on it. Let them be the well known polar
and azimuthal angles from polar coordinates:

� = arctan

�
xk
yk

�

� = arccos

zkp

x2k + y2k + z2k

!

In principle, in order to obtain A it would be enough to shoot a sample
of particles with uniform distribution in (�; �); then examine the resulting
distribution, come up with a phenomenological model which depends on pa-
rameters �, and use LSM to �t those parameters. Fig. 5.13 shows a set of
data obtained with the previous procedure.

From the �gure on the facing page we learn several things. First and
foremost, A does depend on � and �; thus our hypothesis A � A(�; �) makes
sense. Looking a bit in more detail to the �gure we notice a strong depen-
dency with �. This dependency essentially responds to the law

A =
�1
�

5.3 �Kick plane� algorithm 125

 (deg)
kθ

0102030405060708090
 (deg)k

φ

-30 -20 -10 0 10 20 30

A
 (M

eV
)

0

20

40

60

80

100

120

140

Momentum kick vs position in kick surface

(a) As function of � and �

 (deg)kθ
0 10 20 30 40 50 60 70 80 90

A
 (M

eV
)

0

20

40

60

80

100

120

140

pt_theta
Entries 19762
Mean x 46.07
Mean y 75.26
RMS x 17.3
RMS y 16.77

pt_theta
Entries 19762
Mean x 46.07
Mean y 75.26
RMS x 17.3
RMS y 16.77

Momentum kick vs polar angle

(b) Projection of (a) into the A,� plane. The observed spread comes from the �
dependency

Figure 5.13: Momentum kick on the kick surface.

126 Momentum reconstruction

where � =
p
x2k + y2k. This dependency is to be expected from the magnet's

geometry and just re�ects the fact that the �eld is stronger for the lower
polar angles. This simple formula already explains the most outstanding
features of A. In order to further re�ne the parameterization we can plot
A� versus � and � as shown in Fig. 5.14. From the leftmost sub-�gure we
learn that most of the dependency with � has been taken care of, but some
still remains. From the rightmost one we learn that A is �at for most of the
sector and increases toward the sector edges; that is the region where the
magnet coils sit and therefore the �eld increases. Already from the �gure
we can intuitively think of a bi-quadratic polynomial to account for the �
dependence. The quartic term is needed in order to reproduce the nearly �at
region around � = 0, besides odd powers of � are not acceptable since they
would introduce asymmetries. Then, our next model would be

A =
�0 + �1�

2 + �2�
4

�
(5.13)

In fact, from 5.14 we also learn that the curvature of the bi-squared
polynomial should change with �. In other words �i � �i(�). In particular
�0(�) is a correction from the 1=� dependency.

The simplest way to get a feeling on how �i(�) looks like is to plot A
versus � for di�erent slices in � and then, for each slice, perform a �t to
a bi-squared polynomial as shown in Fig. 5.15. The evolution of the �t
parameters with � is shown in Fig. 5.16. What we see is a more or less linear
region between the two coil edges at low and high polar angles.

The one at lower angles corresponds to the higher �eld, but the short
distance between left and right coils makes the �eld very compact. That's
why there is not much di�erence between the middle of the sector (� ' 0o)
and the edges (� ! 30o)8. This translates into relatively low values for �1
and �2.

The situation is very di�erent at high polar angles. There, the left and
right coils are much more separated and the �eld changes more from the
middle of the sector to the sector edge9. That's why we see an increasing �1
and a exploding �2.

We also see how the larger momentum kick happens not for the lower
polar region, where the �eld is stronger, but for the high polar angles, with
a weaker �eld. This behavior cannot be due to �eld intensity and the only
possibility left is the path length; it must be larger for tracks at high polar

8Up to a factor 3
9Up to a factor 6

5.3 �Kick plane� algorithm 127

 (deg)kθ
0 10 20 30 40 50 60 70 80 90

 (M
eV

 m
m

)
ρ

A

200

400

600

800

1000

1200

1400

1600

1800
2x10

ptn_theta
Entries 19762
Mean x 46.06
Mean y 5.686e+04
RMS x 17.3
RMS y 1.164e+04

ptn_theta
Entries 19762
Mean x 46.06
Mean y 5.686e+04
RMS x 17.3
RMS y 1.164e+04

θMomentum kick vs

 (deg)kφ
-30 -20 -10 0 10 20 30

 (M
eV

 m
m

)
ρ

A

200

400

600

800

1000

1200

1400

1600

1800
2x10

ptn_phi
Entries 19762
Mean x -0.03083
Mean y 5.686e+04
RMS x 13.35
RMS y 1.164e+04

ptn_phi
Entries 19762
Mean x -0.03083
Mean y 5.686e+04
RMS x 13.35
RMS y 1.164e+04

φMomentum kick vs

Figure 5.14: Re�ning the momentum kick (A) parameterization

128 Momentum reconstruction

slice_0
Entries 56693

 / ndf 2χ 365.8 / 71
 0α 24.37± 4.252e+04
 1α 0.3858± 15.61
 2α 0.001044± 0.02021

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

70000

slice_0
Entries 56693

 / ndf 2χ 365.8 / 71
 0α 24.37± 4.252e+04
 1α 0.3858± 15.61
 2α 0.001044± 0.02021

<22.0θ>15.0 && θ for φ’A’ vs slice_1
Entries 81107

 / ndf 2χ 200.3 / 75
 0α 14.84± 4.778e+04
 1α 0.1823± 14.06
 2α 0.0003849± 0.003586

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

slice_1
Entries 81107

 / ndf 2χ 200.3 / 75
 0α 14.84± 4.778e+04
 1α 0.1823± 14.06
 2α 0.0003849± 0.003586

<29.0θ>22.0 && θ for φ’A’ vs

slice_2

Entries 94617
 / ndf 2χ 432.4 / 79

 0α 9.108± 4.952e+04

 1α 0.0884± 14.7
 2α 0.0001651± 0.002619

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

slice_2

Entries 94617
 / ndf 2χ 432.4 / 79

 0α 9.108± 4.952e+04

 1α 0.0884± 14.7
 2α 0.0001651± 0.002619

<36.0θ>29.0 && θ for φ’A’ vs slice_3
Entries 104561

 / ndf 2χ 113.6 / 81
 0α 5.248± 5.053e+04
 1α 0.06449± 19.1
 2α 0.0001425± 0.001272

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

70000

slice_3
Entries 104561

 / ndf 2χ 113.6 / 81
 0α 5.248± 5.053e+04
 1α 0.06449± 19.1
 2α 0.0001425± 0.001272

<43.0θ>36.0 && θ for φ’A’ vs

slice_4
Entries 112900

 / ndf 2χ 106.5 / 83
 0α 3.309± 5.149e+04
 1α 0.06488± 24.58
 2α 0.0001631± 0.001307

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

70000

slice_4
Entries 112900

 / ndf 2χ 106.5 / 83
 0α 3.309± 5.149e+04
 1α 0.06488± 24.58
 2α 0.0001631± 0.001307

<50.0θ>43.0 && θ for φ’A’ vs slice_5
Entries 114496

 / ndf 2χ 139.6 / 85
 0α 2.709± 5.247e+04
 1α 0.07614± 32.1
 2α 0.0001992± 0.001053

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

70000

80000

slice_5
Entries 114496

 / ndf 2χ 139.6 / 85
 0α 2.709± 5.247e+04
 1α 0.07614± 32.1
 2α 0.0001992± 0.001053

<57.0θ>50.0 && θ for φ’A’ vs

slice_6
Entries 112763

 / ndf 2χ 103.8 / 85
 0α 2.026± 5.334e+04
 1α 0.08096± 42.18
 2α 0.0002241± 0.001967

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

slice_6
Entries 112763

 / ndf 2χ 103.8 / 85
 0α 2.026± 5.334e+04
 1α 0.08096± 42.18
 2α 0.0002241± 0.001967

<64.0θ>57.0 && θ for φ’A’ vs slice_7
Entries 109238

 / ndf 2χ 155.1 / 87
 0α 1.901± 5.39e+04
 1α 0.0797± 53.38
 2α 0.0002339± 0.009757

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

2000

4000

6000

8000

10000

1x10

slice_7
Entries 109238

 / ndf 2χ 155.1 / 87
 0α 1.901± 5.39e+04
 1α 0.0797± 53.38
 2α 0.0002339± 0.009757

<71.0θ>64.0 && θ for φ’A’ vs

slice_8
Entries 98860

 / ndf 2χ 213.4 / 89
 0α 2.797± 5.371e+04
 1α 0.07686± 62.83
 2α 0.000246± 0.03661

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

200

400

600

800

1000

1200

1400

2x10

slice_8
Entries 98860

 / ndf 2χ 213.4 / 89
 0α 2.797± 5.371e+04
 1α 0.07686± 62.83
 2α 0.000246± 0.03661

<78.0θ>71.0 && θ for φ’A’ vs slice_9
Entries 77334

 / ndf 2χ 1489 / 89
 0α 5.84± 5.226e+04
 1α 0.1024± 57.55
 2α 0.0002732± 0.09781

 (deg)φ
-30 -20 -10 0 10 20 30

 (
M

e
V

 m
m

)
ρ

A

0

200

400

600

800

1000

1200

1400

1600

1800

2x10

slice_9
Entries 77334

 / ndf 2χ 1489 / 89
 0α 5.84± 5.226e+04
 1α 0.1024± 57.55
 2α 0.0002732± 0.09781

<85.0θ>78.0 && θ for φ’A’ vs

Figure 5.15: Curvature parameters (�i) for di�erent slices in �

5.3 �Kick plane� algorithm 129

 (deg)θ
20 30 40 50 60 70 80

0α

42000

44000

46000

48000

50000

52000

54000

θ with 0Evolution of parmeter p

 (deg)θ
20 30 40 50 60 70 80

1α

10

20

30

40

50

60

θ with 1Evolution of parmeter p

 (deg)θ
20 30 40 50 60 70 80

2α

0

0.02

0.04

0.06

0.08

0.1

θ with 2Evolution of parmeter p

Figure 5.16: Evolution of �i with the polar angle �

130 Momentum reconstruction

residual
Entries 969542
Mean -0.001407
RMS 0.03686

A
 A∆-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

N

0

500

1000

1500

2000

2500

3000

2x10
residual

Entries 969542
Mean -0.001407
RMS 0.03686

’A’ residuals

Figure 5.17: Residuals on momentum kick parameterization

angles. That is indeed the case. The coils being more separated make the
�eld to spread over a larger spatial region. Close to the sector's center the
increase in path length is not able to compensate the lower magnetic �eld,
but close to the sector edges the �eld increases and we see how the two factors
conspire to boost the momentum kick. Special care was put during the design
of the magnet to minimize this feature. Indeed, the tracks traversing Hades
at high polar angles are those of lower momenta; if they experiment a too
high momentum kick we won't be able to measure them well.

To get an idea on how well we are reproducing the features of the momen-
tum kick, we can do a simple test. Taking the plots in Fig. 5.16 we can use
linear interpolation between the data points to estimate the values of � for
any � and then use equation 5.13 to compute the expected value for A. This
way we can obtain a residuals distribution like the one shown in Fig. 5.17,
which corresponds to a width around 3%. This number can be improved, in
particular dropping the 0th order approximation in favor of a higher order
one. But that is the task for the following section.

O(sin(�)2) parameterization

The parameterization method presented in the previous section has the ad-
vantage of providing some insight on what the magnetic �eld features are.

5.3 �Kick plane� algorithm 131

With enough love, its resolution can also be improved, but there is a much
simpler and pragmatic way to tackle the problem. That is, simply build a
table in � and �, storing the parameter's value for each bin. This solution
is very easy to implement, and more �exible. The downside is that building
such a table eats up computer memory. This is, however, not as much of
a concern as it was with reference trajectories. The reason for that is that
our table is now 2D instead of 5D. Even choosing a bin size of half a degree
both in � and � the memory needed for one such table is around 33Kb; with
todays memory sizes, that is negligible.

As we will see it will not be enough with just one table. If at some point
the required amount of memory starts to be signi�cant we can apply the
tricks explained in the previous section to reduce it.

In fact it is already clear that we will need 6 such tables (� 180Kb) for a
O(sin(�)2) parameterization. The 6 comes from the fact that we have three
parameters sets A;B;C which are di�erent for positive charged particles and
negative charged particles. The reason why we need to di�erentiate between
positive and negative particles is the same as for the reference trajectories
algorithm; because they bend in di�erent directions and since the magnetic
�eld is inhomogeneous, the

R
Bd� is di�erent. This is more evident from

Fig. 5.5 on page 106.

The basics of the parameterization process are the same as before. The
goal is to obtain A;B;C as a function of � and � on the kick surface. For
that purpose, we start from a sample of tracks simulated with the HGeant
package. The �rst di�erence is that we cannot compute all the parameters
for each single track, indeed, we need to accumulate at least three tracks with
the same �; �. At this point using a table in (�; �) becomes natural. For each
cell in the table we store the (p; �) of all tracks falling into that cell; then we
can just perform a LSM �t to obtain A;B;C in that cell.

Let's start by �xing some notation. Mathematically, making a table is
partitioning the � and � variables. Let's note by greek letters the indexes
running on the table, so

�� = �min + ��step 8� : 1::N� �step =
�max � �min

N�

�� = �min + ��step 8� : 1::N� �step =
�max � �min

N�

F�� = F (��; ��) 8F 2 (A;B;C)

Then, for each table cell, identi�ed by a (�; �) pair, we need to �nd
A;B;C minimizing the functional

132 Momentum reconstruction

Q2(A��; B��; C��) =

N��X
i=1

wi

�
pi � A��

sin �i
� B�� � C�� sin(�i=2)

�2

where N�� is the number of tracks in the cell and wi is a constant weight for
track i. There are two obvious considerations to be made about the previous
functional

� First is the lack of a �i term to take care of errors. This is due to the fact
that both pi and �i are not real measurements but they are determined
from simulations instead. Then we can assume the only errors a�ecting
them are the numerical ones and numerical errors should be the same
for all tracks. In other words �i = � 8i = 1::N��. If this is the case,
choosing � = 1 will not change the position where Q2 is minimum.

� From the functional form we can see how the di�erent parameters are
more sensible to di�erent regions in sin �. In e�ect, A is responsible
for the behavior at the smaller de�ection angles, while C dominates
for the larger ones. Thus, in order to consistently estimate the three
parameters we need the data sample in each cell to follow a uniform
distribution on sin �, or equivalently, a uniform distribution in 1=p.

There are a number of problems appearing when trying to implement this
scheme. The �rst problem comes from the sheer amount of data. We typically
have around 100 tracks per bin for the �t. In order not to store all that
information at once in memory what is done is an incremental �t. Every
time a new track is read the �t parameters are updated for the cell where
the track falls. The advantage of this approach, besides speed, is a constant
memory size: it can cope with any number of tracks per cell. Fig. 5.18 shows
a typical data sample.

The next problem comes from low momenta tracks. A track with momen-
tum close to or below the magnet's momentum kick cannot be well repro-
duced by the kick plane algorithm, as its trajectory may even make loops.
This kind of tracks manifest themselves when trying to perform the �t as
outliers (see Fig. 5.19) for an example. When parameterizing the kick sur-
face we took the simple approach of applying a momentum cut in order to
get rid of these outliers: this we could do because the kick surface itself was
not very sensible to such a momentum cut. However such a simple method
cannot be used here. Let's say we apply a rather strong momentum cut, like
200 MeV; in those regions where the momentum kick is around 40 MeV we

5.3 �Kick plane� algorithm 133

/2)ξ sin(×2
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

p
 (

M
eV

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
 / ndf 2χ 446.3 / 174

p0 0.02476± -74.07

p1 0.3606± -6.397

p2 0.5035± -4.887

 / ndf 2χ 446.3 / 174

p0 0.02476± -74.07

p1 0.3606± -6.397

p2 0.5035± -4.887

Momentum vs deflection res
Entries 177

Mean -4.021e-05

RMS 0.004917

 / ndf 2χ 60.08 / 97

Constant 1.03± 82.03

Mean 4.762e-05± -0.0006104

Sigma 4.895e-05± 0.003317

p
 p∆

-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

N

0

10

20

30

40

50

60

70

res
Entries 177

Mean -4.021e-05

RMS 0.004917

 / ndf 2χ 60.08 / 97

Constant 1.03± 82.03

Mean 4.762e-05± -0.0006104

Sigma 4.895e-05± 0.003317

Fit residuals

Figure 5.18: Sample �t at � = 40o, � = 10o. The left side shows momentum
versus de�ection in the bin, the red circles are the data points and the solid
line is the �t. The rightmost �gure shows the �t residuals �tted to a Gaussian.

/2)ξ sin(×2
-1.5 -1 -0.5 0 0.5 1 1.5 2

p
 (

M
eV

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 / ndf 2χ 3.034e+04 / 142

p0 0.2406± -88.54

p1 2.693± 22.61

p2 2.876± 36.05

 / ndf 2χ 3.034e+04 / 142

p0 0.2406± -88.54

p1 2.693± 22.61

p2 2.876± 36.05

Momentum vs deflection res
Entries 145

Mean -0.004486

RMS 0.05874

 / ndf 2χ 339 / 97

Constant 0.2878± 4.998

Mean 0.002646± -0.02633

Sigma 0.002321± 0.03794

p
 p∆

-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

N

0

2

4

6

8

10

12

14

res
Entries 145

Mean -0.004486

RMS 0.05874

 / ndf 2χ 339 / 97

Constant 0.2878± 4.998

Mean 0.002646± -0.02633

Sigma 0.002321± 0.03794

Fit residuals

Figure 5.19: Sample �t at � = 30o, � = 10o. The left side shows momentum
versus de�ection in the bin. The red circles are the data points and the
solid line is the �t. The rightmost �gure shows the �t residuals �tted to a
Gaussian. We can see how the outliers spoil the �t

134 Momentum reconstruction

would be banishing a large portion of valid low momentum data and this, in
turn, would make the estimation of C unreliable.

Since, we know that the momentum where this e�ect starts to show up
is related with the magnet's momentum kick, we could use it as a scale
parameter for the momentum cut. The problem is that we need to know the
magnet's momentum kick a priori. The momentum kick can be associated to
the parameter A which is most sensible to the higher momenta. Therefore we
can start with a strong cut in momentum in order to obtain a good estimation
of A and then use that estimation as the momentum cut for each bin in a
second step.

Actually it turns out that even a third step is needed where the remain-
ing outliers are eliminated by using Tukey Weights to robustify the �tting
functional. The procedure is not that di�erent from the one used to robustify
the vertex �nder at section 4.2.3 on page 86. As explained there, the robus-
ti�cation is achieved by introducing weights in the LSM functional. These
weights take the form

w(t) =

8<
:
�
1� t

C2

T

�2
if jtj < CT

0 otherwise

where ti =
pi�f(�i)

�i
. Introducing such weights makes the functional non linear

on the parameters and therefore we are not able to obtain an analytical
solution anymore. What is done, instead, is an iterative minimization. In
each step the weights wi are calculated from the parameter estimation in the
previous step and treated as constant. For this to work we need an initial
value. The initial value needs to be quite close to the real one, otherwise the
�t routine will tend to put all wi = 0 which is an absolute minimum. But
we already know how to obtain the initial value from the two step method
presented before; the second step is in fact needed in order to provide a good
enough initial value.

After applying these new stages in the parameterization procedure, we
get a much better parameterization as shown in Fig. 5.20.

5.4 Final resolutions

In this section we will describe the application of the above methods to
the di�erent setups in Hades and we will show estimates of the achieved
resolution in each setup based on simulations.

5.4 Final resolutions 135

/2)ξ sin(×2
-1.5 -1 -0.5 0 0.5 1 1.5 2

p
 (

M
eV

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 / ndf 2χ 813.9 / 140

p0 0.0513± -90.84

p1 0.6774± -13.63

p2 0.7551± -5.577

 / ndf 2χ 813.9 / 140

p0 0.0513± -90.84

p1 0.6774± -13.63

p2 0.7551± -5.577

Momentum vs deflection res
Entries 145

Mean -6.073e-05

RMS 0.008258

 / ndf 2χ 105.2 / 97

Constant 0.8365± 43.5

Mean 0.0001094± -0.002043

Sigma 0.0001131± 0.004968

p
 p∆

-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2
N

0

5

10

15

20

25

30

35

40

45

res
Entries 145

Mean -6.073e-05

RMS 0.008258

 / ndf 2χ 105.2 / 97

Constant 0.8365± 43.5

Mean 0.0001094± -0.002043

Sigma 0.0001131± 0.004968

Fit residuals

Figure 5.20: Same data as for �gure 5.19; but using a robusti�ed �tting
technique.

5.4.1 Low resolution: inner chambers and Meta

In this section we will apply the kick plane algorithm described above to the
particular setup where none of the two outer chambers is available. Also we
will present a method to build track candidates using the available detectors,
that is, the two inner Mdc chambers before the magnet and the Meta
detector after the �eld. This is more clearly visible in Fig. 5.21

Each of the Mdc chambers is able to measure the track's position with
high accuracy, as well as its direction. So, the track before the magnet is
relatively well known. The situation in the outer segment, after the magnet,
is completely di�erent because of the poor position resolution of the Meta
detectors and the inexistent direction measurement.

The Tof detector is intended to measure a particle's time of �ight since
the interaction point. For that reason it is made as an array of scintillators
each having a set of two photo-multipliers, one on the left side and another
one on the right side. Each photo-multipliers is connected to a Tdc giving
us two time measurements per hit. So the time of �ight can be calculated
as the average between the time Tdc measurements; see 2.3.6 for a more
detailed description on the workings of the Tof detector.

In order to obtain momentum we need to use Tof to get a point on
the track. Fortunately, in order to cope with the higher multiplicities to
be measured by Hades, the Tof detector is built with a relatively high
granularity. That is, we have many relatively small scintillators. Each of
these scintillators has a small depth and a height ranging from 2cm to 3cm.

136 Momentum reconstruction

beam

Figure 5.21: The low resolution setup for Hades is shown. Only the two
Mdc chambers are available before the magnet. In the outer part of the
spectrometer the Tof detector is available at the larger polar angles while
the Shower and Tofino �ll the lower ones.

5.4 Final resolutions 137

Thus, the physical volume of the scintillators allow for an estimation of two
track coordinates. The third one can be obtained from the time di�erence
between the two Tdc measurements. Knowing the group velocity (vg) of
light inside the scintillator x = vg

tleft�tright
2

. This method gives uncertainties
between 1.5 and 2.3 cm for x.

The Shower detector is intended to discriminate between leptons and
hadrons by examining the track's shower through the interaction with two
lead converters. For that purpose three gaseous chambers register the shower
before and after each converter. The chambers are the active volumes. Geo-
metrically they are subdivided in pads. So for each registered track we know
the pad which was hit. The pad's central position will be our position esti-
mation for the track, and its depth, width and height give the corresponding
uncertainties. Both width and height range from 3cm to 4.5cm. For more
information on Shower consult section 2.3.7.

The main limiting factor in momentum resolution is the relatively poor
position resolution of theMeta sub-detectors: Tof and Shower. It should
be kept in mind that these detectors where not originally devised to provide
an excellent resolution in position. We are only using them for this task
temporarily, while the outer Mdc chambers are made available.

In spite of this we will see that the achieved resolution is similar to that
of predecessor experiment Dls.

The kick plane algorithm is chosen for this setup because it has a smaller
memory footprint. It is faster and the worse resolution is completely masked
out by the resolution in the measurements themselves. In fact, the kick plane
algorithm was originally developed to deal with this particular setup. We will
proceed by detailing how the di�erent parts of the kick plane algorithm were
implemented in this setup to �nally show what are the results in terms of
resolution.

Not in this section but still relevant is the treatment of clusters in the
Tof detector. We have said before that a track's position can be measured in
the Tof detector by knowing which scintillator the track was hitting. There
is a non negligible probability that a track crosses more than one scintillator
(around 5%). We therefore need an algorithm which is able to recognize
those cases and creates a cluster out of them, presenting to the kick plane
one position measurement instead of two. Such an algorithm exists and was
implemented by Dusan Zovinec. The basic idea is to form cluster candidates
from sets of two or more contiguous scintillators. To know if the cluster
candidate is really a cluster the estimated direction from the kick plane is
taken into account as well as the proximity of the x coordinate measurements
of the involved scintillator and an analysis on the track's energy loss.

138 Momentum reconstruction

z (mm)

0 200 400 600 800 1000 1200 1400
x (mm)

-600-400-2000
200400600

y
(m

m
)

0

200

400

600

800

1000

1200

1400

Kick Surface in LAB system

Figure 5.22: Kick surface

Kick surface

In the low resolution setup the kick surface plays a very signi�cant role. Since
the Meta detectors are not able to measure the track's direction; we need
to estimate it using the kick surface. The outer segment is de�ned by the
measured point inMeta and an additional point obtained as the intersection
of the inner segment with the kick surface.

Fig. 5.22 shows the kick surface in the lab system. As shown there, the
kick surface still looks mostly like a plane, but with some curvature which
can be approximated by a quadratic term in x, giving a parameterization
function y = a+ bx2 + cz. This simple parameterization function reproduces
the main features of the kick surface and it is good enough for momentum
reconstruction, as shown later. A local discrepancy between the real kick sur-
face and the model translates into a local systematic which can be reabsorbed
in the momentum �t parameters.

The �t procedure introduced in the general explanation of the kick plane
yields parameters, in mm

a = 1460� 2; b = �(3:71� 0:04) � 10�4; c = �0:866� 0:05

We also need to be able to compute the intersection of a straight line with

5.4 Final resolutions 139

this surface. That is done solving the system composed of the kick surface
equation and the equations of a straight line

x = x0 + �x(z � z0)

y = y0 + �y(z � z0)

The system can be reduced to the quadratic equation

b�x(z � z0)
2 + (2bx0�x � �y + c)(z � z0) + a+ cz0 � y0 + bx20 = 0

This, in general, yields two solutions, which is �ne since in the general
case a single track can cross the described surface at two points.

Parameterization quality

The parameterization of the relation between momentum and de�ection angle
is done as described in section 5.3.4. In order to get a feeling of the quality we
have plotted the residuals distribution integrated over the whole geometrical
acceptance and momentum range. The result is shown in Fig. 5.23 and gives
and idea of what the intrinsical resolution of the method is.

The existence of a tail for low momenta shows the limits of the method.
We will insist on this in the following section where the achieved momentum
resolution is presented. It should be noted that such low momentum tail is
enhanced in this plot because the input data had a uniform distribution on
1=p which does not happen in a real collision.

Achieved resolution

The momentum resolution achieved in this setup with the Shower detector
is shown in Fig. 5.24 as a function of momentum; Fig. 5.25 is the same
for the Tof. Each of the �gures is subdivided in two which correspond to
simulations where multiple scattering was either activated or not. This gives
an idea of what part of the uncertainty comes from multiple scattering. The
di�erent lines correspond to di�erent tracking setups:

� Santiago tracking is a state of the art tracking algorithm still under
development.

140 Momentum reconstruction

residuals
Entries 1046303

Mean -0.0006879

RMS 0.01022

 / ndf 2χ 7.643e+04 / 397

Constant 65.97± 4.515e+04

Mean 4.298e-06± 0.0006621

Sigma 4.249e-06± 0.004123

1/p
1/p - 1/pc

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

N

0

10000

20000

30000

40000

50000

residuals
Entries 1046303

Mean -0.0006879

RMS 0.01022

 / ndf 2χ 7.643e+04 / 397

Constant 65.97± 4.515e+04

Mean 4.298e-06± 0.0006621

Sigma 4.249e-06± 0.004123

Parameterization results

residuals
Entries 806258

Mean 0.0004213

RMS 0.005206

 / ndf 2χ 3.369e+04 / 383

Constant 65.68± 4.14e+04

Mean 4.32e-06± 0.0004828

Sigma 4.081e-06± 0.003703

1/p
1/p - 1/pc

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

N

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

residuals
Entries 806258

Mean 0.0004213

RMS 0.005206

 / ndf 2χ 3.369e+04 / 383

Constant 65.68± 4.14e+04

Mean 4.32e-06± 0.0004828

Sigma 4.081e-06± 0.003703

Parameterization results

Figure 5.23: Parameterization residuals. The leftmost plot is the same as
the rightmost with a cut on momentum larger than 100 MeV, showing that
the tail is a low momentum e�ect.

5.4 Final resolutions 141

� Ideal tracking uses information from the simulation to try to reproduce
the ideal behavior of theMdc chambers. The measurement is produced
by gaussianly smearing the track's position in each chamber, taken
from the simulation software. The uncertainty introduced in the y
coordinate was 0.08mm and 0.16mm in x. These are the design values
for resolution in the Mdc chambers

� The line for perfect detectors corresponds to extracting directly the
measurements from simulation. That is there are no errors in the mea-
surements besides the numerical ones. This is useful to get an idea on
what the intrinsic resolution of the method is.

5.4.2 Medium resolution: inner chambers and Mdc3

The setup we will be aiming at in this section is the one shown in Fig. 5.26.
The main di�erence with the previous one is the presence of one outer Mdc
chamber in the sector. We will refer to this detector as Mdc3. The fact
that it is closer than Meta to the magnetic �eld, thus making the de�ection
angle more di�cult to measure, is compensated by the much better position
resolution which is in the order of 100 �m.

As explained in section 2.3.5 the Mdc chambers not only give informa-
tion about the track's position but also about its direction. Unfortunately
the direction information given by one chamber alone is not very reliable due
to its relatively small thickness. The e�ect of thickness can be easily esti-
mated but there are other e�ects like not perfect callibration of the Tdcs10,
uncertainties about the inner alignment11 of the detector and the e�ect in
the tracking of the small number of planes. All those e�ects have a stronger
in�uence in the direction measurement than in the position measurement.

Again, the chosen method is the kick plane for its simplicity. The kick
plane algorithm relies on the measurement of the track's de�ection in the
magnetic �eld. With this setup, that de�ection can be measured in di�erent
ways. We have up to three primary ways to determine the track's direction
in the spectrometer's outer region.

10A high quality callibration requires the on-line recording of the so called callibration
events. These callibration events allow to measure the gains of the chamber's Tdcs during
the data taking. Those data, in turn, are very useful in obtaining callibration parameters.
However, taking this kind of events together with the normal ones requires the activation
of the so called Mixed Trigger in the data acquisition chain. This is a complicated process
only recently performed.

11For example, layers are glued to the main frame. But the thickness of the glue is not
very well known yet.

142 Momentum reconstruction

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0

2

4

6

8

10

12

14

16

18

20

22

Momentum resolution

Santiago tracking (preliminary version). Fit p0=-5.54e-01 p1=1.66e-02

Dubna tracking. Fit p0=-6.51e-01 p1=1.66e-02

=0.08mm). Fit p0=-6.81e-01 p1=1.66e-02
y

σIdeal tracking (

Perfect detectors. Fit p0=7.55e-01 p1=3.47e-06

(a) Resolution with multiple scattering activated

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0

2

4

6

8

10

12

14

16

18

20

22

24

Momentum resolution

Santiago tracking (preliminary version). Fit p0=-5.42e-01 p1=1.64e-02

Dubna tracking. Fit p0=-8.41e-01 p1=1.69e-02

=0.08mm). Fit p0=-8.36e-01 p1=1.68e-02
y

σIdeal tracking (

Perfect detectors. Fit p0=4.58e-01 p1=4.91e-05

(b) Resolution with multiple scattering switched o�

Figure 5.24: Momentum resolution in the low resolution setup using the
Shower detector

5.4 Final resolutions 143

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0

5

10

15

20

25

Momentum resolution

Santiago tracking (preliminary version). Fit p0=-3.21e-01 p1=1.63e-02

Dubna tracking. Fit p0=-4.29e-01 p1=1.46e-02

=0.08mm). Fit p0=-5.24e-01 p1=1.47e-02yσIdeal tracking (

Perfect detectors. Fit p0=7.55e-01 p1=3.47e-06

(a) Resolution with multiple scattering switched on

p (MeV)
200 400 600 800 1000 1200 1400

)
(%

)
re

al
 -

 1
/p

re
c

 (
1/

p
re

al
p

0

5

10

15

20

25

Momentum resolution

Santiago tracking (preliminary version). Fit p0=-6.06e-01 p1=1.66e-02

Dubna tracking. Fit p0=-3.12e-01 p1=1.44e-02

=0.08mm). Fit p0=-3.73e-01 p1=1.44e-02
y

σIdeal tracking (

Perfect detectors. Fit p0=5.76e-01 p1=-6.94e-07

(b) Resolution with multiple scattering switched o�

Figure 5.25: Momentum resolution in the low resolution setup using the Tof
detector

144 Momentum reconstruction

Figure 5.26: Medium resolution setup. Only one of the outerMdc chambers
is available. The Meta detectors are also available.

5.4 Final resolutions 145

1. Using the direction information from Mdc3

2. Making a straight line going from the intersection of the inner track
segment with the kick plane, to the measured point in Mdc3

3. Making a straight line going from the Mdc3 measurement to the cor-
responding measurement in Meta

The three methods have been tested and they are o�ered as options in
the analysis, just as di�erent use cases. However, by the time of this writing,
the most reliable one is the second; this situation may change in the future
when a better understanding of the Mdc3 detector is achieved.

In the �rst use case there are problems derived from the uncertainties in
the direction measurement given by one chamber. It can be shown that even
on simulations, where callibration and inner alignment are under control, the
residuals in the direction measurement feature long tails, which translate in
large errors in the momentum determination.

The third method doesn't show those tails but the poor position resolu-
tion of Meta makes up for a resolution in momentum not as good as the
one achieved in the second scenario.

On the other hand the second scenario has the problem that the kick
surface being very close to the measurement plane makes the goodness of the
kick surface parameterization more signi�cant than before. In other words,
when the direction is determined from two spatial points, the sensibility to
how well those data points are de�ned increases when decreasing distance
between them.

Besides the resolution we may get from the Mdc system alone, we may
always use the low resolution algorithm to determine momentum from the
Meta detectors. This provides us with an additional, independent, momen-
tum measurement which can be combined with the one obtained from the
Mdcs. The combination of both measurements is a very simple process, i.e.
a weighted mean. For the sake of clarity we will concentrate in this section
on the measurement of momentum without the Meta detector.

Kick surface

The shape of the kick surface in this case is shown in Fig. 5.27. It mainly
looks like a plane of the form y = az+b. There are two modi�cations, though,
there is a dependency in x to account for the bird wing like structure and
also the value of a changes as we move on z. In order to account for the �rst

146 Momentum reconstruction

z (mm)0 200 400 600 800 1000 1200 1400

x (m
m

)

-600
-400

-200
0

200
400

600

y
(m

m
)

0

200

400

600

800

1000

1200

1400

Kick Surface in LAB system

(a) The kick surface looks like a plane; but at large z the slope changes

z
(m

m
)

0
200

400
600

800
1000

1200
1400

x (mm) -600-400-2000200400600

y
(m

m
)

0

200

400

600

800

1000

1200

1400

Kick Surface in LAB system

(b) Detail on the azimuthal behavior.

Figure 5.27: 3D views of the kick surface in the medium resolution setup.

5.4 Final resolutions 147

of the e�ects we added a term going like jxj. A complex parameterization of
a as a function of z would not satisfy the requirement of simple calculation
of the intersection point of a straight line with the kick surface; for this
reason we just subdivided the kick surface in three. The �nal model used to
parameterize this surface was

y =

8><
>:
a1z + a2 + a3jxj z � z1

a4z + (a1 � a4)z1 + a2 + a3jxj z > z1 and z � z2

a5z + (a4 � a5)z2 + (a1 � a4)z1 + a2 z > z2

where a1; : : : ; a5 and z1; z2 are the surface's parameters. While the ai have
been �tted using the Minuit package following the prescriptions in section
5.3.3, zi have been estimated by direct inspection, sinceMinuit has problems
treating them. The resulting parameters are

a1 a2 (mm) a3 a4 a5 z1 (mm) z2 (mm)

-0.652 1287 1.05 -0.781 -1.47 400 1100
As for the achieved resolution, it can be estimated from the residuals

plot shown in Fig. 5.28. The small tail comes from the region with larger z
values, where the parameterization becomes more di�cult. Looking to the
distribution's RMS this is more than three times better than what we got
for the low resolution setup. In relative terms the resolution is around 1.5%.

Regarding the intersection with a straight line, the algorithm is straight-
forward. It is basically the intersection of a plane with a straight line. The
only thing one needs to be careful about is to take into account that a plane
is in�nite; but in our case we have sub-planes. In other words, for each of
the three planes de�ning the kick surface the intersection point is calculated;
then we have to check if that point really lies withing the plane boundaries.

Parameterization quality

Like in section 5.4.1 the residuals on the momentum parameterization are
shown here. The comments are the same as in that section. The only con-
clusion is that the fact that Mdc3 is inside the magnetic �eld region does
not a�ect the validity of the model. The width of the peak is still around
0.4%

Achieved resolution

Like for the previous setup. The momentum resolution achieved in this setup
is shown in Fig. 5.30 as a function of momentum. The two �gures correspond

148 Momentum reconstruction

hres
Entries 645592

Mean 0.003235

RMS 8.051

y (mm) ∆
-200 -150 -100 -50 0 50 100 150 200

N

0

5000

10000

15000

20000

25000

30000

35000

40000

hres
Entries 645592

Mean 0.003235

RMS 8.051

Kick surface parameterization residuals

Figure 5.28: Surface parameterization residuals

residuals
Entries 1108470

Mean -0.0008258

RMS 0.01081

1/p
1/p - 1/pc

-0.1 -0.05 0 0.05 0.1

N

0

10000

20000

30000

40000

residuals
Entries 1108470

Mean -0.0008258

RMS 0.01081

Parameterization results

residuals
Entries 839280

Mean 0.0003518

RMS 0.005897

1/p
1/p - 1/pc

-0.1 -0.05 0 0.05 0.1

N

0

10000

20000

30000

residuals
Entries 839280

Mean 0.0003518

RMS 0.005897

Parameterization results

Figure 5.29: Momentum parameterization residuals. The rightmost �gure is
the same as the leftmost, just with a cut p > 100MeV

5.4 Final resolutions 149

to simulations where multiple scattering was either activated or not. This
gives an idea of what part of the uncertainty comes from multiple scattering.
The di�erent lines correspond to di�erent tracking setups, as explained in
section 5.4.2.

5.4.3 Full resolution: full setup

The setup we will be considering in this section is the full setup shown
in Fig. 5.31. All four Mdc chambers are available in this setup, so the
track's position can be measured in four planes. Two in the inner part of
the spectrometer and two in the outer part. These four measurements allow
to accurately de�ne the track's segments before and after the magnet. This
means it is not any more necessary to use the kick surface in order to deter-
mine the track's direction after the magnet, the direct measurement can be
used instead.

Up to now we had 6 measurements in order to estimate the 5 track's pa-
rameters. One of the measurements showing little sensibility to momentum;
so we were very much in a situation where the number of measurements and
degrees of freedom was the same. However, now we have 8 good measure-
ments of the track and one of the two extra ones is very sensible to momen-
tum; so it makes sense not to do a direct calculation of the momentum but
to perform a �t.

For this reason in this setup the chosen approach is to use the kick plane
algorithm to obtain an initial value of the momentum. Then this initial value
is used by the Reference Trajectories �t to obtain the �nal momentum. The
initial value being close to the �nal one has the advantage of making the
convergence faster.

Since the kick plane is only used here to give an initial value it was not
extended to incorporate a �tting routine. However it is noted that poten-
tially a �tting routine based upon the kick plane model could result in a
resolution comparable to that of the Reference Trajectories algorithm, while
still retaining the lower requirements of the kick plane in terms of mem-
ory compsumtion and parameterization e�ort. This topic is left for future
investigation.

Since the kick surface is not critical we will omit here the section about
its parameterization. Also the resolution in the momentum parameterization
can be estimated from the plots in the results section. There we will show the

150 Momentum reconstruction

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0

1

2

3

4

5

6

7

Momentum resolution

Santiago tracking (preliminary version). Fit p0=9.78e-01 p1=4.35e-03

Dubna tracking. Fit p0=9.05e-01 p1=1.18e-03

=0.08mm). Fit p0=6.18e-01 p1=2.13e-03
y

σIdeal tracking (

Perfect detectors. Fit p0=9.83e-01 p1=-3.47e-06

(a) Resolutions with multiple scattering

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0

1

2

3

4

5

6

7

Momentum resolution

Santiago tracking (preliminary version). Fit p0=3.70e-01 p1=4.70e-03

Dubna tracking. Fit p0=4.36e-01 p1=1.25e-03

=0.08mm). Fit p0=2.82e-01 p1=2.36e-03
y

σIdeal tracking (

Perfect detectors. Fit p0=4.85e-01 p1=-8.51e-06

(b) Resolution with multiple scattering switched o�

Figure 5.30: Momentum resolution for the medium resolution setup.

5.4 Final resolutions 151

Figure 5.31: Full resolution setup

152 Momentum reconstruction

momentum reconstruction resolution using the kick plane algorithm assum-
ing perfect detectors; this re�ects the intrinsic resolution of the kick plane
algorithm which is essentially the parameterization resolution. The models
used for kick surface and momentum parameterization are the same as the
ones in the section describing the medium resolution setup.

Results

As in the previous sections the results are here summarized in several plots of
resolution versus momentum. In this case, however the plot for the Santiago
tracking is not presented as this tracking was not completely tested in the
full resolution setup by the time of this writing. Instead the results of the
ideal tracking are presented assuming di�erent resolutions in the chambers.
When the resolution is set to zero we get the data points for perfect detectors
showing the intrinsic resolution of the implemented algorithms.

Fig. 5.32 shows the achieved resolutions with the kick plane algorithm
both with multiple scattering and without. The �nal result given by the
Reference Trajectories algorithm is shown in Fig. 5.33 again for multiple
scattering switched on and o�.

Comparing these two �gures we see how the kick plane is a�ected by not
including a �tting algorithm. Since no actual �t is done the kick plane has
to accommodate all errors as uncertainty in the momentum. In other words
it is like if 4 out of the 5 track parameters were frozen in a �t to values
which are not necessarily the correct ones. On the other hand, the reference
trajectories algorithm is able to also �t the remaining 4 parameters, thus
giving a better resolution in momentum. This works out because with the
full resolution setup there is quite some redundancy in our measurements,
since, as we have shown, both Mdc3 and Mdc4 could give independent
momentum measurements. The reference trajectories algorithm is able to
take full pro�t of that redundancy, while the kick plane is not. Note how the
situation is di�erent in the medium and low resolution setups.

5.5 Track matching

In the previous sections we have concerned ourselves with methods to deter-
mine a track's momentum. Our starting point was a set of measurements
from one track and the goal was to associate a momentum with those mea-
surements. In real life the di�erent measurements are given by independent
detectors and therefore we don't know a priori which combination of the
di�erent measurements comes from the same track.

5.5 Track matching 153

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

1

1.5

2

2.5

3

3.5

Momentum resolution

Perfect detectors. Fit p0=9.75e-01 p1=-5.73e-06

sigmay=0.06 mm. Fit p0=7.59e-01 p1=1.15e-03

sigmay=0.08 mm. Fit p0=7.35e-01 p1=1.56e-03

sigmay=0.10 mm. Fit p0=7.38e-01 p1=1.92e-03

(a) Resolution with multiple scattering switched on

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0.5

1

1.5

2

2.5

3

3.5

Momentum resolution

Perfect detectors. Fit p0=3.62e-01 p1=-8.16e-06

sigmay=0.06 mm. Fit p0=2.02e-01 p1=1.47e-03

sigmay=0.08 mm. Fit p0=2.08e-01 p1=1.92e-03

sigmay=0.10 mm. Fit p0=2.29e-01 p1=2.33e-03

(b) Resolution with multiple scattering switched o�

Figure 5.32: Momentum resolution with the full setup using the kick plane
algorithm

154 Momentum reconstruction

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Momentum resolution

Perfect detectors. Fit p0=6.70e-01 p1=-1.55e-05

sigmay=0.06 mm. Fit p0=5.47e-01 p1=5.64e-04

sigmay=0.08 mm. Fit p0=5.08e-01 p1=8.38e-04

sigmay=0.10 mm. Fit p0=4.83e-01 p1=1.11e-03

(a) Resolution with multiple scattering switched on

p (MeV)
200 400 600 800 1000 1200 1400

) (
%

)
re

al
 -

1/
p

re
c

 (1
/p

re
al

p

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Momentum resolution

Perfect detectors. Fit p0=3.65e-01 p1=-1.70e-05

sigmay=0.06 mm. Fit p0=2.63e-01 p1=6.97e-04

sigmay=0.08 mm. Fit p0=2.33e-01 p1=9.94e-04

sigmay=0.10 mm. Fit p0=2.16e-01 p1=1.28e-03

(b) Resolution with multiple scattering switched o�

Figure 5.33: Momentum resolution with the full setup using the Reference
Trajectories algorithm

5.5 Track matching 155

Let's suppose two tracks cross one of the sectors, each track has an inner
and outer segment de�ned by the tangents to the track's trajectory before
and after the magnet. This gives us four segments, which can be combined
in four di�erent ways. Out of those four combinations only two have physical
interest as they are produced by a real particle. We say that only two are
good combinations, the other two are bad ones.

The task we will be developing through this section concerns how to
identify the good combinations out of the set of all possible ones. That is
achieved imposing some criteria on the set of combinations. The process of
imposing those criteria is called detector matching.

In general we will refer to individual measurements by one detector as hits,
hits are grouped in combinations. When a combination satis�es the matching
criteria it is stored as a candidate. There are di�erent kind of candidates
depending on which detectors are being matched. It is also possible that one
candidate formed in the matching of two detectors enters as a piece in the
matching with a third detector.

The �nal candidate where all detectors are matched is called track can-
didate. However we will also miss-use that name for a candidate formed by
matching the inner and outer Mdc detectors.

Besides the hits belonging to one track there are also hits which do not
belong to any physical track. They are called noise hits and are typically
produced by electronic noise signals. Those noise hits are not correlated on
the di�erent detectors, therefore a matching algorithm is useful to detect and
reject them.

There are two main factors de�ning how good a matching algorithm is:

E�ciency Is the probability that a set of measurements belonging to the
same track are identi�ed as a track candidate. The higher the better

Noise Is related to the probability that a set of measurements not belonging
to the same track are identi�ed as a track candidate. The lower the
better.

In the following sections we will describe matching algorithms between dif-
ferent detector sets, intended to give support for the di�erent setups in which
we have to do momentum reconstruction. Section 5.5.1 describes the match-
ing of the two inner Mdcs with the Meta detector; the main use of this
algorithm is when performing momentum reconstruction with the low reso-
lution setup. Section 5.5.2 describes the matching of the inner Mdcs with
the outer ones, either Mdc3 alone or both of them; this is useful both in the

156 Momentum reconstruction

medium and high resolution setups. Section 5.5.3 describes how to match one
of the previous candidates with the Meta detector; this algorithm depends
on the one described in section 5.5.1 and it is useful in the medium resolution
setup, because it allows to use Meta to perform a second determination of
momentum which can be combined with the �rst one.

In sectors with the low resolution setup, a candidate coming out of the
matching of Mdc and Meta is a full track candidate, while in sectors with
outer drift chambers a full track candidate comprises also the matching with
those chambers.

5.5.1 Matching between Mdc and Meta

In this case a track candidate is formed by a segment in the inner part of the
spectrometer and a hit in any of theMeta detectors. Our task is, given those
two pieces, to determine if they correspond to the same track or not. In case
they do, we build a track candidate and compute its momentum for further
analysis. We will refer with the name hit combination or simply combination
to each possible combination we can make with Mdc and Meta hits. The
task at hand is to de�ne an algorithm endowing us with the ability to discern
the bad, not belonging to the same track; and good, belonging to the same
track, combinations. So that track candidates are only formed with good
combinations.

Unless otherwise noted, in this section we will be working with simulation
data, where HGeant is able to con�rm if a combination is good or not.

In order for the matching to be possible we need some degree of redun-
dancy in the measurements, so that we can check a combination for consis-
tency. If there is no redundancy, any combination looks as good as any other
one, just delivering di�erent parameter estimates.

In our case a track is de�ned by 5 parameters, as explained in section 5.2.1.
That amounts for 5 degrees of freedom. On the other hand the number of
measurements is 6: 4 numbers describing the segment before the magnet as
a straight line and 2 additional ones describing the track intersection with
the Meta detector.

There must be 1 (6-5) constraint between the measurements. In other
words, one of the measurements can be computed as a function of the other
�ve. The basic idea of the matching algorithm here is to obtain that function
and then use it for each combination, taking 5 of the parameters to calculate a
sixth and comparing the calculated value with the measured one, normalized
by the errors.

5.5 Track matching 157

Out of the 6 measurements, 4 describe the track segment before the mag-
net and are directly mapped to 4 of the track parameters; namely �; z; � and
�. Out of the other two measurements the most relevant one is the y coordi-
nate on theMeta, since it has the greater in�uence in momentum. Actually,
if the �eld was perfectly toroidal we would expect de�ection to occur only in
the polar angle and not the azimuthal one.

With these considerations in mind it was decided to choose the measure-
ment of the track's x coordinate on Meta as the redundant variable used
in matching. For each combination we use the other �ve measurements to
compute the track's parameters (p; �; z; �; �). From the track's parameters
we estimate the track's x coordinate of intersection with the Meta detector
xc = xc(p; �; z; �; �). If we note the measured one by xm we can de�ne the
pull variable

xPull =
xc � xm
�xc�xm

For a good combination xm and xc should be the same besides mea-
surement uncertainties. Assuming the uncertainty in the measurement to
be gaussian with a width �xm and the uncertainty in the calculated xc to
have width �xc, xPull would follow a normal distribution12 with �xc�xm =p
�2(xc) + �2(xm). In fact this does not happen because the uncertainty xm

is not always gaussian, but we will just keep the conceptual model for now in
order to make the explanation simpler. On the other hand, we expect xPull
to be uniformly distributed for bad combinations. The di�erence is clearly
illustrated in Fig. 5.34.

In order to discern between good and bad combinations we can just place
a cut on xPull; we call accepted combinations to those verifying

jxPullj � c with c 2 <
It should be noted how in Fig. 5.34 the red and blue points do overlap; that
is, there is no clear separation between good and bad combinations. The
consequence is that, for any cut we may put on xPull, some good combina-
tions will be left out and some bad combinations will pass in. Therefore the
characterization of a cut's quality with two variables: e�ciency and noise
level.

Let's call N to the total number of combinations, Ng the number of good
ones and Nb the number of bad ones, so N = Ng + Nb. For a given cut
c, let's call N c

g the number of good combinations passing the cut and N c
b

12Gaussian distribution with a mean of 0 and width equal to 1.

158 Momentum reconstruction

Figure 5.34: xc is plotted versus xm for bad combinations in blue and for
good ones in red. Note how the two regions overlap.

the number of bad combinations passing the cut, N c = N c
g +N c

b is the total
number of accepted, as in passing the cut, combinations. We call e�ciency to
the probability for a good combination to be accepted. With the de�nitions
above this is expressed as:

� =
N c
g

Ng

The other relevant variable is the noise level, de�ned as the proportion
of bad combinations relative to the total amount of accepted ones. That can
be expressed as:

noise =
N c
b

N c
g +N c

g

Needless to say that the goal of any matching algorithm is to maximize
e�ciency and minimize noise. We will spend the rest of this section doing
so. We will start by introducing the xc parameterization, then we will have
a closer look to the actual distributions of xPull for good and bad combina-
tions; the last subsection will present plots of e�ciency and noise versus the
cut value in a C+C simulation.

5.5 Track matching 159

Computation of xc: azimuthal de�ection

Following the idea of a gaussian xPull, in order to attain a 99% e�ciency
we would set c = 3 in the de�ned cut. In order to estimate the noise level,
let's assume for a moment that noise is uniformly distributed with respect
to xPull. Then the number of noise tracks being accepted would amount to

N c
b / �xc�xm � c

That is, �xc�xm acts as a scale parameter and thus we need to reduce it
as much as possible. Now, �xc�xm =

p
�2xc + �2xm . �xm is determined by

the detector construction and we have no control over it in the software, so
we need to make �(xc) as small as possible. The goal is actually to make
�(xc)� �(xm) by making a precise enough model for xc.

If the magnetic �eld geometry was perfectly toroidal, that is B = B'̂13,
the track would only be de�ected in the polar direction. This would make
the calculation of xc pretty simple: we would just account for the change in
� according to momentum and force � to be the same before and after the
magnet. The rest is extrapolating a straight line until the Meta detector.
In other words, we would ask for the direction vectors of the segments before
and after the magnet to have the same �. Actually this is the algorithm used
by the Matching Unit to trigger on events with good track candidates. In
that case, more sophisticated algorithms are not allowed because execution
speed is of maximum importance.

In the o�ine analysis time constraints are not so strict and we can spend
some more time to realize that the �eld map is not perfectly toroidal, which
implies that de�ection also occurs on �.

In order to be able to calculate xc we need to parameterize this azimuthal
de�ection. Once more we will resort to HGeant in order to do it. It turns
out that the de�ection in �, ��, is not a well behaved variable for param-
eterization. What is used instead is the de�ection of the track's projection
onto the XZ plane (the cave's �oor) given by the change in the � angle, as
illustrated in Fig. 5.35.

Let's call the � angle before the magnet �1. This is obtained from the
track's parameters �; z; �; �. Similarly let's call �2 the angle after the magnet.
Then the de�ection in � is �� = �2��1. Following a line of reasoning similar
to that in section 5.3.2 we can assume that the de�ection in � is related to
momentum by the law

13'̂ is a unitary vector in the direction of increasing azimuthal angle.

160 Momentum reconstruction

η

y

z

x

Figure 5.35: � coordinate de�nition

p =
A

sin(��=2)
+B sin(��=2) + C (5.14)

where the parameters A;B;C depend on the position on the kick surface.
This equation has two possible solutions for sin(��=2):

S� =
p� C �p(C � p)2 � 4AB

2B

For p ! 1 both solutions show di�erent behaviors: S+ ! 1 while
S� ! 0. From physical arguments we expect the de�ection to be smaller
with larger momenta. So the physical solution is S� � S.

It turns out that obtaining A;B and C is not as simple as applying
the general method introduced in section 5.3.4. The reason is the left/right
symmetry of the sector. It has already been noted how the right and left sides
of a sector are identical, but this has the consequence that in the middle of
the sector there cannot be azimuthal de�ection, �� = 0 8p. The parameters
are completely unde�ned when �� = 0 and ill de�ned as we get closer to the
central region.

5.5 Track matching 161

This problem can be avoided by making a slight change in the method.
Instead of obtaining A;B;C trying to �t p as a function of sin(��=2) we
make the estimation by �tting p sin(��=2). That is, our model becomes

p sin(��=2) = A+B sin2(��=2) + C sin(��=2)

When �� ! 0 this equation becomes A = 0 and the parameters B;C
are still not well de�ned. However if we substitute A = 0 in the expression
of S� we get

S� =
p� C �p(p� C)2

2B
= 0

which is the correct value. The minimization method is still similar to the
one described in section 5.3.4, just changing the functional to

Q2 =
NX
i=0

�
pi sin(��i=2)� (A+B sin2(��i=2) + C sin(��i=2))

�2

The same tricks are applied here to reduce memory compsumtion by
performing the �ts incrementally and to deal with outliers using an initial
cut in momentum and Tukey weights in a second stage.

With all this information at hand we are �nally able to estimate xc for
any given track candidate. The procedure is as follows, see also Fig. 5.36.

1. Use the �; z; �; � de�ning the inner segment of the track candidate to
calculate its intersection point with the kick surface, let's call it rkick =
(xkick; ykick;zkick).

2. Use �; � to compute � before the magnet. �1 = arctan [tan(�) cos(�)]

3. Use the track candidate's momentum, p, and the values of A;B;C
associated to the kick surface point rk to calculate �� = 2 arcsin(S�)
and �2 = �1 +��

4. If zm is the measured z coordinate in the Meta detector we compute
xc by extrapolation as

xc = xkick + tan(�2)(zm � zkick)

162 Momentum reconstruction

cx

xm

x

z

kick surface Meta

∆η

Figure 5.36: Calculation of xc, shown is a track candidate projection onto
the XZ plane; that is, seen from above.

The achieved resolution is directly related to the resolution in the com-
putation of ��.

�(xc) ' �(tan(��))(zm � zkick)

Now, �(tan(��)) has many sources, the most important being the uncer-
tainty in the estimation of the momentum and the quality of the model. In
order to estimate this last e�ect we can compare the values of �� given by
the model previously introduced and the exact values taken from HGeant.
This is shown in Fig. 5.37. From that �gure we learn that the uncertainty
introduced by the model itself is around 0.002. To keep a number in mind
we can say that zm� zkick is roughly around 1 meter; thus the uncertainty in
xc introduced by the model is about 2mm which have to be compared with
the � 15mm of the Meta detectors.

xPull distributions for bad and good combinations

We have discussed that xPull should peak around 0 for good combinations
and be approximately �at for bad ones. By actually plotting xPull, see Fig.
5.38, we learn that good combinations indeed peak at 0, but also bad ones
do, to some extent. This is something we cannot get rid of, as it comes from
Physics.

5.5 Track matching 163

resol
Entries 800892

Mean -6.345e-05

RMS 0.002317

-
/2)-Sη ∆sin(

-0.04 -0.02 0 0.02 0.04

N

0

500

1000

1500

2000

2500

3000

2x10
resol

Entries 800892

Mean -6.345e-05

RMS 0.002317

Azimuthal deflection resolution

Figure 5.37: Resolution in �� parameterization for positrons

xPull
-100 -80 -60 -40 -20 0 20 40 60 80 100

N

0

10000

20000

30000

40000

50000

60000

70000

80000
Good combinations

Bad combinations

Comparison of xPull distribution for good and fake combinations

Figure 5.38: xPull for good, left side, and bad, right side, combinations.

164 Momentum reconstruction

oangle
Entries 21991

Mean 45.23

RMS 44.63

Deviation angle(deg)
0 20 40 60 80 100 120 140 160 180

 (%
)

µ
N

/N

0

0.5

1

1.5

2

2.5

3

oangle
Entries 21991

Mean 45.23

RMS 44.63

Opening angle

Figure 5.39: Opening angle between the muon an pion in �� ! �� + ��.
Produced using an HGeant simulation

In a typical reaction, after protons, the most common particle species are
pions. Pions have a mean life � ' 26ns and decay 99.987% of the time in
the channel

�� ! �� + ��

There is a certain probability that this decay happens after the inner
Mdc chambers, but before the Meta detector. Since the particle producing
the hit in Meta and Mdc are di�erent, we classify the combination of the
two as a bad one. On the other hand, as shown in Fig. 5.39, the muon tends
to inherit the pion's direction, therefore these combinations have the correct
correlation between polar and azimuthal de�ection and thus peak at zero in
the xPull plot.

In order to make a rough estimate of this e�ect let's calculate the proba-
bility of a particle decaying before a time t0; this probability depends on the
particle's proper life time � and speed � through the expression

P (t0) = 1� e
� t0

�
p
1��2

A typical pion travels at � ' 0:85. It leaves the Mdc after 4ns and
reaches the Meta at around 10 ns. Taking into account that � = 26 ns, the

5.5 Track matching 165

xPull
-10 -8 -6 -4 -2 0 2 4 6 8 10

N

0

1000

2000

3000

4000

5000

6000

7000

8000

Good combinations

Bad combinations

Correlated noise combinations

Comparison of xPull distribution for good and fake combinations

Figure 5.40: Detail of the xPull distributions for good, bad and correlated
noise combinations. Note how the shape of xPull is not gaussian for good
combinations. Note also how the distribution for bad combinations becomes
�at once we take the correlated noise out.

probability for a particle to live between 4 and 10 ns is about 30%. Assuming
that everything produced in the reaction is either a pion or a proton and pions
represent 10% of the protons, that renders a 3% of the produced particles
appearing as correlated noise. Which, even if it is a rough estimate it is still
an order of magnitude to keep in mind.

That much for the xPull distribution on bad combinations. On good ones
the most outstanding feature is for the shape not to be gaussian like, specially
when using the Shower detector, as shown in Fig. 5.40. As explained
before, when using the Shower detector, xm is estimated as the center of
the Shower pad hit by the track. So in fact the probability distribution
associated with the measurement is not a Gaussian but a �at one, thus the
�at shape of xPull. Models for the xPull distributions in the di�erent cases
will be presented in section 6.5.4.

166 Momentum reconstruction

Fixing the cut value

The one thing left is to �nd the optimal value for the cut. This can be done
by plotting the e�ciency, noise and correlated noise as a function of the cut
value. Then we can choose a cut depending on the target e�ciency and noise
level we are willing to tolerate.

To make this plot, we need a way to con�rm if a combination is a good or
a bad one we use the HGeant Monte Carlo. The only relevant information
about the usage of a simulation here is that it should reproduce the noise
environment in the actual experiment; otherwise the noise estimation is op-
timistic. For that reason we simulated in HGeant the same system as in
the experiment: C+C, and at the same energy. That takes good care of the
physics noise. As for the electronics noise a completely di�erent approach
is in the works at GSI; namely embedding tracks simulated with HGeant
into real events. This infrastructure was not fully implemented by the time
of this writing.

In any case, the resulting curves from simulation are shown in Fig. 5.41.
The noise curve represents the total level of noise, including correlated one.
In this case we were targeting an e�ciency of 95%, which is shown as an
horizontal green line.

In fact, even though the matching algorithm is based on xPull it is more
complex than just performing a cut. As we have shown xPull has tails. That
means that in order to get high e�ciencies it is necessary to open the cut
quite a bit, otherwise we would loose all the good combinations sitting on
the tails. However, most of the good combinations are still sitting close to
0. What we do is perform a �rst, stronger, cut on xPull. Then, we not only
take out of the sample those combinations passing the cut, but also any other
one sharing an element (segment or hit in Meta) with a combination which
has passed the cut. On a second stage a wider cut is used, but this time the
level of noise is lower because of all the bad combinations taken out in the
previous stage.

What we have done for 2 cuts can be generalized for any number of them:
c1; c2; : : : ; cn. For each cut ci we identify the combinations with a lower xPull
and remove them from the sample so that their hits are not used anymore.
Note how this is very di�erent from taking always the combination with
the best xPull. The reason why doing it stepwise is better is clear when
considering close lepton pairs.

It is rather common that two leptons leave the Rich radiator gas with
opening angles around 0.5 degrees. These typically come from pair produc-
tion in the Rich radiator gas. As illustrated in Fig. 5.42 both leptons remain

5.5 Track matching 167

abs(xPull)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Differential behaviour

Efficiency
Noise level
Correlated noise

abs(xPull)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Integral behaviour

Efficiency
Noise level
Correlated noise

(a) Ideal tracking with �y = 80�

abs(xPull)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Differential behaviour

Efficiency
Noise level
Correlated noise

abs(xPull)
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Integral behaviour

Efficiency
Noise level
Correlated noise

(b) Santiago tracking

Figure 5.41: E�ciency, noise and correlated noise curves

168 Momentum reconstruction

beam

e

e−

+

Figure 5.42: Close pair. The same segment in the inner chambers can be
matched to two di�erent hits in Meta

very close in the inner part of the spectrometer, before the magnetic �eld.
So they are typically reconstructed as one single segment14. In the magnetic
�eld, the two leptons, having opposite charges, are de�ected in opposite direc-
tions, so that when they reach the Meta, they are recorded as two separate
hits.

This case shows how it is possible that one inner segment is legally asso-
ciated to more than one hit in Meta. For that reason we cannot just take
the combination with the best xPull. The algorithm shown here allows to
reduce a bit further the noise level with minimal impact on e�ciency. This
way the �nal average e�ciency does not change and the noise level values for
C+C on simulation with cuts on xPull 3 and 6 is reduced to around 15%

14There is a number of variables one can look at in a segment to know if it is suspicious
or not of being a close pair. For the sake of simplicity we will ignore them here. For more
information consult J.Bielcik

5.5 Track matching 169

5.5.2 Matching inner and outer Mdcs

The goal is to match a segment from the inner Mdcs with a hit in Mdc3.
Even if only one chamber is available in the outer region of the spectrometer,
a segment can be built using the direction information it provides. So, in
fact, what we need to match is the inner and outer segments. Each of the
segments de�nes a straight line with parametric equation:

ri = r0i + �it

where i is 1 for the inner segment and 2 for the outer one, t is a real number,
r0 is a point in the straight line and � is the direction unitary vector.

The two segments are de�ned by eight (4+4) measurements. However, we
know that a track is completely characterized by 5 parameters (1=p; �; z; �; �)
as shown in section 5.2.1; therefore there are 5 degrees of freedom. There
must be 3 constraints relating the eight measurements. There are several
standard methods to �nd those constraints, one of the most notable ones is
Principal Component Analysis (PCA, see (6)).

The basic assumption behind PCA is that the constraints among the
parameters are linear. In that case, if the measurements corresponding to real
tracks verify the constraints then they sit onto a 5 dimensional hyper-surface
in the 8 dimensional measurement space. The constraints being linear means
that the surface is �at, i.e., it is possible to �nd a coordinate transformation
such that in the new coordinates the hyper-surface is de�ned by making three
of the components equal zero. PCA provides a way to obtain such coordinate
transformation and an indication of which coordinates become zero. Then
the task of matching is simply applying cuts on those three variables.

The problem in our case is that the constraints are not linear. This can be
solved in two ways; one is dividing the measurements space in small regions,
applying PCA in each of them. This is like approximating the non linear
constraint by a set of linear ones. The other approach is to derive a set of
non linear constraints based upon a track model. This last method is the
one we present here. It is simpler, uses less memory and gives a good enough
e�ciency on C+C.

The matching algorithm presented here is based in the kick plane model.
In this model two segments belonging to the same track cross at one given
spatial point and that cross point sits on a surface, the so called kick surface.
Using that as inspiration, one can look at two variables for each combination
of two segments:

1. The distance between the two segments, (see Fig. 5.43). For good

170 Momentum reconstruction

kick surface

d
dkick

Figure 5.43: De�nition of d and dkick. The �gure on the left side represents
a track traversing one sector, it shows the view point for the �gure in the
right side.

combinations, this distance should be close to zero, according to the
kick plane model. On the other hand, bad combinations have larger
distances. The distance between two segments is the distance of closest
approach between them, which can be calculated as

d = (r1 � r2) � (�!� 1 ��!� 2)

2. Let's call rc to the point of closest approach between the two segments
(see Fig. 5.43). The second variable is the distance between rc and
the kick surface: dkick. Ideally, this should be zero since the segments
cross on the kick surface. The point rc is nothing else but the vertex
de�ned by the two segments. So it can be calculated with the vertex
reconstruction algorithm introduced in chapter 4.

These two variables complement each other. Since all tracks come from
the interaction vertex, d can be small for a combination of two segments
belonging to di�erent tracks, but then the point of closest approach will be
close to the target region and therefore dkick would be larger.

Up to know we have identi�ed two out of the 3 constraints: d and dkick.
A third constraint is the correlation between polar and azimuthal de�ection,
which is the same variable as used in the matching between Mdc andMeta.
Both the total and the azimuthal de�ection depend on momentum. From the
total de�ection we can estimate momentum and then use that estimate to
make a prediction on the expected azimuthal de�ection. We de�ne �� as

5.5 Track matching 171

the deviation of the measured azimuthal de�ection from the predicted one.
For good combinations it should be close to zero.

The matching algorithm presented here works by evaluating the matching
variables d, dkick and �� for each possible combination of one inner segment
and one outer segment. Then good combinations are discerned from bad ones
by placing a three dimensional cut on those variable values. The shape of the
cut is what determines the algorithm's e�ciency and noise level, therefore we
need a way to optimize it. If the evaluated variables were gaussian the cut's
shape would just be an ellipsoid in the three dimensional space de�ned by an
equiprobability surface. Unfortunately, that is not the case. In particular,
as already commented, the tails in the reconstruction of direction in Mdc3
have a strong in�uence.

For this reason an automatic method to determine the optimal cut shape
given a target e�ciency is needed. Such an algorithm will be presented
in section 5.5.2. But before that we will spend some time looking to the
distribution of the di�erent variables both for good and bad combinations.

d, dkick, �� distributions

The shape of the matching variables distributions depends fundamentally on
which kind of tracking is used to construct the inner and outer segments in
each candidate. There are three tracking algorithms active in Hydra:

� Ideal tracking: uses information from HGeant to simulate the re-
sponse of an ideal tracking algorithm, that is e�ciency is 100% and
resolution is perfectly Gaussian and according to design values.

� Santiago and Dubna trackers: complex algorithms constructing seg-
ments from the low signals recorded by the Mdc chambers. Both of
them are under development.

Fig. 5.44 shows the distributions on d; dkick;�� both for good and fake
combinations in the case of ideal tracking; while Fig. 5.455.45 corresponds
to Santiago tracking. We see how in the ideal case the variables have nearly
no tails; however in the more realistic scenario tails are very signi�cant. The
second bump in dkick corresponds to poorly reconstructed slopes in Mdc3.
The conclusion is that we need a way to perform matching in the presence
of large tails; this method is presented in the following section.

172 Momentum reconstruction

d (mm)
0 10 20 30 40 50 60 70 80 90 100

N

0

500

1000

1500

2000

2500

2x10 Good Combinations

Bad Combinations

d distribution

 (mm)kickd
0 50 100 150 200 250 300 350 400 450 500

N

0

10000

20000

30000

40000

50000

60000

Good Combinations

Bad Combinations

 distributionkickd

)φsin(
∆

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

N

0

200

400

600

800

1000

1200

1400

1600

1800

2x10 Good Combinations

Bad Combinations

 distribution)φsin(∆

Figure 5.44: Matching variables distributions for ideal tracking. The peak at
0.9 for�sin(�) is arti�cial and corresponds to those tracks where the algorithm
is not able to compute the expected azimuthal de�ection.

5.5 Track matching 173

d (mm)
0 10 20 30 40 50 60 70 80 90 100

N

0

200

400

600

800

1000

1200

1400

2x10 Good Combinations

Bad Combinations

d distribution

 (mm)kickd
0 50 100 150 200 250 300 350 400 450 500

N

0

5000

10000

15000

20000

25000

30000

35000

40000
Good Combinations

Bad Combinations

 distributionkickd

)φsin(
∆

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

N

0

200

400

600

800

1000

1200

1400
2x10 Good Combinations

Bad Combinations

 distribution)φsin(∆

Figure 5.45: Matching variables distributions for Santiago tracking. The
peak at 0.9 for �sin(�) is arti�cial and corresponds to those tracks where the
algorithm is not able to compute the expected azimuthal de�ection.

174 Momentum reconstruction

Determining the cut's shape

We have seen how any of the distributions can have tails, but counts sitting
in the tail of one variable do not necessarily sit in the tail of another. There
is e�ciency to be gained by allowing the cut to have an arbitrary shape.

In order to devise an algorithm capable of automatically deriving that
shape we have taken a very pragmatic approach. The three selection vari-
ables are used to de�ne a three dimensional space, the selection space; in that
space each combination of segments is represented by a point. Good combi-
nations are sitting on a volume, which is itself smeared due to the detector's
resolution.

From a simulation of the system of interest, C+C for example, we can
populate the selection space with all possible combinations. Internally keep-
ing track of which ones where good and which ones were bad. Then the
selection space is divided in cells; for each of them a signal to background
ratio is computed. That is simply the number of good combinations divided
by the number of bad ones.

The next step is to order the cells in a list going from the higher signal
to background ratio toward the lowest. The cells in the list are marked,
after marking each one the number of good and bad combinations in the
cell is added to the overall ones; thus computing an overall e�ciency. When
a previously speci�ed overall target e�ciency is achieved we stop marking
cells. The resulting set of marked cells provides the target e�ciency with the
lowest possible noise level, thus de�ning the cut's shape.

When a combination needs to be evaluated we �rst compute which cell
does it fall into, if it is one of the marked ones the combination is accepted.
Otherwise is rejected.

It should be noted that total statistics must be chosen such that statistics
in each of the cells are signi�cant.

Results

The basic results from a matching algorithm are its e�ciency and noise. Ta-
ble 5.2 summarizes those values for di�erent tracking algorithms in use in
the Hades experiment when the matching is done between the inner Mdcs
andMdc3. Those �gures have been obtained from a HGeant simulation of
a C+C system; e�ciency and noise have the meanings introduced in section
5.5. The �gures in the table represent the e�ciency and noise levels inte-
grated over solid angle and momentum with a weight distribution which is
given by the physical distribution of particles in a C+C simulation.

5.5 Track matching 175

Ideal tracking Santiago tracking

E�ciency 98.8% 98%
Noise level 1.5% 8.6%

Table 5.2: E�ciencies and noise levels for matching between innerMdcs and
Mdc3

The dependency of the two variables with momentum, polar and az-
imuthal angle is shown in Fig. 5.46 for ideal tracking; the results using the
Santiago tracking are presented in Fig. 5.47. In order to obtain the numbers
in the table from the graphics it should be noted that the physical distri-
bution of particles coming out of a C+C collision is roughly exponential in
momentum and peaks at the lower polar angles due to the Lorentz boost.

5.5.3 Matching Mdc track candidates with Meta

When in medium resolution or high resolution setups, we can measure mo-
mentum from the Mdc alone. But we still need to match the resulting track
candidate to a hit in the Meta detectors. Doing so also allows to compute
momentum using the low resolution algorithm. Then the two momentum
measurements can be combined to improve resolution.

We could naively expect that matchingMdc track candidates withMeta
is simply a matter of extrapolating the outer Mdc segment to the Meta
detector as a straight line an then compare the extrapolated and measured
points.

The problem with such simple approach is that it ignores the residual
magnetic �eld in the outer part of the spectrometer. Fortunately we already
have all the ingredients to take that e�ect into account.

First let's do the usual counting of degrees of freedom to know how many
constraints we can expect. A Mdc candidate is de�ned by 5 parameters,
in addition we have two measurements from the Meta detector. The full
track candidate is de�ned by 5 parameters, thus we can expect two additional
constraints.

One constraint we already know, it is the relation between polar and az-
imuthal angle already parameterized for the Meta detector in the form of
the xPull variable. The other constraint is that the polar de�ection mea-
sured using the Meta and Mdc detectors must respond to the same track's
momentum, ignoring the energy loss in the air.

176 Momentum reconstruction

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θEfficiency vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φEfficiency vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θNoise level vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φNoise level vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.46: E�ciency and noise level of matching between inner Mdcs and
Mdc3 as a function of momentum, polar and azimuthal angle. Ideal tracking.

5.5 Track matching 177

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θEfficiency vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φEfficiency vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θNoise level vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φNoise level vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.47: E�ciency and noise level of matching between inner Mdcs and
Mdc3 as a function of momentum, polar and azimuthal angle. Santiago
tracking.

178 Momentum reconstruction

Ideal tracking Santiago tracking

E�ciency 90% 90%
Noise Level 3.5% 4.7%

Table 5.3: E�ciencies and noise levels for matching between Mdc track
candidates and Meta. The Mdc track candidates are formed using Mdc3

Since we know, and anyhow need to, calculate the momentum using
Meta, another selection variable can be constructed as the normalized dif-
ference between the momenta determined from Meta and Mdc3

dPnorm =
1=pMeta � 1=pMdcp

�2(1=pMeta) + �2(1=pMdc)

As in the previous case, these two variable's distributions are a�ected
by the characteristics of the tracking algorithms used internally. For that
reason the optimal cuts on the selection variables are obtained using the
same algorithm as in the previous section. In fact, combinations falling in
the tails for the selection variables used to characterize the Mdc candidates
do not necessarily fall in the tail for the two extra variables. It is then
convenient to do the matching in two steps.

In the �rst step, when creating the Mdc candidates, we leave very open
cuts; targeting an e�ciency of 98% whatever the noise level is.

In the second step, we match all those combinations with the Meta de-
tectors, and now place more stringent cuts on all �ve variables; targeting for
e�ciencies in the order of 95%. In this way the Meta is used as a �lter
for the bad combinations accepted in the �rst step. In other words, suspi-
cious combinations are kept until all information about the track candidate
is known.

Results

The resulting e�ciency and noise ratios of the preceding algorithm are shown
here for the scenario where the Mdc track candidate was formed from the
matching of the inner Mdcs with Mdc3. We can get di�erent results de-
pending on the tracking algorithm; those results are summarized in table 5.3
and more detailed behavior is presented in Fig. 5.48 for Ideal tracking and
5.49 for Santiago tracking.

5.5 Track matching 179

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θEfficiency vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φEfficiency vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θNoise level vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φNoise level vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.48: E�ciency and noise level of matching between inner Mdcs and
Meta as a function of momentum, polar and azimuthal angle. Ideal tracking.

180 Momentum reconstruction

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θEfficiency vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φEfficiency vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise level vs p (Mev)

p (Mev)
200 400 600 800 1000 1200 1400 1600 1800

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)θNoise level vs

 (deg)θ
20 30 40 50 60 70 80

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (deg)φNoise level vs

 (deg)φ
5 10 15 20 25

∈

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.49: E�ciency and noise level of matching between inner Mdcs and
Meta as a function of momentum, polar and azimuthal angle. Santiago
tracking.

Bibliography

[1] Jim Carroll.Measurement of e+e� pair production at BEVALAC. Nuclear
Physics, A(495):09c-422c, 1989

[2] William H. Press, et al. Numerical Recipes in C: The art of scienti�c
computing. Pag 650

[3] http://www.oonumerics.org/blitz

[4] Eric Gamma et al. Desing patterns

[5] R.Bock. The particle detector briefbook

[6] I.T. Jolli�e. Principal Component Analysis. Springer-Verlag, 1986.

[7] HADES collaboration.Proposal for a high acceptance dielectron spectrom-
eter. GSI, 1994

[8] Th. Bretz. Magnetfeldeigenschaften des Spektrometers HADES. Diploma
Thesis. Technical Universität München, 1999

[9] William H. Press, et al. Numerical Recipes in C: The art of scienti�c
computing.

182 BIBLIOGRAPHY

Chapter 6

Pion production

The goal of this chapter is to study the production of charged pions in C+C
collisions. The results herein obtained are compared with those from other
experiments in order to perform a cross check. That proves to be a very
valuable tool for getting information about the quality of our analysis routines
and the eventual presence of systematic errors.

The kind of plots to be used should be rather simple, reducing as much as
possible the amount of external factors a�ecting them, but still meaningful.
Preferably we should have high statistics so that we have freedom to put cuts
on the data.

The data we will be using was recording in a beam time during November
2001 and it is 12C+ 12C at 1.9 AGeV. This is referred as the Nov01 dataset.
Even though there are more recent data, we have chosen those because they
have already gone through 4 generations of re�nement in the alignment and
calibration parameters. The �rst option is to look at leptons, however the
dilepton statistics are relatively low for our purposes, due to the fact that the
second level trigger was not fully operational at the time, thus reducing the
lepton richness of the data. Consequently we have concentrated on a more
abundant particle species, namely, pions.

We cannot obtain absolute production cross sections for several reasons.
One of them is the lack of scaler data. Scalers are typically used to count the
number of beam particles impining on the target. Without that knowledge
we cannot normalize to the beam intensity. We could still normalize to
the number of reactions, but then we have the additional problem that the
detector e�ciencies themselves are not very well known. This point will be
treated in more detail in section 6.5.4.

The choice was therefore to look at quantities which are not very sensitive
to an absolute normalization but to the shape of the spectra. This means

184 Pion production

that corrections for acceptance and e�ciency are still needed as long as they
may depend on phase space, but their absolute normalization is less rele-
vant. The chosen quantities are the pion mass, production ratios of positive
to negatively charged pions, production ratio of pions to protons and pion
transverse momenta spectrum.

The pion mass is a well known quantity, while pion freeze out temperature
has been measured previously by other experiments at SIS energies for the
same system as ours. This is done by looking at the transverse momentum
spectrum and then �tting it to a model based upon the assumption of a
thermal energy distribution given by the Boltzmann equation.

The reconstruction algorithm chosen for this analysis is the kick plane.
The reason being that during this data taking the outerMdc chambers were
missing in all but one sector. In the sector with outer chambers, only Mdc3
was fully operational. That corresponds to the low and medium resolution
setups in the previous chapter; so the kick plane is the natural choice.

Some corrections on the data are needed in order to account for the
spectrometer acceptance as well as the reconstruction e�ciency and noise
level of the kick plane. Actually, a �rst order approach would have been to
trust the e�ciency and noise level estimations obtained from simulations.
However we have gone one step further and tried to estimate them from the
real data; this is particularly relevant for the noise level estimation since the
noise environment in real life is higher than in simulations.

The �rst section of this chapter presents the experimental setup available
in Nov01. The next sections present the di�erent corrections on the data,
while the last sections go into physical results. The experimental results are
compared to simulations.

6.1 Experimental setup

The Nov01 data set corresponds to 12C +12 C collisions at 1.9 AGeV. The
experimental setup available at the moment of the data taking consisted of
the Rich detector, six sectors equipped withMdc2, one sector with the �rst
Mdc and another one with the outer Mdc3. All six sectors were equipped
with Tof and Shower detectors.

This means �ve sectors with the low resolution setup and one sector
with the medium resolution. In both cases the momentum reconstruction
algorithm used is the kick plane in its two variants.

The target was a cylindrical carbon target of 5mm length, 8 mm diam-
eter and a density of 2.15 g=cm3. Interaction length between 4% and 5%.

6.2 Particle Identi�cation 185

The vertex was displaced with respect to the design position around 30 mm
upstream.

The magnet �eld was not operating at full current and only 72% of its
full power was used. This was dealt with in the kick plane parameterizations
by simply scaling the �eld map in HGeant. The same e�ect is achieved
by scaling the kick plane parameters themselves. A re-parameterization was
anyhow needed since the target was displaced with respect to the ideal posi-
tion by 30 mm upstream1. That systematically changes the incident angle on
the kick plane for particles coming from the target and thus, the parameters
relating de�ection and momentum also change.

A reduced �eld means the window of momentum acceptance is displaced
toward the lower momentum range, since the same momentum corresponds
now to a larger de�ection. In other words, it makes possible to measure
lower momenta than if the full current was used, but on the other end of
the spectrum the resolution for high momenta becomes worse. This a�ects
mostly heavy particles like protons or deuterons with high momenta, but is
not a problem for pions which have momenta up to 1.5 or 2 GeV.

The total statistics amount to 50 million C + C events.

6.2 Particle Identi�cation

Particle identi�cation is a complex topic in itself. Information can be ob-
tained from a wide variety of variables measured in Hades. In order to
maximize the e�ciency of the overall particle identi�cation it is necessary to
merge the information given by di�erent algorithms, each of them looking
to one of the variables. One way to do so is that each algorithm provides a
probability vector for each particle candidate, each component in the vector
representing the probability for the particle to be of a certain kind (electron,
positron etc.). Some algorithms like the one based on the Rich is decisive
when it comes to identify a lepton but provides no information about whether
if the particle is a pion or a proton. Others, like those based on the examina-
tion of time of �ight versus momentum or energy loss in the Tof scintillator
rods are more sensitive to the di�erent hadron kind.

The overall particle identi�cation algorithm is responsible of forming par-
ticle candidates out of track candidates and feed them to the di�erent sub al-
gorithms. Those in turn give back probability vectors which then are merged
to output a �nal vector with the joint probabilities for the particle to be of

1In the opposite direction to the beam

186 Pion production

the speci�ed type. What was described is the Particle Identi�cation system
being developed by Hades were several people from di�erent groups are in-
volved. By the time of this writing the system was not fully completed so
we have used a simpler approach.

Our approach is equivalent to using just one of the sub algorithms in
the full Pid setup, the one built upon the kick plane algorithm. For each
track candidate we know its charge because that is given by the sign of the
de�ection angle. We also know the momentum and we know its associated
time of �ight (or velocity)2.

This information is already enough to plot �p versus � and the di�erent
particle species should appear in separated curves, each of them characterized
by the particle rest mass. Fig. 6.1 shows such plots built on simulations with
the low resolution setup. The di�erent colors correspond to the di�erent
particle species that are seen. In the case of tracks reconstructed using the
Shower detector the time of �ight is measured by a detector placed in front
of the Shower and which is known as Tofino. This detector has a worse
time resolution that Tof, thus the wider curves, and low granularity (4 pads
per sector). The low granularity makes it possible that even on 12C + 12C
collisions, two particles hit the same pad in the detector. In such a case, the
registered time of �ight is that of the fastest particle, but it is not known
which of the two was the fastest. So, no time of �ight is assigned. In those
cases a beta of 0.1 is arti�cially assigned. This problem does not exist for
the Tof because the granularity is much higher (64 rods per sector).

Fig. 6.2 shows the same kind of plot on real data (still low resolution).
The noise ratio is increased with respect to the situation on simulation and
we see a new particle appearing besides the protons. Those are the deuterons
which are not included in the simulation event generator.

A feature which is present both in simulation and real data, but more
clearly visible on real data, is the accumulation of fake tracks with positive
charge for the Shower detector and negative charge for the Tof. These
are low momentum tracks; thus a large de�ection is associated with them.
For a fake track hitting the Tof detector to have a large de�ection its sign
is more probably negative due just to phase space, since negative tracks are
bent up-wards in the �eld.

Depending on the kind of analysis to be done on the low resolution data
we can have di�erent approaches to perform cuts on the previously presented
spectra. If we want to compare �+ and �� production, the most sensible way

2In the low resolution kick plane we need to match with the Meta detectors anyhow
and those provide the time of �ight information. In the medium and high resolution setups
algorithms have been presented performing the matching with Meta.

6.2 Particle Identi�cation 187

β
0 0.2 0.4 0.6 0.8 1

 p
 (M

eV
)

×
ch

ar
ge

-3000

-2000

-1000

0

1000

2000

3000
Protons

-π
+π

Other
fakes

Particle identification with TOF

(a) Tracks reconstructed with the TOF detector

β
0 0.2 0.4 0.6 0.8 1

 p
 (M

eV
)

×
Z

-3000

-2000

-1000

0

1000

2000

3000
Protons

-π
+π

Other
fakes

Particle identification with Shower

(b) Particles reconstructed with the SHOWER/TOFINO detector. The line at
beta=0.1 corresponds to tracks were time of �ight was unknown (see text)

Figure 6.1: Particle identi�cation on simulations using the low resolution
setup.

188 Pion production

1

10

10
2

β
0 0.2 0.4 0.6 0.8 1

 p
 (M

eV
)

×
Z

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

Particle identification with TOF

(a) PID using the TOF detector

1

10

10
2

β
0.2 0.4 0.6 0.8 1 1.2

 p
 (M

eV
)

×
Z

-2000

-1000

0

1000

2000

3000

Particle identification with SHOWER

(b) PID with the SHOWER detector. The lower betas have been cut in order not to
break the color scale

Figure 6.2: Particle identi�cation using the low resolution setup on real data.

6.3 Production ratios 189

is to impose rather strict two dimensional cuts around the pions using exactly
the same, re�ected, shape for both polarities. The reason is that by using the
same shape we can expect the cut e�ciency to be approximately the same3

and a strong cut contributes to reduce the proton contamination in the �+.
Other kind of analysis will have di�erent requirements.

6.3 Production ratios

In this section we will look at the ratios between di�erent particle species.
In particular the �+ �� ratio and the ratio of pions to protons. This does
not need a knowledge of the absolute e�ciencies.

The results presented here are preliminary and will probably be improved
once the full Pid framework is completed.

6.3.1 �
+
�
� ratio

Due to isospin conservation we would expect this ratio to be 1 in 12C + 12C
collisions. That is, the same amount of both kind of pions is produced.
Regarding the measured ratio we have to take into account that acceptances
for positively and negatively charged particles are di�erent. Most of the
tracks produced in the collision have low polar angles. For those kind of
tracks a positively charged particles is bent up-wards, that is toward the
Tof detector and thus it is registered. Instead a negatively charged particle
is bent down-wards, toward the beam pipe where no detector is available and
thus the particle has a larger chance to go undetected.

One way to take this into account is running a HGeant simulation and
see what is the ratio using particles inside the acceptance. It can also be done
for tracks reconstructed with the Tof and Shower detectors separately.
The numbers are presented in table 6.1. The table also shows the production
ratio between pions and protons. The �rst thing that catches the eye on
that table is the fact that the ratios as measured by the Tof and Shower
detectors are di�erent, a consequence of their di�erent acceptances as will be
shown later. The overall ratio (R��) can be obtained directly, summing up
both contributions, or from the Shower one (Rs) and the Tof one (RT) by

R�� = w1Rs + w2R2

3The absolute value is not relevant as long as we look to ratios.

190 Pion production

Tof Shower Average Tof+Shower

�+=�� 0.73 1.16 0.94 0.94
�=p 0.67 0.40 0.53 0.49

Table 6.1: Production ratios from simulation. Ratios di�er from one detector
to the other due to acceptance. The simulation used FLUKA for hadronic
interactions (pion absorption). The activated physics processes correspond
to the defaults in Geant.

0

20

40

60

80

100

120

140

160

180

β
0.2 0.4 0.6 0.8 1

p
 (

M
eV

)

0

200

400

600

800

1000

1200

1400

Particle identification with Shower

0

100

200

300

400

500

β
0 0.2 0.4 0.6 0.8 1 1.2

p
 (

M
eV

)

0

200

400

600

800

1000

1200

1400

Particle identification with TOF

Figure 6.3: Pion identi�cation cut on Nov01 data

Since w1 + w2 = 1 and from the value for R�� known for simulation, we
can estimate w1 = w2 = 0:5. This is important because in real data the
relative e�ciencies of the Pid cuts on Tof and Shower are not known, so
it is not possible to add both contribution in order to obtain the overall ratio.
However, the above method is still applicable.

In order to measure this ratio on real data we need �rst an identi�cation of
pions. As explained previously, this is done placing a two dimensional cut on
the p versus � spectrum (see Fig. 6.3). There are a number of considerations
in the way that cut was chosen. First, the same cut is used for both pion
polarities, so that the cut e�ciency is the same for both. Second, the cut is
intentionally chosen very tight in order to avoid proton contamination in the
�+region.

Two di�erent cuts are needed for the Tof and Shower detectors due
to their di�erent resolution and due to the problem with low Tofino gran-
ularity. In particular the second e�ect makes the cut e�ciency for both of
them to be di�erent. This prevents us from directly adding the number of

6.3 Production ratios 191

Tof Shower Average

Ratio (R��) 0:70� 0:02 1:17� 0:02 0:93� 0:01

Table 6.2: Experimental pion ratios. The individual ratios in each detector
di�er from simulation due to the higher noise in real data.

pions reconstructed with both systems. Instead, the individual ratios are
separately computed and the mean is presented. The Tof tends to assign
negative charge to noise thus lowering the ratio. For Shower the situation
is exactly the opposite: noise tends to be recognized as positively charged
particles thus overestimating the ratio. In order to correct for this e�ect, the
algorithm explained in section 6.5.4 was used to estimate the individual noise
levels in both detectors, the �nal experimental results are given in table 6.2.
They are compatible with the values from simulation.

6.3.2 � to proton ratio

Another interesting quantity is the ratio of pions to protons. A UrQMD4

simulation predicts a ratio for 12C+12C at 2.0 AGeV of 0.12. From previous
experiments a value around 0.1 is expected.

As before, this ratio has to be corrected for acceptance before it can
be compared to the experimental results. Once this is done we obtain the
numbers in table 6.1. In this case we see that the average of Tof and
Shower does not correspond to the overall ratio (see table 6.1). This is due
to the fact that positive particles tend to end up in the Shower detector.
When computing the pion ratio, this e�ect was smaller due to the fact that
there was nearly the same number of positive and negative ones.

From the plots already presented, it is evident that it is di�cult to clearly
separate �+ from protons, in particular in the Shower case, due to the
Tofino resolution. However it is much easier to separate �� from the sum
of both �+ and protons. That being the case, instead of measuring pion to
proton ratio what is determined is the the sum of positive pions and protons
divided by the number of negative pions (R2). The pion to proton ratio (Rp)
can be obtained from R2 and the already known R�� according to:

Rp =
1 +R��

R2 �R��
(6.1)

The cut to select �+ together with protons should be rather loose this

4UrQMD is an event generator

192 Pion production

0

50

100

150

200

250

300

350

400

β
0.2 0.4 0.6 0.8 1

p
 (

M
eV

)

0

500

1000

1500

2000

2500

3000

3500

Particle identification with Shower

0

50

100

150

200

250

300

350

400

β
0 0.2 0.4 0.6 0.8 1 1.2

p
 (

M
eV

)

0

500

1000

1500

2000

2500

3000

3500

Particle identification with TOF

Figure 6.4: Cuts to select �+ + p

Tof Shower Average

Ratio (Rp) 0:75� 0:04 0:41� 0:04 0:58� 0:03

Table 6.3: Experimental pion ratios. The individual ratios in each detector
di�er from simulation due to the higher noise in real data.

time. The reason is that, contrary to what happened with pions, we have
no direct way to ensure that the cut e�ciency for pions and protons is the
same, or similar. For that reason the aim is to get a high e�ciency so that
the �uctuations are necessarily small. On the other side the cut should avoid
the low momentum and high beta counts as well as the deuterons, the goal
is that the noise is uniform inside the cut to minimize its e�ect5. Fig. 6.4
shows how the cut employed.

Performing the same noise correction as in the previous section the ex-
periment yields the results in table 6.3.

6.4 Mass

Knowing the � and the momentum of a particle, its rest mass is given by the
well known equation

m =
p

�
=
p
p

1� �2

�
= p

r
1

�2
� 1

This allows to check for systematics whether in the computation of � or

5If it is uniform it could also be estimated by introducing an additional correction

6.4 Mass 193

imass
Entries 83543

Mean 0.003805

RMS 0.003685

)-11/mass (MeV
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

co
u

n
ts

0

500

1000

1500

2000

2500

imass
Entries 83543

Mean 0.003805

RMS 0.003685

1/mass spectrum for sector 4 with TOF

d
π

p

Figure 6.5: Inverse mass spectrum for the Nov01 data. The spectrum cor-
responds to sector 4 and only the Tof detector was used due to the better
time of �ight resolution.

the momentum. For fast particles, like pions, systematic errors in � play a
decreasingly signi�cant role, while for slow particles the 1

�
behavior makes

the calculated mass more sensible to possible systematic errors in velocity
rather than in momentum.

Actually, it is not a good idea to measure mass from the formula above
directly. The reason is than p is not a gaussian but the inverse of a gaussian
distribution6. For gaussians with mean close to zero the inverse di�ers signif-
icantly from a gaussian and their peak position is displaced from the mean.
Instead of plotting m and �tting as if it were a gaussian, a more accurate
approximation is to do it on m�1 and then invert the result (see Fig. 6.5).
Doing that and correcting momentum for energy loss (see 6.5.2) we get

m� = 140� 1MeV

In accordance with the known pion mass. The error comes from e�ects
like the approximation the kick plane algorithm does when computing �. It

6p is inversely proportional to de�ection and de�ection can be approximated by a
gaussian.

194 Pion production

basically approximates the track by two straight lines and computes � based
on that, overestimating the length and underestimating the mass.

6.5 Transverse momentum spectra

The energy distribution of pions is usually expressed in terms of a Maxwell-
Boltzmann thermal distribution:

E
d3�

dp3
/ Eexp(�E

T
)

where E is the center of mass energy and T could be associated to the
pion temperature at the pion freeze-out in heavy ions collisions. However,
there are aspects of pion production that are not well interpreted with a sin-
gle Boltzmann distribution (see (3)), losing the temperature interpretation.
Nevertheless, we will use here the word �temperature� to refer to the in-
verse slope parameter T . It has also been observed that pion spectra slightly
deviate from a single Boltzmann distribution and are thus �tted to a super-
position of two Boltzmann distributions:

d3�

dp3
= C1e

� E
T1 + C2e

� E
T2

The low temperature component corresponds to a production enhance-
ment at low momenta. Brockmann (4) explains it taking into account the
contribution to pion production from the decay of � resonances. Table 6.4
presents inverse slope parameters obtained from di�erent experiments for the
C+C system at di�erent energies. The Nov01 data set corresponds to 1.9
AGeV. The values of the temperature parameters are correlated with each
other and depend on the measured momentum range as well as the angle of
emission of the pions.

It has been shown that around mid rapidity the thermal distribution as
a function of transverse momentum can be approximated by:

d�

dpt
/ ptmtexp

��mt

T

�
with

p
m2 + p2t

The two temperature approximation becomes

6.5 Transverse momentum spectra 195

Ebeam(AGeV) Species T1(MeV) T2(MeV) Ref.

0.8 �0 50� 4 - (7)
1.0 �0 54� 3 - (7)
1.0 �+; �� 45� 3 62� 3 (8)
1.0 �� 57� 5 - (6)
1.0 �+; �� 76� 5 - (6)
2.0 �0 83� 2 - (7)
2.0 �+; �� 40� 3 86� 3 (8)

Table 6.4: Inverse slope parameters for C+C at SIS energies. Taken from (5)

d�

dpt
= ptmt

�
C1exp

��mt

T1

�
+ C2exp

��mt

T2

��
(6.2)

In this section the pt distribution for �� will be obtained and �tted to
Eq. 6.2, comparing the results with those in table 6.4. Since this is an anal-
ysis on a continuum spectrum, several corrections are needed: energy loss,
acceptance, etc. In the �rst sections, the di�erent corrections are explained,
developing an analysis method. Next, the method is applied to simulations in
order to check it, and �nally the results of analysis of real data are presented.

6.5.1 Particle Identi�cation

This is not properly a correction, but something must be said about the way
�� are selected when building the pt spectrum. In previous sections this was
done through a two dimensional cut on a p versus � histogram. In this case
it is convenient to have as high an e�ciency as possible. For that reason a
wide cut is chosen.

Actually, the reason for looking at �� rather than �+ is that �� can be
identi�ed by the charge. That is, we only expect signi�cant contributions
to negative charges from electrons and ��. Electrons correspond to low
momenta and high speed and thus can be rather easily rejected, everything
left are considered to be negative pions.

6.5.2 Energy loss correction

Charged particles lose energy when traversing matter primarily by ionization
and excitation. The mean rate of energy loss is given by the well known
Bethe-Bloch equation:

196 Pion production

Symbol De�nition

� Fine structure constant
E Energy of the incident particle
T Kinetic energy

mec
2 Electron mass in MeV

re Classical electron radius
NA Avogadro's number
ze Charge of the incident particle
Z Atomic number of medium
A Atomic mass of medium

K/A 4�NAr
2
emec

2=A
I Mean excitation energy
Æ Density e�ect correction to energy loss

Tmax Maximum T transferred to an electron in a collision

Table 6.5: Symbols in the Bethe-Bloch formula

�dE
dx

= Kz2
Z

A

1

�2

�
1

2
ln

2mec
2�22Tmax

I2
� �2 � Æ

2

�

Which basically is a function of the charge z and � of the incident particle.
The di�erent symbols in the equation are de�ned as in table 6.5.

When a particle, a pion for example, leaves the interaction zone it has a
given momentum ptarget. This particle then su�ers energy loss mainly in the
target itself and the Rich detector. So when it reaches the Mdc chambers
and magnetic �eld region, its momentum is pmdc and pmdc < ptarget. The
track de�ection in the �eld is obviously proportional to pmdc as that is the
momentum the particle has when entering the magnet. Therefore, what we
measure is pmdc and we would need to correct for the energy loss to re obtain
ptarget.

In order to make a �rst estimation of the expected energy loss su�ered by
pions we will only consider what is happening in the target itself. The reason
is that the target used for the Nov01 data set was a 5mm carbon target,
together with the Rich's carbon mirror, that is the most dense material in
the trajectory of the pions.

Typical energy loss curves for pions on di�erent materials are shown in
�gure 6.6. From that �gure we learn that pions in our energy regime, from
100 to 1000 MeV su�er energy losses in the range of a few MeV depending on
the amount of material they have to traverse. For example a 100 MeV pion

6.5 Transverse momentum spectra 197

would su�er an energy loss around 2 MeV7 which would yield a variation in
momentum around 5 MeV, that is 5% of the original value. This is not neg-
ligible. On the higher momenta range, we have the 1500 MeV pion su�ering
about the same energy loss which results in a net e�ect in the order of 0.5%.

Actually, what we are really interested in, is the variation in momentum
induced by the energy loss. The �momentum loss� can be trivially obtained
from the energy loss simply taking into account that

dp

dx
=

dp

dE

dE

dx
=

s
1 +

�
m

p

�2
dE

dx

Thus, for a given particle species, the variation in momentum due to
energy loss depends only on the particle's momentum. Using the HGeant
simulation packages, an estimation of this e�ect which is more accurate than
the crude approach done before, can be achieved. That package, being based
upon Geant, includes simulation of the energy loss processes su�ered by
particles when traversing matter. Besides, HGeant contains the Hades'
geometry and materials composition. Hence it can easily estimate the energy
lost by any particle traversing the spectrometer.

We have generated pions in Geant with well de�ned momenta (ptarget)
and then recorded their momenta when reaching the �rst of the Mdc cham-
bers, pmdc. Since energy loss is a random process, it is necessary to average
over several hundred particles to obtain the pmdc corresponding to each ptarget.
Once again, we need that because pmdc is the quantity we measure in real
life, but ptarget is what we are interested in. The di�erence between those
two quantities is plotted in Fig. 6.7 as a function of pmdc. By �tting this
dependency to a phenomenological model we can correct for energy loss our
momentum measurements. The model is derived by direct inspection of the
data:

ptarget � pmdc = p0 + ep1+p2�pmdc

where p0, p1 and p2 are the model parameters. Their values are on the �gure.

In the previous procedure we have made the basic assumption that the
energy loss correction does not depend on the direction of the particle leaving
the interaction zone. This approximation is correct in �rst order since the
Rich detector is, in �rst order, spherical.

7The target density (2.15 g=cm3) times half the target width (0.5 cm) times the value
of energy loss from �gure 6.6.

198 Pion production

 1

 2

 3

 4

 5
 6

 8

10

1.0 10 100 1000 10 0000.1

Pion momentum (GeV/c)

Proton momentum (GeV/c)

1.0 10 100 10000.1

1.0 10 100 10000.1

1.0 10 100 1000 10 0000.1

−
d

E
/

d
x

(M
eV

 g
−1

cm
2)

βγ = p/Mc

Muon momentum (GeV/c)

H2 liquid

He gas

C
Al

Fe
Sn

Pb

Figure 6.6: Energy loss in various materials. Taken from (1)

6.5 Transverse momentum spectra 199

htemp
Entries 35609

Mean 610.6

RMS 282.2

 / ndf 2χ 803.4 / 84

p0 0.007473± 3.908

p1 0.01764± 3.903

p2 0.0001422± -0.01753

 (MeV)mdcp
0 200 400 600 800 1000

 (
M

eV
)

m
d

c
 -

 p
ta

rg
et

p

0

2

4

6

8

10

12

14

16

18

20

22

24

htemp
Entries 35609

Mean 610.6

RMS 282.2

 / ndf 2χ 803.4 / 84

p0 0.007473± 3.908

p1 0.01764± 3.903

p2 0.0001422± -0.01753

Energy loss correction for pions

Figure 6.7: Variation in the track's momentum due to energy loss measured
between the target point (ptarget in the text) and the �rstMdc chamber (pmdc

in the text). Each point is the average of several hundred particles with the
same ptarget, error bars are purely statistical.

target

low polar track

high polar track

z

x

y

Figure 6.8: Variation of track length inside the target with polar angle. The
higher the length, the higher the energy loss experimented by the particle.

200 Pion production

htemp
Entries 8578
Mean 603.8
RMS 285.6

 / ndf 2χ 411.5 / 81
p0 0.01225± 3.451
p1 0.02807± 4.014
p2 0.0002285± -0.0188

 (MeV)mdcp
0 500 1000

 (
M

eV
)

m
d

c
 -

 p
ta

rg
et

p

0

5

10

15

20

25 htemp
Entries 8578
Mean 603.8
RMS 285.6

 / ndf 2χ 411.5 / 81
p0 0.01225± 3.451
p1 0.02807± 4.014
p2 0.0002285± -0.0188

<.7)θ>.4 && θEnergy loss correction for low polar angles (htemp
Entries 9413

Mean 613.6

RMS 277.1

 / ndf 2χ 631.2 / 84

p0 0.0118± 4.298

p1 0.006464± 4.339

p2 8.92e-05± -0.02051

 (MeV)mdcp
0 500 1000

 (
M

eV
)

m
d

c
 -

 p
ta

rg
et

p

0

5

10

15

20

25
htemp

Entries 9413

Mean 613.6

RMS 277.1

 / ndf 2χ 631.2 / 84

p0 0.0118± 4.298

p1 0.006464± 4.339

p2 8.92e-05± -0.02051

<1.4)θ>1.1 && θEnergy loss correction for high polar angles (

Figure 6.9: Energy loss correction for the lower (left) and higher (right) polar
angles.

The biggest deviation is expected at large polar angles where not only
the Rich deviates from the spherical shape, but also the path length of the
particle inside the target is incremented. This is so because the target is
not spherical, but cylindrical, with the symmetry axis in the beam direction.
Even though the target length in the beam direction is 5mm its diameter is
8mm, thus increasing the length inside carbon for particles emitted at high
polar angles, see Fig. 6.8. This additional correction can be achieved by
simply dividing the phase space in bins and repeating the previous procedure
in each of them; however such level of accuracy was not considered crucial
for the current analysis. In order to get an idea of the e�ect, Fig. 6.9 shows
the same kind of plot as before for two di�erent regions in polar angle close
to the limits in the acceptance. The relative di�erence is signi�cant, but that
is a correction on the energy loss, which is already a rather small correction.

6.5.3 Acceptance correction

One of the design goals of Hades is to achieve a large acceptance in order
to maximize the detection e�ciency for open lepton pairs. That is, lepton
pairs coming, for example, from the decay of vector mesons. The reason is
the low branching ratio of the two lepton channel in the vector meson decays
which forces us to try maximizing the detection e�ciency.

Actually, e�ciency and acceptance are used in this work with di�erent
meanings. E�ciency itself can be divided in detection and reconstruction
e�ciencies. The �rst is detector speci�c and it is the probability for a particle
crossing a detector active volume to be identi�ed and it is a characteristic
of the hardware. The second is the probability for a detected particle to be

6.5 Transverse momentum spectra 201

reconstructed and it is a characteristic on the tracking software8.

Acceptance in the sense given here, could be explained as a geometrical
e�ciency. That is the probability for a particle emitted in the collision to
cross the active volumes of the spectrometer's detectors. This includes the
e�ect of the particle's de�ection in the magnetic �eld which depends on
momentum.

In order to make a simple estimation of acceptance as function of trans-
verse momentum (pt) and rapidity (y) we used a Monte Carlo method based
on HGeant. Events with uniform distributions in pt and y where generated
and tracked with HGeant assuming a 100% detector e�ciency. Then the
reconstructed distributions are compared with the original ones.

Fig. 6.10 shows the simulated and accepted pt and rapidity distributions.
The main losses happen at the sector edges where the magnet coils and
detector frames are sitting. In all these plots a uniform distribution in the
azimuthal angle is used. The rapidity distribution shows a feature for values
around 1. The excess observed there is product of the overlap of the Tof
and Shower detectors. Due to that overlap it is possible that one same
track is reconstructed twice, once with the Tof and once with the Shower
detector. To really avoid this e�ect instead work around it, we would need
to check for compatibility of the reconstructed segment in the overlap region.

From the data above we can build two dimensional histograms for the
reconstructed and original pt � y distribution. Dividing both 2D histograms
we get an acceptance matrix. That is, a matrix telling us how probable it is
for a particle with given transverse momentum and rapidity, to be accepted
by Hades. The �nal matrix used throughout this chapter is depicted in
Fig6.11.

By dividing the histograms obtained before and after the reconstruction
process we get a matrix indicating what is the acceptance for each bin in
transverse momentum and rapidity. Linear interpolation or other means can
be used in order to smooth the data, even though that was not necessary
for the current analysis. Actually, if linear interpolation had been used it
would have not been a good idea to use uniform distributions in pt and y.
Instead, we should have to generate particles with very particular pt and y
values, those corresponding to the centers of the bins in case of symmetric
interpolation.

More systematic approaches are under study within the Hades collab-
oration, but the results were not available by the time this analysis was

8In particular it is a characteristic of the cuts performed by the matching algorithms
inherent to the tracking software

202 Pion production

 MeVtp
0 200 400 600 800 1000 1200

co
u

n
ts

0

2000

4000

6000

8000

10000

12000

Comparison of original and reconstructed pt distributions Original distribution

Reconstructed distribution

rapidity (y)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

co
u

n
ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Comparison of original and reconstructed rapidities Original distribution

Reconstructed distribution

Figure 6.10: Comparison of uniform and accepted pt (uppermost) and rapid-
ity (lowermost) spectra. Main losses happen in the sector edges.

6.5 Transverse momentum spectra 203

 (MeV)
tp

0
200

400
600

800
1000

1200
rapidity (y)

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

ra
ti

o

0

0.2

0.4

0.6

0.8

1

control
Entries 0
Mean x 623.3
Mean y 0.8719
RMS x 317.9
RMS y 0.5122

control
Entries 0
Mean x 623.3
Mean y 0.8719
RMS x 317.9
RMS y 0.5122

Acceptance matrix

Figure 6.11: Acceptance matrix for negative pions as a function of transverse
momentum and rapidity.

performed.

6.5.4 E�ciency determination and noise correction

As already mentioned e�ciency has two components: detection and recon-
struction e�ciencies. Detection e�ciency determination as de�ned in the
previous section is too large a topic to be presented here. Su�ce it to say
that it is an ongoing e�ort inside the Hades collaboration. For the analysis
presented in this chapter we are assuming that the detector e�ciencies do
not signi�cantly depend on transverse momentum and rapidity.

It should be noted that the detectors used for this analysis are the ones
required for the low and medium resolution setups. That is the Mdc cham-
bers, Tof detector and �rst chamber (pre-converter) of the Shower detec-
tor. The Tof detector, made of plastic scintillators, is assumed to have an
e�ciency close to 99%. Mdc chambers and Shower pre-converter have also
high e�ciencies, so there is little room for variation, and big variations on
e�ciency on the active volume are not expected.

It could be argued that e�ciency and noise level on those detectors de-

204 Pion production

pend on multiplicity and multiplicity depends on polar angle, being larger
for the smaller polar angles. However, in C+C collisions the average multi-
plicity per event is low, around 4 charged particles, less than one particle per
sector. Therefore there are good reasons to think that we are on the safe side
assuming that e�ciency variations along the polar angle are not dominant.
After all, the granularity in these detectors is chosen to be able to cope with
the heavier systems, like Au+Au, with around 20 particles per sector per
event.

What remains to be accounted for is the reconstruction e�ciency, more
concretely the reconstruction e�ciency of the low and medium resolution
kick planes. This is something we cannot neglect since the e�ciency and
noise levels of the kick plane reconstruction process depend in particular on
momentum. So, if we are to analyze the shape of a momentum spectrum it
is necessary to correct for them. We will concentrate for the moment on the
low resolution case, since it is simpler and the methods presented here can
also be applied to the medium resolutions.

The method

It is known that in the low resolution kick plane, noise tends to accumulate
at the lower momenta. This is natural and a consequence of the rater low
multiplicity. A random combination of a segment from the inner chambers
and a hit in Meta is most probably corresponding to a large de�ection. In
other words, the probability to �nd a random hit in Meta in the direction
pointed by a segment is lower than the probability to �nd it somewhere
else. A large de�ection translates into a low momentum, thus the noise
accumulation in the lower end of the momentum spectrum.

The matching algorithm for the low resolution setup tries to minimize
this e�ect by placing cuts on the data, as explained in section 5.5.1. In that
section the correlation between the polar and azimuthal angles was used
in order to build a pull variable, xPull, to be used for matching purposes.
That is, xPull was computed for all track candidates and the decision of
whether a candidate is a real particle or not was taken by comparing its
xPull with a certain cut value. Still the e�ect persists and therefore we
need an estimation of the matching algorithm's e�ciency and noise levels
as a function of momentum in order to correct the transverse momentum
spectrum presented later in this chapter.

The physical interpretation of xPull for a track candidate is essentially
the di�erence between the x coordinate measured in the Meta detector and
the prediction for that same quantity given by the kick plane model. This

6.5 Transverse momentum spectra 205

is then divided by the corresponding error in order to obtain a normalized
distribution.

In section 5.5.1 it was shown how the e�ciency and noise level change
for di�erent cuts on the xPull variable, but those results were based on
simulations. We would like to get the same kind of information directly from
the data, where the situation can be signi�cantly di�erent because the noise
environment is larger; and we would like to get it for di�erent momentum
bins. This can be done by analyzing the shape of the xPull distribution.

What is measured in real life is the sum of the xPull distributions for
real tracks and fake candidates and there is no way to separate them a priori.
However it is possible to come up with a model for the compound distribution
which contains a noise part and a signal part. Then, a �t can be performed
to the data, giving back parameters which completely de�ne the noise and
signal components of the distribution and thus also the e�ciency and noise
level. In mathematical terms, lets call fg � fg(xPull) the xPull distribution
for real tracks and fb � fb(xPull) to the corresponding distribution for fakes.
The observed distribution is then f = fg + fb, de�ned for xPull 2 (�1;1).

If we place a cut on xPull such as jxPullj < c the cut's e�ciency is given
by,

� =

R +c
�c fgR +1
�1 fg

(6.3)

while the noise level is given by:

nl =

R +c
�c fbR +c

�c fg + fb
(6.4)

These are the only two magnitudes we need in order to know the real
number of good tracks, Ng, from the number of reconstructed tracks Nc

9.
The correction factor can be computed as:

W =
Ng

Nc
=

1� nl

�
(6.5)

The method described above requires integrating fg between �1 and1.
Since this is an analysis which is realized over the output of the reconstruction
program, maintaining that integration interval would require storing in the
output all possible track candidates whatever their xPull may be; this is

9That is, the number of tracks passing the cut

206 Pion production

anyhow done. It would also require to come up with a model for fb which is
valid in the whole range; that is more di�cult and not really needed. In fact
fg tends to zero when jxPullj ! 1, thus it is enough to chose an integration
interval large enough.

In the present analysis the full integration interval was chosen to be
xPull 2 (�20; 20). That provides room enough for the fg distribution to
be contained in10 and it also provides a region (large xPull) where f is
completely dominated by fb; this is important for the �tting algorithm to
correctly estimate fb.

In order to apply this method we need models for the fb and fg distri-
butions. In section 5.35 the distribution for real tracks and fake candidates
was shown from simulations. In particular it was shown how fg is not purely
gaussian, most notably in the case of candidates formed with the Shower
detector. The fakes distribution, fb, was shown to be rather �at and actually
it can be estimated in real life by a phenomenological model derived from the
data itself as we will see. The fg models for the Tof and Shower detectors
are presented in the following sections.

xPull distribution in the Tof detector

For a track candidate hitting the Tof detector at a point rm =(xm; ym; zm)
as measured by the detector itself, xPull is de�ned as

xPull =
xc � xm
�xc�xm

(6.6)

where xc is the expected x coordinate of the intersection point of the track
with the Tof detector, as obtained from the kick plane model. For more de-
tails about this de�nition section 5.5.1 can be consulted. Here the interesting
thing is that we can assume xc to be gaussian as it is a�ected by many small
error sources. The behavior of xm responds to the way it was measured and
it can also be considered gaussian (see section 5.4.1 for details). There it is
shown that xm is given by

xm =
t2 � t1
vg

where vg is a the light speed in a plastic rod and both t1 and t2 are time

10In section 5.5.1 we saw how the e�ciency was close to 100% for xPull already in the
order of 10. The situation in real data may be di�erent, but not dramatically di�erent,
since xPull is normalized.

6.5 Transverse momentum spectra 207

xPull
-20 -15 -10 -5 0 5 10 15 20

co
u

n
ts

0

500

1000

1500

2000

2500

xPull distribution in TOF detector for p>175 and p<200 MeV

xPull
-4 -3 -2 -1 0 1 2 3 4

co
u

n
ts

0

500

1000

1500

2000

2500

Zoomed histogram

Noise

Signal

Noise+Signal

Figure 6.12: xPull distribution in the Tof detector for a transverse momen-
tum ranging from 175 to 200 MeV. The black line represents a �t to the full
model, the blue and red lines correspond to the signal and noise components
respectively. The plot is integrated over all scintillator rods.

measurements with gaussian errors of the same magnitude; thus xm can be
considered to be gaussian.

If both xc and xm are normally distributed then xPull, being the dif-
ference between them, should also be normally distributed. In practice the
model for fg is the sum of two gaussians which account for the approxima-
tions in the previous argumentation and in the computation of �(xc � xm).
Fig. 6.12 shows this model applied to a Nov01 data set.

xPull distribution in the Shower detector

The case of the Shower detector is slightly more complicated. It is still
possible to maintain the gaussian hypothesis for xc, but not for xm. This
comes from the way in which xm is measured. As already explained, the
Shower detector is subdivided in approximately square pads. There is no
position measurement inside each pad but, whenever a particle crosses the
Shower detector, we know what pad was hit by the track. xm is then
estimated as the x coordinate of the pad center. However the point in the

208 Pion production

pad which was hit is not known: it could be any of them with the same
probability. In other words a uniform probability distribution is associated
to the measurement.

The typical pad size in the relevant direction is around 3cm, that is too
large to approximate the uniform distribution by a gaussian one and it is
small enough that we do not need to consider deviations from the uniform
distribution.

If xc follows a gaussian distribution and xm follows a uniform distribution
funi, with

funi =

�
k jxPullj < L
0 otherwise

then, the distribution of xPull is the convolution of them (see (2)), that is

fg(xPull) =

Z +1

�1
fgauss(u)funi(xPull � u)du

Fortunately that is a known problem with known solution. For a gaussian
distribution centered around 0 with variance �, the integral yields (see (2)):

fg =
	
�
u+L
�

��	
�
u�L
�

�
2L

where

	 =
1p
2�

Z xPull

�1
e�

t2

2 dt = 1� erf(xPull)

and where erf is the so called �error function� which is tabulated and readily
available in di�erent numerical libraries.

Fig. 6.13 shows this procedure at work on a set of data from Nov01.
In this case the model is slightly more sophisticated since the signal is ap-
proximated by the convolution of two gaussian with the uniform distribution.
This is needed in order to better reproduce the non gaussian tails.

Checks on simulations

A way to check the goodness of the previously sketched method is to apply
it to simulated data, where the results for e�ciency and noise level can be
cross checked with the results from the simulation itself.

6.5 Transverse momentum spectra 209

xPull
-20 -15 -10 -5 0 5 10 15 20

co
un

ts

0

100

200

300

400

500

600

700

800

900

xPull distribution in Shower detector for p>175 and p<200

xPull
-3 -2 -1 0 1 2 3

co
un

ts

0

100

200

300

400

500

600

700

800

900

Zoom on peak

Noise

Signal

Noise+Signal

Figure 6.13: xPull distribution in the Shower detector for a transverse
momentum ranging from 175 to 200 MeV. The black line represents a �t to
the full model and the blue and red lines correspond to the signal and noise
components respectively.

210 Pion production

xpull_p_19_sho_raw

Entries 473

Mean 0.3802

RMS 3.067

xPull
-20 -15 -10 -5 0 5 10 15 20

co
un

ts

0

5

10

15

20

25

30

35

xpull_p_19_sho_raw

Entries 473

Mean 0.3802

RMS 3.067

xPull distribution for the Shower detector on simulations. 788<pt<825

Figure 6.14: xPull distribution in the Shower detector for transverse mo-
mentum from 788 to 825 MeV. The red line is the �tted noise distribution.
The �gure shows how noise is overestimated due to the few statistics for large
xPull. The larger momenta are shown here since that is the region were the
e�ect is more signi�cant.

It turns out that a direct comparison is not feasible since the �ts involved
in the present calculation do not work properly on simulated data: noise
levels are systematically overestimated. The reason is that, in order for the
�t to be able to properly estimate the noise, we need signi�cant statistics
in the spectrum region which is noise dominated (large xPull). That is not
veri�ed in the case of simulations for two reasons:

� The overall statistics, number of analyzed events, is smaller than in
real data.

� The of noise to signal ratio is lower than for real data. So, actually, we
would need more simulated events than real ones.

Those two circumstances are avoidable in real data, since statistics is higher
and noise levels are also higher. Furthermore we can check for this problem
by directly looking to the �ts. Still, a number of things are to be learnt by
comparing to simulations.

We have said that for the method to work it is enough to do the �t for
the xPull interval from -20 to +20. It was said that such interval would be

6.5 Transverse momentum spectra 211

large enough, but nothing was said about how good such an approximation
would be. This is something we can check on simulations. The restriction to
a �nite interval does not a�ect the computed noise level (see Eq. 6.4), but
the e�ciency can be a�ected if fg is di�erent from zero outside the limits (see
Eq. 6.3). In order to see how good the approximation is we need to estimate
the number of real tracks with an xPull larger than 20. In other words, we
need the e�ciency for a cut jxPullj < 20.

That e�ciency can be estimated on simulations and plotted as a function
of transverse momentum. That is what is shown in Fig. 6.15, where e�ciency
is plotted both integrated over the full rapidity range and for mid rapidity.
In our case, around mid rapidity, for most of the momentum range the e�ect
is small enough to ignore it, besides the curve is �at. However, there is a
clear trend toward the lower transverse momenta.

What happens is the following: in order to compute xc for a track can-
didate, the kick plane algorithm uses the candidate's intersection with the
kick surface. Sometimes the intersection points falls outside the acceptance,
where the kick plane parameters are not known. In those cases the value of
xPull is arti�cially set to 1000, thus falling outside our window. Most of the
track candidates showing this problem are fakes and thus a high xPull makes
sense. However, it is also possible that real particles show this behavior in
which case they are lost. The reason why that happens more for the lower
momenta is that in such regime we start to have tracks which curl in the
magnet �eld and are not well described by the kick plane model.

This knowledge allows to introduce a correction to the correction factor,
W, being computed (Eq. 6.5). If we denote as �20 the e�ciency for a xPull
cut of 20. Then, the corrected factor is

W 0 =
W

1� �20

It is also educative to look directly to the xPull distribution for real
tracks. This was already done in previous chapters, but it was assumed
that both of the inner chambers were available. The situation is di�erent in
Nov01 for one of the sectors, where only one inner chamber is functional.
What is seen is that for that sector xPull presents very large tails. That
invalidates the whole method. We need separate regions dominated by signal
and noise, otherwise the �tting algorithm cannot distinguish between both
components.

For the same reason the so called �correlated noise� (see section 5.5.1)
cannot be distinguished from the signal. An estimation based on simulations
is needed.

212 Pion production

 (MeV)tp
100 200 300 400 500 600 700 800

 (
|x

P
u

ll|
<2

0)
∈

0

0.005

0.01

0.015

0.02

0.025

0.03

 / ndf 2χ 1.894e-05 / 16

p0 0.0004516± 0.0007745

p1 0.0183± 0.08612

p2 0.004436± 0.1535

p3 0.3658± -11.56

 / ndf 2χ 1.894e-05 / 16

p0 0.0004516± 0.0007745

p1 0.0183± 0.08612

p2 0.004436± 0.1535

p3 0.3658± -11.56

Efficiency of a xPull cut of 20. Integrated over rapidity

 (MeV)tp
100 200 300 400 500 600 700 800

 (
|x

P
u

ll|
<2

0)
∈

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Efficiency of a xPull cut of 20. 0.8<y<1.1

Figure 6.15: E�ciency for a cut in xPull of 20. The leftmost �gure is inte-
grated over the full rapidity range while the rightmost corresponds to rapidi-
ties between 0.8 and 1.1. The leftmost �gure is �tted to an phenomenological
model � = P0 +

P1
P2pt+P3

. The increase toward the lower momenta is an edge
e�ect (see text).

6.5.5 Results on 12
C +

12
C simulation at 2.0AGeV

In simulation we have the advantage that the original momentum is known.
We also have perfect particle identi�cation and fake rejection capabilities,
given by HGeant. Using those capabilities it is possible to see what kind of
spectra are expected. We can run the simulation data on the same analysis
chain as the real ones, thus giving us an idea of how that analysis chain
modi�es the results. That way it becomes easier to interpret the results on
real data

First we should check if there are systematic errors in the momentum
reconstruction for the simulations. As shown in Fig. 6.16 the only deviation
comes from the energy loss e�ect. Fig. 6.17 shows how the correction from
section 6.5.2 solves the problem.

As to how well the transverse momentum spectrum is reconstructed, Fig.
6.18 shows how the spectrum looks like from the event generator, that is
the simulation input, and what the result is after it goes through the whole
reconstruction program and the corrections in this chapter are applied. We
see how the main features are retained while the T parameter is increased
by nearly 3 MeV.

6.5.6 Real data �t to a thermal model

The resulting transverse momentum spectrum of real data is shown in Fig.
6.19 with �ts to equation 6.2 in two di�erent momentum ranges. In par-

6.5 Transverse momentum spectra 213

10
-3

10
-2

10
-1

1

 (MeV)mdcp
0 500 1000 1500 2000 2500

-1 m
d

c
p

-1 re
c

 -
 p

-1 m
d

c
p

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

hRespmdc2
Entries 312279
Mean x 467.3
Mean y 0.003005
RMS x 286
RMS y 0.1394

hRespmdc2
Entries 312279
Mean x 467.3
Mean y 0.003005
RMS x 286
RMS y 0.1394

Momentum reconstruction residuals for pions

10
-3

10
-2

10
-1

1

 (MeV)targetp
0 500 1000 1500 2000 2500

-1 ta
rg

et
p

-1 re
c

 -
 p

-1 ta
rg

et
p

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

hResptar
Entries 315343
Mean x 472.9
Mean y -0.01196
RMS x 285.6
RMS y 0.138

hResptar
Entries 315343
Mean x 472.9
Mean y -0.01196
RMS x 285.6
RMS y 0.138

Momentum reconstruction residuals for pions

Figure 6.16: Residuals in the reconstructed momentum. On the left side the
reconstructed momentum is compared with the particle momentum when
entering the �eld. On the right side it is compared to the momentum when
leaving the target. The di�erence is due to energy loss.

214 Pion production

10
-3

10
-2

10
-1

1

 (MeV)targetp
0 500 1000 1500 2000 2500

-1 ta
rg

et
p

-1
-p

-1 ta
rg

et
p

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

hResptarel
Entries 315214
Mean x 472.8
Mean y 0.003412
RMS x 285.5
RMS y 0.1322

hResptarel
Entries 315214
Mean x 472.8
Mean y 0.003412
RMS x 285.5
RMS y 0.1322

Momentum reconstruction residuals for pions (Energy loss corrected)

Figure 6.17: Residuals in momentum. The reconstructed momentum is en-
ergy loss corrected before comparing it to the particle momentum at the
target.

6.5 Transverse momentum spectra 215

hcent
Entries 15604

Mean 265
RMS 141.1

 / ndf 2χ 57.48 / 18
T 0.4937± 82.3

Constant 0.01665± 0.6994

 (MeV)tp
100 200 300 400 500 600 700 800

co
un

ts

10
2

10
3

hcent
Entries 15604

Mean 265
RMS 141.1

 / ndf 2χ 57.48 / 18
T 0.4937± 82.3

Constant 0.01665± 0.6994

Pt distribution. Mid rapidity

(a) Ideal distribution from the event generator (BUU)

pt
Entries 71130
Mean 273.6
RMS 145.3

 / ndf 2χ 340.4 / 16
T 0.2284± 84.9
Constant 0.04195± 3.849

 (MeV)tp
100 200 300 400 500 600 700 800

co
un

ts

10
3

10
4

pt
Entries 71130
Mean 273.6
RMS 145.3

 / ndf 2χ 340.4 / 16
T 0.2284± 84.9
Constant 0.04195± 3.849

 at midrapidity-πReconstructed transverse momentum for

(b) Reconstructed distribution

Figure 6.18: Transverse momentum spectrum around mid-rapidity (0:8 <
y < 1:1). The number of processed events is di�erent in each �gure.

216 Pion production

ticular, for comparison with the data on table 6.4 it is needed to �t on the
same momentum range as measured by the KaoS experiment. From Ref. (6)
this range was estimated to be between 200 and 600 MeV at mid-rapidity. In
that range the two temperatures obtained by us are compatible with the ones
measured by KaoS. The �t to the full range shows that there is a deviation
from the model both at the lowest and the highest momenta.

Deviations from the thermal model

For the deviation at the highest momenta the explanation is that the so
called correlated noise (see 5.5.1) is larger in that region. In that section
it was shown that a �� could decay in �ight between the inner Mdcs and
Meta through the channel �� ! � + ��. The muon inherits the direction
of the pion because of the Lorentz boost and thus the hit it produces in
Meta is mismatched with the hits produced by the pion in the Mdcs. The
e�ect is larger the larger the momentum, because the Lorentz boost is more
signi�cant.

In the lower momenta range there are two e�ects. On one side that pt
is the closer to the spectrometer acceptance limits. In the present analysis
the ideal positions of the detector has been used to build the acceptance
matrix, however it is known that the detectors are not exactly in their ideal
positions. Then the acceptance matrix may be slightly di�erent in the edges.
Besides that, it has already been shown that the noise level steeply increases
toward the lower momenta. In the method presented above the noise level is
estimated in each bin as an average, that approximation is worse the larger
the slope of the curve. In other words, the low momentum region would
bene�t from smaller binning, which requires higher statistics.

Comparison with previous data

As already mentioned, the two inverse slope parameters depend on the mea-
sured momentum range. If we are to compare with the data from table 6.4
we need to know what was the momentum range. The data in the table for
C+C for 2.0 AGeV was taken by the KaoS collaboration. From Ref. (6)
the accepted transverse momentum range around mid-rapidity has been es-
timated to go from 200 to 600 MeV. Those are the limits in the �t shown in
the second part of Fig. 6.19, yielding the �temperatures�:

T1 = 41� 3MeV; T2 = 86� 2

6.6 Medium resolution data 217

which are compatible, within the errors, with the measurements from KaoS.
The errors are those from the �tting procedure.

6.6 Medium resolution data

As already mentioned one of the sectors had three active Mdc chambers
during the Nov01 data taking period. In this section we will focus on the
improvement in resolution due to that fact. This resolution increase is il-
lustrated in Fig. 6.20 where p is plotted versus � showing how the particle
identi�cation capabilities have improved.

On more quantitative terms, we can compare the resolution in the recon-
structed proton inverse mass for a set of tracks using the low resolution and
medium resolution kick plane algorithms. The results are presented in Fig.
6.21.

218 Pion production

pt
Entries 201403
Mean 255.9
RMS 150.3

 / ndf 2χ 83.57 / 20
T1 1.775± 93.82
C1 0.3566± 2.533
T2 2.099± 50.37
C2 4.935± 32.97

 (MeV)tp
100 200 300 400 500 600 700 800

co
un

t

10
3

10
4

pt
Entries 201403
Mean 255.9
RMS 150.3

 / ndf 2χ 83.57 / 20
T1 1.775± 93.82
C1 0.3566± 2.533
T2 2.099± 50.37
C2 4.935± 32.97

Transverse momentum at midrapidity

pt
Entries 201403
Mean 255.9
RMS 150.3

 / ndf 2χ 55.62 / 13
T1 1.538± 85.84
C1 0.5545± 4.611
T2 3± 40.94
C2 25.88± 72.09

 MeVtp
100 200 300 400 500 600 700 800

co
un

t

10
3

10
4

pt
Entries 201403
Mean 255.9
RMS 150.3

 / ndf 2χ 55.62 / 13
T1 1.538± 85.84
C1 0.5545± 4.611
T2 3± 40.94
C2 25.88± 72.09

Transverse momentum at midrapidity

Figure 6.19: Transverse momentum spectrum of pions produced in C+C at
1.9 AGeV. The enhancement toward high pt can be attributed to �correlated
noise�. At the lowest momenta the noise level increases sharply making the
noise estimation inaccurate. The lower �gure shows the same data as the
upper, but he �tted region corresponds to the measurement range of the
KaoS experiment for comparison with table 6.4

6.6 Medium resolution data 219

10
-1

1

10

β
0 0.2 0.4 0.6 0.8 1 1.2

 p
 (

M
eV

)
×

Z

-3000

-2000

-1000

0

1000

2000

3000

Particle identification with TOF

Figure 6.20: Particle identi�cation using the Tof detector and the medium
resolution setup (with Mdc3). This �gure is to be compared with Fig. 6.2
which corresponds to the low resolution setup (no outerMdc). The improved
resolution allows the clear distinction between protons and deuterons. Tri-
tium starts to be apparent also.

220 Pion production

hMass
Entries 41387

Mean 0.002361

RMS 0.002995

 / ndf 2χ 14.25 / 12

Constant 18.51± 2005

Mean 1.365e-06± 0.001119

Sigma 1.968e-06± 0.0001407

)-11/mass (MeV
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

co
u

n
ts

0

200

400

600

800

1000

1200

1400

1600

1800

2000

hMass
Entries 41387

Mean 0.002361

RMS 0.002995

 / ndf 2χ 14.25 / 12

Constant 18.51± 2005

Mean 1.365e-06± 0.001119

Sigma 1.968e-06± 0.0001407

Mass

=12.6%
M

Mσ

hMass
Entries 41387

Mean 0.002399

RMS 0.003018

 / ndf 2χ 29.2 / 7

Constant 30.29± 3335

Mean 6.358e-07± 0.001124

Sigma 7.587e-07± 7.595e-05

)-11/mass (MeV
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

co
u

n
ts

0

500

1000

1500

2000

2500

3000

3500

hMass
Entries 41387

Mean 0.002399

RMS 0.003018

 / ndf 2χ 29.2 / 7

Constant 30.29± 3335

Mean 6.358e-07± 0.001124

Sigma 7.587e-07± 7.595e-05

Mass

=6.7%
M

Mσ

Figure 6.21: Comparison of mass resolution achieved with the low and
medium resolution setups. The upper �gure corresponds to the low reso-
lution, the lower one is for medium resolution.

Bibliography

[1] Groom et al, Particle Data Group. Review of Particle Physics. European
Physics Journal C(15):1-878, 2000.

[2] R.K. Bock and W.K Rischer. The data analysis briefbook. Springer,

[3] R.Stock. Physics Reports 135:259, 1986

[4] R. Brockmann et al. Physics review Letters 53:2012, 1984

[5] M. Ardid. Particle Production at the GSI-Darmstadt Pion Beam Facility.
PhD thesis from Universitat de Valencia, 2002

[6] F. Laue et al. (KaoS Collaboration). Production of Charged Pions, Kaons
and Antikaons in Relativistic C+C and C+Au Collisions. European
Physics Journal A(9):397-410, 2000

[7] R. Averbeck et al. Production of �0 and � mesons in carbon-induced rel-
ativistic heavy-ion collisions. Zeitschrift für Physik A(359): 65-73, 1997

[8] A. Förster. Pionenproduktion und thermische Konzepte in relativistischen
Schwerionenreaktionen. Diploma thesis, Technische Universität Darm-
stadt, 1998

222 BIBLIOGRAPHY

Chapter 7

Conclusions

In this work, momentum reconstruction algorithms have been implemented
and applied to the analysis of pion production data.

The software framework where the di�erent algorithms exist has been
presented. The choice of an object oriented approach is justi�ed by the
reduction in code and management complexity that it a�ords. The user
requirements for the reconstruction software have been analyzed and a design
satisfying those requirements has been presented.

A vertex reconstruction algorithm has been proposed for the Hades ex-
periment, in particular, it addresses the problem of outliers. The limitations
on the vertex resolution imposed by the spectrometer design and the e�ect of
multiple scattering have been explained as well as the sources for systematic
errors. Finally, the performance of the method applied to events from the
Nov01 data set has been shown.

Two algorithms have been presented for momentum reconstruction: the
Kick Plane approach, that is less memory intensive, and the Reference Tra-
jectories method. Their introduction is justi�ed by the need for data analysis
through the di�erent stages of the spectrometer construction. Adaptations
of the Kick Plane approach have been presented for the di�erent possible
setups. Their relative resolutions have been shown to range from the 3% to
the 12% on the low resolution setup. It has been argued that even such a
low resolution is comparable to that of the precursor experiment Dls.

The Reference Trajectories algorithm has been implemented for the com-
plete setup, where the redundancy of the experimental system favours that
kind of approach. A suggestion to improve the Kick Plane resolution in the
complete setup using that redundant information has been made. The reso-
lution achieved in this case is around 1% in simulations, matching the design
goals of the Hades experiments.

224 Conclusions

Besides the methods for momentum reconstruction and track �tting, two
methods have been implemented for the merging of track pieces before and
after the magnet. Like before, both methods address di�erent realities in
the experiment. One method has been presented for the case in which no
outerMdc chambers were available. In that case, the matching is performed
comparing the track azimuthal de�ection along the �eld with the prediction
of the Kick Plane model. The addition of the rear Mdc chambers opens up
the possibility of using more information for the matching. That has lead
to the implementation of a speci�c matching algorithm for that case. Both
methods e�ciencies and noise levels have been reported.

Finally, the momentum reconstruction methods have been applied to the
analysis of the Nov01 data, focusing on the study of properties relative to
pion production. The production ratios between the positive and negative
charged pions have been shown to be in agreement with expectations. Agree-
ment is also achieved for pion to proton ratio. These measurements exercise
the particle identi�cation capabilities of Hades applied to hadrons. In an
attempt to check for possible systematic errors in the momentum recon-
struction, the pion mass was derived from the data and found to be in good
agreement with the known value. On a later stage, e�ciency, acceptance and
energy loss corrections have been derived from the data in order to obtain
an spectrum of pion production as a function of transverse momentum. The
methods developed to implement the corrections have been presented and
the resulting spectrum compared to previous measurements from the KaoS
collaboration. The spectrum has been �tted to a double Boltzmann distri-
bution, with two �temperature� parameters, �nding a good agreement with
measurements from KaoS.

Appendix A

UML notation

Uml notation is a graphical representation for the modelling of software
projects based on an Object Oriented Design. Uml stands for �Uni�ed Mod-
elling Language�, which makes reference to the fact that it is a language and
not only a notation. Uml tries to present the objects in a system and their
relationships through graphical diagrams in a standardized way. The ideal is
to deliver for software development what circuit diagrams are for electronics
development.

The notation de�nes several types of diagrams, showing di�erent aspects
of a given software piece. From the static class structure to the physical code
distribution going through use cases or time diagrams showing the interac-
tions between objects necessary to accomplish a given task.

The full description of the notation is too large a topic to be covered
here (see (1)), instead we will concentrate on those aspects of the notation
which are necessary to understand the diagrams presented in this document.
In particular we will only treat the most common constructions with class
diagrams

A diagram is essentially a 2D structure formed by icons, lines (or arrows)
and text. The most common elements populating a class diagram are:

Class A rectangle like

226 UML notation

MyClass

#var1: int
−var2: float

+getVar1() : int
+getVar2() : float

represents a class with name �Klass�. The rectangle representing the
class is divided in three parts, in the uppermost the class name is shown,
the second part contains the class data members. Each data member
is represented by a string with the syntax �name: type� identifying the
variable name and its type1. The string is preceded by a symbol indi-
cating the type of access to the variable: '+' if the member is public,
'#' if it is protected and '-' if it is private2.
The third part is another list of strings with the class methods. Those
methods de�ne the class interface with the outside. Each method is
represented by a string in the form �name(argument): return_type�;
where �name� is the method's name, �return_type� is the type returned
by the function and �arguments� is a list of variable strings like those
used to list the data members. Methods are also quali�ed for its visi-
bility in the same way as data members.

Inheritance Is represented by an arrow �nished by a hollow triangle.
The arrow goes from the daughter class to the parent one, like in the
following �gure

1In the Pascal fashion
2A public data member is accessible from anywhere outside the class, a protected one is

only accessible for the class itself and its daugthers. While a private one is only accessible
to the class itself and friends

227

Animal

Dog Cat

where the class �dog� is derived from the �animal� class.

Association Is represented by a solid line between the two related classes
and it expresses a generic relationship between them. If an arrow is
shown it indicates the direction of the association. This construct is
typically used to express the case where a class has a poiner to another
one, but without the second being a part of the �rst one conceptually.
If the line is dashed it expresses a usage relationship, i.e. a class uses
the services of another. In any of the extremes the multiplicity or the
relation name can be indicated

Aggregation It is a kind of relation where a class is part of the other. This
is expressed by a solid line joining the two classes, in the extreme of
the container class a diamond is placed. The diamond can be solid
or hollow, in the second case indicating composition by reference and
composition by value in the �rst case. The following �gure shows a
class �car� containing 4 �wheels� by value and an arbitrary number of
�indicator� objects by reference

228 UML notation

Car

Wheel

4

Indicator

*

The fundamental di�erence between agregation by value and reference
is that in the �rst case the contained object is destroyed at the same
time as the container one. While in the second case that does not need
to be the case

Bibliography

[1] Uml notation guide. http://www.rational.com/uml/resources/documentation

